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Abstract—In recent year, there has been a growing need for
intelligent systems that not only are able to provide reliable
classifications but can also produce explanations for the decisions
they make. The demand for increased explainability has led to the
emergence of explainable artificial intelligence (XAI) as a specific
research field. In this context, fuzzy logic systems represent a
promising tool thanks to their inherently interpretable structure.
The use of a rule-base and linguistic terms, in fact, have allowed
researchers to create models that are able to produce explanations
in natural language for each of the classifications they make.
So far, however, designing systems that make use of interval
type-2 (IT2) fuzzy logic and also give explanations for their
outputs has been very challenging, partially due to the presence
of the type-reduction step. In this paper, it will be shown how
constrained interval type-2 (CIT2) fuzzy sets represent a valid
alternative to conventional interval type-2 sets in order to address
this issue. Through the analysis of two case studies from the
medical domain, it is shown how explainable CIT2 classifiers are
produced. These systems can explain which rules contributed
to the creation of each of the endpoints of the output interval
centroid, while showing (in these examples) the same level of
accuracy as their IT2 counterpart.

Index Terms—Constrained interval type-2, XAI, explainable
type-2 fuzzy systems

I. INTRODUCTION

Classification models have been widely adopted in recent
years to tackle problems in a variety of fields, ranging from
image classification to medical data analysis. Although state of
the art classifiers are able to produce good predictions, many
of them are unable to provide meaningful explanations for
the classifications. Therefore, it can be very challenging to
understand the decision process followed by the classifiers,
especially in models such as neural networks that behave as
black boxes [1]. However, in scenarios that significantly affect
users, an interpretable model is required to ensure fair, non-
discriminatory treatment, to validate the output of the system
against experts’ knowledge, and to detect any inconsistencies
in the classification process [2], [3]. As a consequence of this,
the field of explainable artificial intelligence (XAI) has risen in
popularity in recent years [4]. Its ambitious goal is to build a
new generation of intelligent models that not only are reliable
in their predictions but can also be interpreted by their end-
users.

Thanks to their rule-based structure and the use of linguistic
labels [5], fuzzy logic systems (FLSs) inherently represent
a promising tool to tackle this new challenge. Albeit their

level of interpretability heavily depends on factors such as the
number of rules and membership functions (MF) involved [2],
[6]. In the literature, there are many successful applications
of explainable type-1 (T1) FLSs. In many published articles,
e.g. [7]–[9], it is possible to see how the rule-based structure,
together with the use of linguistic labels, can be used to
provide an explanation in natural language for each of the
classifications produced by the systems.

Generating explanations for each of the outputs of an
interval type-2 (IT2) [10] FLS, on the other hand, remains very
challenging due to the different nature of the defuzzification
process and the presence of the additional type-reduction step.
When the endpoints of the interval centroid are computed
using a procedure like the Karnik-Mendel (KM) algorithm [11]
or one of its enhanced derivatives, it is not straightforward to
create a direct relation between the embedded sets (ES) that
generated the endpoints and the rule base of the system [12],
[13]. Since IT2 FLSs have been shown to outperform T1 FLSs
in many areas including classification (e.g. [14]), their use in
explainable systems could lead to a similar improvement in
performance.

Constrained interval type-2 (CIT2) fuzzy sets were first
introduced by Garibaldi and Guadarrama [15] as a new way to
model vague concepts starting from a T1 fuzzy set modeling
the same concept, called a generator set. CIT2 modeling
constrains the shape of the footprint of uncertainty (FOU) [16]
that can be generated and considers as acceptable only the
ES that have the same shape as the generator set — thereby
introducing the concept of acceptable embedded sets (AESs).
The goal is to use these additional constraints to keep a
semantic connection between the CIT2 FS and the word
it models while ensuring that only embedded sets with a
meaningful shape are processed in operations such as the
centroid defuzzification [13].

In this paper, the CIT2 defuzzification algorithm proposed
by D’Alterio et al. [12] will be used to design CIT2 FLSs
that provide explanations for each of their classifications. For
both endpoints of the interval centroid, the AES, the rules and
the input variables that contributed to their creation will be
identified, adding valuable information for the understanding
of the internal decision process of the system.

The rest of the paper is organized as follows: after a brief
introduction on CIT2 fuzzy sets and the reasons why they
were introduced, the creations of the explanations for CIT2
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FLSs will be discussed; this approach will then be applied
to two case-studies in the medical domain, showing how the
explanations can be obtained and the level of information they
are able to provide while briefly discussing why the same
level of explanation is harder to achieve with the standard
IT2 representation.

II. CONSTRAINED INTERVAL TYPE-2 FUZZY SETS

Constrained interval type-2 (CIT2) fuzzy sets have been
proposed to maintain a more meaningful relationship between
an IT2 FS and the linguistic label it models, suitable for use
in scenarios in which it is necessary to produce an FLS with
a high degree of interpretability. In fact, in some contexts
the standard IT2 representation can lead to FLS outputs that
are hard to interpret semantically and for which it is hard to
provide explanations [15], [17].

Fig. 1. IT2 FS modeling the word medium. Although mathematically
acceptable, the ES in red could hardly represent the same word.

CIT2 FSs impose additional mathematical constraints on
the definition of IT2 FS, limiting the shapes of both the FOU
and the embedded sets (ESs) that are considered as acceptable
(valid). As a consequence, they represent a special case of
IT2 FSs. Since ESs are needed for some widely used fuzzy
operators such as type-reduction and centroid defuzzification
(implemented, for example, by the KM procedure), processing
ESs that carry little underlying semantic meaning but are
mathematically acceptable (e.g. Fig. 1) for the computation of
the output, leads to results for which providing a meaningful
explanation can be challenging.

Some key concepts of CIT2 sets are now reproduced (for
readability). The CIT2 approach, generates an IT2 fuzzy set
starting from a T1 set called a generator set (GS) modeling
a linguistic label. The valid ESs of a CIT2 FS (i.e. the
ones that can be processed by fuzzy operators), are obtained
by translating the generator set along the x-axis in a given
interval, called a displacement set (DS). Formally [13]:

Definition 1. A displacement set (DS), denoted D, is a closed
set of real numbers such that:

D ⊆ R, 0 ∈ D (1)

Given a T1 generator set in conjunction with a displacement
set, it is possible to define the T1 membership functions that

will represent the acceptable embedded sets (AES) of the CIT2
FS.

Definition 2. The collection of T1 acceptable embedded sets
(CAES), is a set of T1 FSs obtained from the shifting of a T1
generator set G. Formally, each of the acceptable embedded
sets (AES) S in a CAES can be expressed as:

S = {(x, µS(x)) |x ∈ X} (2)

where

µS : X 7→ [0, 1], ∃c ∈ D : µS(x) = µG(x− c),∀x ∈ X (3)

given a universe of discourse (UOD) X, a DS D, a T1
generator set G.

Therefore, all the AES have the same shape of the generator
set. Given a CAES, we can generate a CIT2 FS:

Definition 3. A constrained interval type-2 fuzzy set (CIT2
FS) Ă, is defined as follows:

Ă = {((x, u), 1) |x ∈ X, u ∈
⋃

S∈CAESĂ

µS(x)} (4)

with CAESĂ being the CAES from which we obtain Ă.

The upper and lower bound of the FOU can be expressed
as follows:

Definition 4. Given an CIT2 FS Ă, we define its upper MF
µĂ and lower MF µ

Ă
as follows:

µĂ(x) = max
S∈CAESĂ

µS(x) (5)

µ
Ă

(x) = min
S∈CAESĂ

µS(x) (6)

Also the centroid can be computed using only the AES of
a CIT2 FS:

Definition 5. The constrained centroid of a CIT2 FS Ă is
defined as the union of the centroids of its AES:

C(Ă) =

∫
A′∈CAESĂ

C(A′) (7)

Working with only these acceptable embedded sets provides
increased ability for the operations that use the ESs to provide
more interpretable results, thanks to the meaningful shapes of
the AESs [13].

III. EXPLAINABLE CONSTRAINED INTERVAL TYPE-2
FUZZY SYSTEMS

This subsection shows how the mathematical restrictions of
CIT2 fuzzy sets, together with the inference and defuzzifica-
tion approach described by D’Alterio et al. [12], can be used
to design CIT2 FLSs that are able to provide explanations for
each of the output centroids they produce.

A recent novel defuzzification algorithm for CIT2 sets [12]
selects the two AES to determine the endpoints of the interval
centroid of a CIT2 FLS. Each of the AESs is generated as the
aggregation (by the use of the or operator) of all the MFs that
appear as consequents in the rule-base. Each CIT2 consequent
is replaced with one of its AESs (more on this below) and
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Fig. 2. Creation of the AES of the fired output (2.) that determines the left endpoint of the constrained centroid. First the partitioning of the output variable
(1.) is shown, then for each consequent MF one AES is selected and inferenced (3.). Finally, the inferenced sets are aggregated to produce the final AES (4.).

Fig. 3. The ES determining the left endpoint of the centroid of the same set
as that shown in Fig. 2.2 using the KM procedure

then one of the endpoints of the firing interval of the rule they
belong to is used to carry out the inference. The latter choice
depends on the index value assigned to the consequent MF
and on the switch index value that has been chosen by the
algorithm [12]. By noting the rules and the firing value used
for the inference on each consequent MF, it is possible to build
an explanation for the final output.

The algorithm can be briefly summarized in the following
steps [12]:

1) Give each CIT2 consequent MF an ordinal index by
sorting them in ascending order of the minimum value
of their support set.

2) For each CIT2 consequent set, compute its firing interval
as the maximum lower and maximum upper values of
the firing strengths of all the rules where it appears as a
consequent.

3) If computing the right endpoint of the constrained cen-
troid (i.e. to generate the AES with the maximum centroid
value), replace each consequent MF with its rightmost
AES; if computing the left endpoint, take the leftmost
AES instead.

4) Test all the possible switch index values, between 0 and
the maximum index given to the consequent MFs:

i. If computing the left endpoint, use the upper value
of the firing interval to utilise the MFs with an index
smaller than the switch index and switch to the lower
value afterwards; for the right endpoint instead, use
the lower value of the firing interval before the switch
index and the upper one after it.

ii. Do the union of the AES resulting from the inference
and defuzzify the set obtained.

5) Return, as the final constrained centroid, the lowest and
highest centroid values obtained from the defuzzification
at the previous step.

The process that leads to the creation of one of the accept-
able embedded sets that determine the constrained centroid is
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also shown in Fig. 2. It is straight-forward to see that the AES
has been obtained as the union of two MFs (medium and high);
additionally, the respective firing strengths of the rules that
were used are also identifiable ( i.e. the ‘truncation heights’ in
Fig. 2.2), producing an easily interpretable AES. Once each
consequent MF is replaced with one of its AESs (the leftmost
or rightmost one) and for each one of them an inference value
is chosen (i.e. one of the endpoints of the firing interval), all
the operations are carried out using T1 mathematics. For this
reason, as can also been seen in the example in Fig. 2, the
AESs that determine the endpoints of the constrained centroid
keep the same level of interpretability as any fuzzy output
of a T1 FLS. In other words, while CIT2 FLSs allow for
the modeling of uncertainty around the membership function
(making use of the FOU) they also keep the same level
of interpretability as T1 FLSs. On the other hand, the IT2
modeling struggles to achieve the same properties. The lower
ES chosen by the KM procedure to defuzzify the same output
set as that shown in Fig. 2.2 is shown in Fig. 3. Compared
to the one selected by the constrained approach (Fig. 2.4),
it is harder to identify how the consequent MFs contributed
to its creation and it can be challenging to link it to the
rules of the system and their firings [12]. This is because the
KM procedure selects the two ES that solve a well-defined
mathematical problem but that do not necessarily carry a
semantic meaning.

Furthermore, as will be demonstrated in the next subsection
and in the case studies in Sec. IV, these properties of CIT2
FLSs can be used to produce a human-readable explanation
for each output of the system.

A. Generation of the explanation
In the examples provided in this paper, the explanations for

the classification systems are divided into two parts: first the
predicted class is presented, together with the interval centroid
that generated it; then, for both endpoints of the centroid,
the AESs, the rules and firing values that produced them are
shown. Each rule has a different consequent MF, showing the
firing strength for each of the possible classes.

The interpretable AESs provided give an intuitive idea of
the firings of each class while the description with the rules
that fired gives a more detailed and accurate description of the
decision process followed by the FLS. The creation processes
of the AESs themselves are illustrated: for each consequent
MF in the rulebase one AES is chosen and inferenced using
one of the endpoints of the firing interval; the union of all the
inferenced set gives the AES of the fired FOU of the rulebase.

While similar explanations have already been produced for
T1 FLS before (e.g. [8], [9]), they represent a novelty in the
T2 field. In fact, producing explanations for IT2 and T2 FLS
outputs has been very challenging since to compute the left
and right endpoints of the interval centroid, all the embedded
sets are processed regardless of their shape. As a consequence
of that, the embedded sets that determine the endpoints of the
interval centroid in the standard IT2 approach do not carry
any particular meaning (making them harder to interpret), nor
do they have a direct link with any of the rules of the rulebase
(making the generation of an explanation less straightforward).

At this stage, there is no data gathered from users (e.g.
with surveys) that determine the usefulness of the explanations
of CIT2 FLS compared with IT2 ones. The superior explain-
ability claimed in this paper is therefore based on the ability
of CIT2 FLS to produce explanations for their classifications
rather than on the users’ feedback. Future work will focus
on validating these claims by the use of surveys in which
both approaches are compared in order to understand if the
additional information provided by CIT2 FLSs is perceived as
useful by domain experts.

IV. CASE STUDIES

In this section, two case studies taken from the medical
domain are analyzed. The goal is to demonstrate that the
use of CIT2 FLS can be beneficial in situations in which it
is important to understand the decision process behind the
system classification to detect possible inconsistent decisions
and/or to guarantee a fair treatment. At the same time it will
be shown that, in these examples, both CIT2 and IT2 FLS
achieve the same level of accuracy. The CIT2 FLSs presented
below have been implemented using the novel Java library
Juzzy Constrained [18] that supports CIT2 sets and systems.

A. Recommendation of post-operative chemotherapy for
breast cancer

The first classification system presented here concerns the
recommendation of post-operative chemotherapy for breast
cancer. After the surgery to remove the tumor, a team of
physicians makes a recommendation for the best additional
therapy for the patient. In this case, the goal of the system is
to replicate the decision process of the group of physicians
with respect to the recommendation of chemotherapy. The
three possible outcomes are yes, no and maybe with the first
two cases denoting a decision in favor or against the use of
chemotherapy and the latter represents the scenario in which
a clear recommendation cannot be provided (e.g. because
there is not an agreement among the physicians) and the
post-operative therapy needs to be further discussed with the
patient. The problem has already been analyzed by Garibaldi et
al. [19], whereby different T1 and non-stationary [20] fuzzy
systems have been designed and compared. The CIT2 FLS
proposed in this paper, is based on the T1 FLS denoted as VI-F
previously [19]. Its T1 MFs are used as generator sets for the
corresponding CIT2 MFs; the displacement set [−a, a] (i.e. the
“shifting interval” used to obtain the FOU and the acceptable
embedded sets, see Sec. II) has been experimentally chosen
so that for each MF |2a| = 2% of the size of the universe of
discourse.

The rule-base, as previously [19], is based on a written pro-
tocol provided by the Nottingham University Hospitals Trust,
in order to assure a high level of interpretability. Additionally,
each of the MFs used in the system models a word, such
as negative, positive, high, low and medium. Fig. 4 shows an
explanation provided for a case that has been classified as
maybe, in which the output variable chemo recommendation
is partitioned as shown in Fig. 6.
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The predicted class is MAYBE, from the midpoint of the output [49.16, 52.2]
The leftmost centroid (49.16) is obtained from firing the following rules:

1. Chemo_no: 0.6, obtained because NPI IS High [1, 1] AND ER IS Not_Negative [1, 1] AND age IS
Old [0.5, 0.6], using the upper membership degree of each input term

2. Chemo_maybe: 1, obtained because NPI IS High [1, 1] AND ER IS Not_Negative [1, 1], using
the upper membership degree of each input term

3. Chemo_yes: 0.56, obtained because NPI IS High [1, 1] AND ER IS Weak [0.56, 0.61], using the lower
membership degree of each input term

Aggregating these output terms produces the embedded set below, with the centroid 49.16:

The rightmost centroid (52.2) is obtained from firing the following rules:
1.Chemo_No: 0.5, obtained because NPI IS High [1, 1] AND ER IS Not_Negative [1, 1] AND age IS Old [0.5,

0.6], using the lower membership degree of each input term
2.Chemo_Maybe: 1, obtained because NPI IS High [1, 1] AND ER IS Not_Negative [1, 1], using the lower

membership degree of each input term
3.Chemo_Yes term: 0.611, obtained because NPI IS High [1, 1] AND ER IS Weak [0.56, 0.611], using the

upper membership degree of each input term
Aggregating these output terms produces the embedded set below, with the centroid 52.2:

Fig. 4. Example of explanation of the output for the classification of the post-operative breast cancer treatment CIT2 FLS.

Fig. 5. Embedded sets selected by the KM procedure to defuzzify the fired FOU in Fig. 4
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Fig. 6. Partitioning of the chemo recommendation variable. The FS, from left
to right, model the words no, maybe and yes

Since CIT2 fuzzy sets are a subset of IT2 sets [13], the
inferencing can also be carried out using the standard IT2
approach. Using the KM procedure to defuzzify the same FLS
output, results in endpoints determined by the ESs shown in
Fig. 5. When using the midpoint of the centroid to perform
the classification, both the CIT2 and IT2 methodologies (using
the KM defuzzification procedure) have an accuracy of 72.29%
when tested on the same dataset used in [12].

Fig. 7. Partitioning used for each of the variable in the thyroid CIT2 FLS

B. Thyroid disease diagnosis

In this case study the aim of the system is to predict whether
a patient suffers from a thyroid disease (hypothyroidism or
hyperthyroidism) on the basis of the analysis of some physio-
logical data. For this system, there was no expert knowledge
available from which it was possible to build the rule-base and
the MFs. To build an interpretable FLS for this problem, each
input variable has been partitioned with three MFs modeling
the words low, medium and high, with the first and last one
being implemented as triangular shoulders with their peaks
being the endpoints of the universe of discourse, while the
medium MF is as an isosceles triangle with its peak in the
midpoint of the universe of discourse. The partitioning strategy
described is shown in Fig. 7. The output variable is partitioned

in the same way, with the 3 MFs representing respectively
the terms hypothyroidism, normal and hyperthyroidism. The
displacement set [−a, a] (i.e. the “shifting interval” of the
generator set to obtain the FOU and the acceptable embedded
sets) has been experimentally chosen so that for each MF
|2a| = 5% of the size of the universe of discourse.

For the rule-base, ten rules have been created using the same
genetic approach described in [13] for the first stage of the
optimization. Although this is one of many ways in which it
is possible to generate a FLS from data, this method has been
chosen with the only goal of generating a compact rulebase
in which each MF identifies a meaningful linguistic label, to
keep a high level of interpretability [6]. The dataset used for
the learning phase is the “newthyroid” dataset available on the
KEEL website [21]. The accuracy of the system produced on
this dataset is 88.37% using the KM defuzzification method
and 88.84% for the CIT2 version. Fig. 8 shows the explanation
produced by the CIT2 FLS for one of the entries of the
dataset. In comparison, the ESs that determine the endpoint
of the centroid for the same FLS fuzzy output using the KM
procedure are shown in Fig. 9.

V. DISCUSSION

In both the case studies provided, it has been shown how
the previously proposed algorithm [12] can be used to produce
explainable CIT2 FLSs (Figs. 4, and 8). Each of the outputs,
in addition to the predicted class, also provides the interval
centroid from which it was determined and an explanation
for its generation. Each endpoint is then accompanied by the
AES that determined it. For each of these AES an explanation
for their creation is also provided, showing which rules con-
tributed, their firing strength and the membership degree of the
input values. We believe these explanations provide valuable
information to understand the decision process followed by
system for the following reasons:
• The presence of the interval centroid shows the effect of

the uncertainty on the final output. Intuitively a ‘wider’
centroid represents a more uncertain result.

• As it is possible to see in Figs. 4 and 8, the AESs keep
the same level of interpretability of T1 fuzzy outputs, i.e.
it is possible to recognize the different terms involved
(the consequent MFs) and the firing strengths of the rules
they belong to (their ‘truncation’ heights). This provides
an intuitive idea of how the constrained centroid has been
obtained.

• Lastly, illustrating the rules that generated each of the
AES and the membership degrees of the antecedent terms,
provides a more technical and detailed explanation for the
final output of the system.

The last 2 points described above represent a novelty in
the IT2 field. In fact, modern algorithms like the KM [11]
one and its enhanced versions are nowadays considered the
standard for the defuzzification of IT2 FSs. They work by
quickly identifying the embedded sets with the lowest and
highest centroid value to compute the interval centroid of a
set. However, although these embedded sets are mathemati-
cally acceptable and solutions to a well-defined optimization
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The predicted class is Hyperthyroidism, from the midpoint of the output [1.59, 1.66]
The leftmost centroid (1.59) is obtained from firing the following rules:

1. Hyperthyroidis: 0.6, obtained because T3resin IS Medium [0.53, 0.63] AND Thyroxin
IS Medium [0.66, 0.76] AND Triiodinthyronine IS Medium [0.91, 1] AND TSH_value IS Low [0.92, 1]
using the lower membership degree for each input term

Aggregating these output terms produces the embedded set below, with the centroid 1.59:

The rightmost centroid (1.66) is obtained from firing the following rules:
1. Hyperthyroidism: 0.66, obtained because T3resin IS Medium [0.53, 0.63] AND Thyroxin

IS Medium [0.66, 0.76] AND Triiodinthyronine IS Medium [0.91, 1] AND TSH_value IS Low [0.92, 1]
using the upper membership degree for each input term

Aggregating these output terms produces the embedded set below, with the centroid 1.66:

Fig. 8. Example of explanation of the output for the classification of thyroidal disease CIT2 FLS

Fig. 9. Embedded sets selected by the KM to defuzzify the fired FOU shown in Fig. 8
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problem, their shapes may not carry any particular meaning
in specific contexts. That is because all the embedded sets are
processed, regardless of their shape. Consequently, giving a
semantic meaning to the embedded sets determined by the
KM procedure may be challenging. Our claims are supported
by the comparison between the embedded set chosen by the
KM procedure in Figs. 5 and 9, and those produced by the
constrained approach, in the explanations in Figs. 4 and 8,
respectively. While the constrained embedded sets have the
same level of interpretability of a T1 FLS output in which
the different MFs and firing strengths are clearly identifiable,
the same can not be said for the embedded sets of the
KM approach. Particularly, due to the presence of the switch
point (that is crucial for the identification of these embedded
sets), the shape of the original MFs are partly lost and it is
challenging to determine a direct relation between the rules of
the FLS and the generation of such shapes. Therefore, building
an explanation similar to the one offered by CIT2 FLS would
not be straightforward.

We believe that the properties of CIT2 FLSs and the level
of detailed shown in the explanations presented in our case
studies, make CIT2 a valid and attractive alternative to IT2
FLS, in any context in which the interpretability of the system
and a degree of explainability of the output is required.

VI. CONCLUSION

In this paper it has been described how the defuzzification
algorithm recently proposed by D’Alterio et al. [12] can be
used to design explainable CIT2 classification systems in
which explanations can be provided for each of the classes
predicted. In addition, it has been shown that the embedded
sets processed by the CIT2 approach have a higher level of
interpretability since they are built in a way that makes the
identification of the linguistic terms and the firing strengths
easier (see Sec. V).

To support these claims, two case studies have been an-
alyzed, both belonging to the medical domain: the selection
of post-operative therapy for breast cancer and the thyroidal
disease treatment problem. In both tasks the goal of the
system was to analyze some physiological data belonging to
the patient in order to make a therapy recommendation or a
medical decision. The CIT2 approach has been compared to
the standard IT2 one, showing that CIT2 FLSs are able to
produce detailed explanations for the system outputs while
having similar performances in terms of the accuracy of
the classification. For each classification produced, the rules
involved and the firing strengths used for each of the endpoints
of the centroid have be shown, providing valuable information
for the understanding of the decision process of the system.

In future work, we plan on gathering statistical data from
surveys to explore whether the explanations provided by CIT2
FLS are perceived as more interpretable than the IT2 ones
by end-users and experts. Additionally, the information in
the explanations will be reorganized in order to generate a
more coherent piece of text in natural language, similarly
to what has been done for T1 FLSs in other work [8], [9].
Additional work is also needed to understand how interpretable

the CIT2 explanations are for the end users compared to the
ones produced by T1 systems.
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