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Abstract—The recently introduced theory of epistemic random
fuzzy sets extends both Dempster-Shafer and possibility theories,
by allowing the representation of partially reliable and fuzzy
evidence. Within this formalism, we study transformations of
random fuzzy sets by one-to-one mappings, and show that such
transformations commute with combination. We apply this result
to define parameterized models of random fuzzy numbers, which
generalize Gaussian random fuzzy numbers and allow us to
construct easily combinable belief functions on a real interval.
We apply this idea to the prediction of proportions.

Index Terms—Random fuzzy sets, evidence theory, regression,
machine learning, uncertainty quantification.

I. INTRODUCTION

The Dempster-Shafer (DS) theory of belief functions [1]–
[3] and possibility theory [4]–[6] are two powerful frameworks
for representing partial information and reasoning with uncer-
tainty. Whereas DS theory makes it possible to represent par-
tially reliable evidence, possibility theory allows us to express
uncertainty based on vague information such as conveyed by
fuzzy sets. In [7], [8], we have argued that DS and possibility
theories can be viewed as two specializations of a more general
theory of “epistemic random fuzzy sets”. A random fuzzy
set (RFS) maps each element of a probability space to a
fuzzy subset of a set Θ. It is, thus, a model of evidence
that can be both uncertain and fuzzy. In this framework, a
possibility distribution can be viewed as a constant RFS, while
a random set (a notion underlying DS theory) corresponds to
the special case where all images are crisp. Random fuzzy sets
induced by independent pieces of evidence can be combined
by the generalized product-intersection (GPI) operator, which
generalizes both Dempster’s rule of combination and the
normalized product intersection of possibility distributions.

Whereas the theory of belief functions has been defined
from the start in a very general setting [9], most applications
have used only belief functions on finite spaces. This limitation
was mainly due to the absence of general enough parametric
families of belief functions in continuous spaces that could
easily be defined and combined by Dempster’s rule of com-
bination. In [8], we have proposed Gaussian Random Fuzzy
Numbers (GRFNs) as a model for defining belief functions
on the real line. A GRFN can be seen either as a Gaussian
possibility distribution with random mode, or as a Gaussian
random variable with fuzzy mean. The family of GRFNs is
closed under the GPI operation, which makes it suitable for

evidential reasoning with continuous variables. An application
to machine learning was presented in [10].

Practical as it may be, the GRFN model is quite restricted.
The domain of a GRFN is the whole real line, making the
model unsuitable for representing belief functions on a real
interval such as (0,+∞) or [a, b]. Furthermore, the model
is symmetric about the mean µ, i.e., intervals of the form
[µ−r, µ] and [µ, µ+r], where r > 0, have the same degree of
belief, a property that may not always reflect an agent’s actual
beliefs. It is thus of interest to define other parameterized
families of random fuzzy numbers with different supports,
while maintaining the closure property under the GPI rule.
In this paper, this is achieved by transforming GRFNs via
a bijective mapping from the real line to itself, or to real
intervals. More specifically, the contributions presented in this
paper are the following:

1) The notion of transformation of a RFS by a one-to-one
mapping is introduced, and expressions for the induced
belief and plausibility functions are provided;

2) We prove that bijective transformations commute with
the GPI rule, i.e., the image of the product intersection
of two RFSs by a one-to-one mapping is equal to the
product intersection of their images;

3) We introduce two new parametric families of random
fuzzy numbers with bounded or half-bounded supports,
closed under the GPI operation;

4) We demonstrate an application of this model to the
prediction of proportions.

The definitions related to RFSs and GRFNs are first recalled
in Section II. Transformations of RFSs are then studied in
Section III, where several models based on GRFNs are intro-
duced. Finally, the application to the prediction of proportions
is discussed in Section IV, and Section V concludes the paper.

II. RANDOM FUZZY SETS

The RFS setting and its relation with belief functions will
first be recalled in Section II-A. The GRFN model will then
be introduced in Section II-B.

A. General definitions and main properties

a) Definition: Let us consider a probability space
(Ω,ΣΩ, P ), a measurable space (Θ,ΣΘ), and a mapping X̃
from Ω to the set [0, 1]Θ of fuzzy subsets of Θ. For any
α ∈ [0, 1], let αX̃ be the mapping from Ω to 2Θ such



that αX̃(ω) = α[X̃(ω)], where α[X̃(ω)] is the weak α-cut
of X̃(ω). If, for any α ∈ [0, 1], αX̃ is ΣΩ − ΣΘ strongly
measurable [11], the tuple (Ω,ΣΩ, P,Θ,ΣΘ, X̃) is said to be
a random fuzzy set (also called a fuzzy random variable) [12].
We define the support of X̃ as the union of the supports of
its images, i.e.,

supp(X̃) =
⋃
ω∈Ω

{θ ∈ Θ : X̃(ω)(θ) > 0}.

b) Interpretation: In epistemic random fuzzy set (ERFS)
theory, RFSs are used to represent unreliable and fuzzy
evidence: the set Ω is then seen as a set of interpretations
of a piece of evidence about a variable θ taking values in
Θ. If interpretation ω ∈ Ω holds, we know that “θ is X̃(ω)”,
i.e., θ is constrained by the possibility distribution defined by
fuzzy set X̃(ω). Such RFSs encode a state of knowledge about
some variable θ, hence the adjective “epistemic”. This model
should not be confused with alternative interpretations of RFSs
as describing a fuzzy data generation mechanism [13], [14],
or as imprecise information about a “true” random variable
[15], [16].

c) Belief and plausibility functions: Just as a random set,
a RFS induces a belief function that can be seen as quantifying
one’s beliefs based on the available evidence. From now on, we
will assume any RFS X̃ to verify the following normalization
conditions: (1) For all ω ∈ Ω, X̃(ω) is either the empty set, or
a normal fuzzy set, and (2) the image X̃(ω) is almost surely
nonempty, i.e., P ({ω ∈ Ω : X̃(ω) = ∅}) = 0.

For any ω ∈ Ω, let ΠX̃(ω) be the possibility measure on Θ
quantifying our beliefs on θ given that interpretation ω holds;
it is defined for any B ∈ ΣΘ as

ΠX̃(ω)(B) = sup
θ∈B

X̃(ω)(θ). (1a)

The dual necessity measure NX̃(ω) is

NX̃(ω)(B) =

{
1−ΠX̃(ω)(B

c) if X̃(ω) 6= ∅
0 otherwise,

(1b)

where Bc denotes the complement of B. For any B ∈ ΣΘ,
let BelX̃(B) and PlX̃(B) denote, respectively, the expected
necessity and the expected possibility of B:

BelX̃(B) =

∫
Ω

NX̃(ω)(B)dP (ω), (2a)

PlX̃(B) =

∫
Ω

ΠX̃(ω)(B)dP (ω) = 1−BelX̃(Bc). (2b)

The mappings B 7→ BelX̃(B) and B 7→ PlX̃(B), are,
respectively, belief and plausibility functions [12], [17].

d) Combination: The combination of independent pieces
of evidence by Dempster’s rule [2] is a key component
of DS theory. In possibility theory, conjunctive combination
operators are based on t-norms [18]. In ERFS theory, the
GPI rule introduced in [7], [8] extends these operators to the
general case where evidence is represented by RFSs.

Let (Ωi,Σi, Pi,Θ,ΣΘ, X̃i), i = 1, 2, be two RFSs encoding
independent pieces of evidence. The independence assumption

means here that the relevant probability measure on the joint
measurable space (Ω1 ×Ω2,Σ1 ⊗Σ2) is the product measure
P1×P2. If interpretations ω1 ∈ Ω1 and ω2 ∈ Ω2 both hold, θ
is constrained by both X̃1(ω1) and X̃2(ω2). It is then natural
to combine these two fuzzy sets by an intersection operator.
As argued in [7], [18], the product t-norm is the most suitable
for combining fuzzy information from independent sources.
Furthermore, the normalized product intersection operation is
associative.

Conflict needs to be handled at two levels. First, the product-
intersection of fuzzy sets X̃1(ω1) and X̃2(ω2) has to be nor-
malized to obtain a normal fuzzy set, or the empty set in case
of extreme conflict. Denoting by � the normalized product
intersection, we thus consider the mapping X̃�(ω1, ω2) =
X̃1(ω1) � X̃2(ω2), which will be assumed to be Σ1 ⊗ Σ2-
ΣΘ strongly measurable. Secondly, the product probability
measure P1 × P2 needs to be conditioned to eliminate pairs
of fully inconsistent interpretations (ω1, ω2) ∈ Ω1 × Ω2 such
that hgt(X̃1(ω1) · X̃2(ω2)) = 0 (where hgt(·) denotes the
height of a fuzzy set), but also to downweigh pairs of partially
inconsistent pairs such that 0 < hgt(X̃1(ω1) · X̃2(ω2)) < 1.
This is achieved by soft normalization proposed in [7], [8],
which consists in conditioning the product probability P1×P2

by the fuzzy subset Θ̃∗ of consistent pairs of interpretations,
with membership function

Θ̃∗(ω1, ω2) = hgt
(
X̃1(ω1) · X̃2(ω2)

)
. (3)

The product-intersection operator with soft normalization is
denoted by ⊕, and the combined RFS X̃1 ⊕ X̃2 is called the
product intersection, or the orthogonal sum of X̃1 and X̃2.
The operator ⊕ is commutative and associative; it generalizes
both Dempster’s rule and the normalized product intersection
of possibility distributions.

B. Gaussian Random Fuzzy Numbers

The important role played by the Gaussian distribution in
probability theory and statistics is partly due to the fact that
it is amenable to easy calculation. Until recently, such a
practical model was missing in DS theory, which hindered
its application to uncertain reasoning with real variables. The
GRFN model fills this gap by blending Gaussian possibility
distributions and Gaussian random variables.

Let us start by recalling the definition of a Gaussian Fuzzy
Number (GFN) as a fuzzy subset of R with membership
function

x 7→ ϕ(x;m,h) = exp

(
−h

2
(x−m)2

)
,

where m ∈ R is the mode and h ∈ [0,+∞] is the precision.
Such a fuzzy number will be denoted by GFN(m,h). GFNs
are easily combined by the normalized product-intersection
operator, as the following property holds: GFN(m1, h1) �
GFN(m2, h2) = GFN(m12, h12), with m12 = (h1m1 +
h2m2)/(h1 + h2) and h12 = h1 + h2.

Let us now consider a probability space (Ω,ΣΩ, P ) and a
Gaussian random variable (GRV) M : Ω → R with mean



µ and variance σ2. The random fuzzy set X̃ : Ω → [0, 1]R

defined as
X̃(ω) = GFN(M(ω), h)

is called a Gaussian random fuzzy number (GRFN) with
mean µ, variance σ2 and precision h, which we write X̃ ∼
Ñ(µ, σ2, h). A GRFN can, thus, be seen as a GFN whose
mode is uncertain and described by a Gaussian probability
distribution. It is defined by a location parameter µ, and
two parameters h and σ2 corresponding, respectively, to
possibilistic and probabilistic uncertainty. In the special case
where the precision is infinite, X̃ becomes equivalent to a
GRV with mean µ and variance σ2, which we can write:
Ñ(µ, σ2,+∞) = N(µ, σ2). If σ2 = 0, M is constant and
X̃ is equivalent to possibility distribution GFN(µ, h), i.e.,
Ñ(µ, 0, h) = GFN(µ, h). Finally, when h = 0, we have
X̃(ω)(x) = 1 for all ω ∈ Ω and all x ∈ R: such a
RFS represents total ignorance and the corresponding belief
function is said to be vacuous.

Formulas to compute the plausibility and belief degrees of
any real interval [x, y] induced by a GRFN X̃ ∼ Ñ(µ, σ2, h)
are given in [8]. In particular, the contour function of X̃ is
given by

plX̃(x) =
1√

1 + hσ2
exp

(
− h(x− µ)2

2(1 + hσ2)

)
. (4)

The lower and upper cumulative distribution functions (cdfs)
defined, respectively, as the mappings x 7→ Bel(−∞, x] and
x 7→ Pl(−∞, x] have the following expressions:

BelX̃((−∞, x]) = Φ

(
x− µ
σ

)
− plX̃(x)Φ

(
x− µ

σ
√
hσ2 + 1

)
, (5a)

PlX̃((−∞, x]) = BelX̃((−∞, x]) + plX̃(x). (5b)

Most importantly, as shown in [8], the family of GRFNs
is closed under the GPI combination operation ⊕: given two
GRFNs X̃1 ∼ Ñ(µ1, σ

2
1 , h1) and X̃2 ∼ Ñ(µ2, σ

2
2 , h2), we

have X̃1 ⊕ X̃2 ∼ Ñ(µ̃12, σ̃
2
12, h12), with h12 = h1 + h2,

µ̃12 =
h1µ̃1 + h2µ̃2

h1 + h2
, σ̃2

12 =
h2

1σ̃
2
1 + h2

2σ̃
2
2 + 2ρh1h2σ̃1σ̃2

(h1 + h2)2
,

(6a)
where

µ̃1 =
µ1(1 + hσ2

2) + µ2hσ
2
1

1 + h(σ2
1 + σ2

2)
, (6b)

µ̃2 =
µ2(1 + hσ2

1) + µ1hσ
2
2

1 + h(σ2
1 + σ2

2)
, (6c)

σ̃2
1 =

σ2
1(1 + hσ2

2)

1 + h(σ2
1 + σ2

2)
, σ̃2

2 =
σ2

2(1 + hσ2
1)

1 + h(σ2
1 + σ2

2)
, (6d)

ρ =
hσ1σ2√

(1 + hσ2
1)(1 + hσ2

2)
, (6e)

and h = h1h2/(h1 + h2).

III. TRANSFORMATION OF A RANDOM FUZZY SET

As mentioned in Section I, the GRFN model is very
convenient for uncertain reasoning with real variables due to
its closure property with respect to the ⊕ operator, but it
also has several limitations. In particular, its support is the
whole real line, making it unsuitable to represent evidence
about variables taking values in a strict subset of R. In this
section, we overcome this limitation by considering bijective
transformations of RFSs. The main result, stated in Section
III-A, is that the image of the orthogonal sum of two RFSs
under a bijective mapping is the orthogonal sum of the images.
Two useful transformations of GRFNs are studied in Section
III-B.

A. Definitions and main result

a) Definition: Let (Ω,ΣΩ, P,Θ,ΣΘ, X̃) be a RFS, and
ψ : Θ → Λ be a one-to-one mapping from Θ to some set Λ.
Zadeh’s extension principle [19] allows us to extend mapping
ψ to fuzzy subsets of Θ; specifically, we can define a mapping
ψ̃ : [0, 1]Θ → [0, 1]Λ as follows:

∀F̃ ∈ [0, 1]Θ, ψ̃(F̃ )(λ) = sup
λ=ψ(θ)

F̃ (θ) = F̃ (ψ−1(λ)).

Let ΣΛ be the set containing the images of all elements of
ΣΘ by ψ:

ΣΛ = {ψ(B) : B ∈ ΣΘ},

and consider the mapping ψ̃ ◦ X̃ : Ω → [0, 1]Λ such that
(ψ̃ ◦ X̃)(ω) = ψ̃(X̃(ω)) for all ω ∈ Ω. It is easy to show that
ΣΛ is a σ-algebra on Λ, and that (Ω,ΣΩ, P,Λ,ΣΛ, ψ̃ ◦ X̃) is
a RFS; we say that ψ̃ ◦ X̃ is the result of the transformation
of X̃ by ψ.

b) Belief and plausibility: From (1), for all C ∈ ΣΛ,

Π(ψ̃◦X̃)(ω)(C) = sup
λ∈C

(ψ̃ ◦ X̃)(ω)(λ)

= sup
λ∈C

X̃(ω)(ψ−1(λ))

= sup
θ∈ψ−1(C)

X̃(ω)(θ) = ΠX̃(ω)(ψ
−1(C)),

and, similarly,

N(ψ̃◦X̃)(ω)(C) = NX̃(ω)(ψ
−1(C)).

Consequently, from (2),

Belψ̃◦X̃(C) = BelX̃(ψ−1(C)), (7a)

and

Plψ̃◦X̃(C) = PlX̃(ψ−1(C)). (7b)

Eq. (7) provides simple expressions for the belief and plausi-
bility functions associated to a transformed RFS.



c) Combination: Let now consider the combination of
two transformed RFSs ψ ◦ X̃1 and ψ ◦ X̃2 with the same
transformation ψ. The following lemma states that the image
of the product intersection of two fuzzy subsets of Θ is equal
to the product intersection of their images, and the degree
of conflict (defined as the height of the product intersection
before normalization) of the fuzzy subsets equals that of their
images.

Lemma 1. Let F̃ and G̃ be two fuzzy subsets of Θ. We have

ψ̃(F̃ � G̃) = ψ̃(F̃ ) � ψ̃(G̃)

and
hgt(ψ̃(F̃ ) · ψ̃(G̃)) = hgt(F̃ · G̃).

Proof. For any λ ∈ Λ,

ψ̃(F̃ � G̃)(λ) = (F̃ � G̃)[ψ−1(λ)]

=
F̃ [ψ−1(λ)]G̃[ψ−1(λ)]

supλ′ F̃ [ψ−1(λ′)]G̃[ψ−1(λ′)]
(8)

=
ψ̃(F̃ )(λ)ψ̃(G̃)(λ)

supλ′ ψ̃(F̃ )(λ′)ψ̃(G̃)(λ′)

= (ψ̃(F̃ ) � ψ̃(G̃))(λ).

Now, the degree of conflict between ψ̃(F̃ ) and ψ̃(G̃) is the
denominator on the right-hand side of (8). It is equal to

sup
λ
F̃ [ψ−1(λ)]G̃[ψ−1(λ)] = sup

θ
F̃ (θ)G̃(θ).

We can now state the main result of this section.

Theorem 1. Let (Ωi,Σi, Pi,Θ,ΣΘ, X̃i), i = 1, 2, be two
RFSs representing independent evidence. We have

ψ̃ ◦ (X̃1 ⊕ X̃2) = (ψ̃ ◦ X̃1)⊕ (ψ̃ ◦ X̃2).

Proof. As recalled in Section II-A, the orthogonal sum of ψ̃ ◦
X̃1 and ψ̃ ◦ X̃2 is defined by mapping

(ω1, ω2) 7→ (ψ̃ ◦ X̃1)(ω1) � (ψ̃ ◦ X̃2)(ω2),

and the joint probability measure P1 × P2 conditioned by the
fuzzy subset of Ω1 × Ω2 with membership function

Θ∗(ω1, ω2) = hgt
(

(ψ̃ ◦ X̃1)(ω1) · (ψ̃ ◦ X̃2)(ω2)
)
.

Now, from Lemma 1,

(ψ̃ ◦ X̃1)(ω1) � (ψ̃ ◦ X̃2)(ω2) = ψ̃
[
X̃1(ω1) � X̃2(ω2)

]
and

hgt((ψ̃ ◦ X̃1)(ω1) · (ψ̃ ◦ X̃2)(ω2)) = hgt(X̃1(ω1) · X̃2(ω2)),

from which the result directly follows.

B. Transformed Gaussian Random Fuzzy Numbers

Applying the idea developed in Section III-A to GRFNs
makes it possible to define a wide variety of parametric fami-
lies of random fuzzy numbers and associated belief functions
on the real line. Let X̃ ∼ Ñ(µ, σ2, h) be a GRFN, and ψ a
one-to-one mapping from R to Λ ⊆ R. Let ψ̃ ◦ X̃ the result of
the transformation of X̃ by ψ. We will say that ψ̃◦X̃ is a trans-
formed GRFN and we will write ψ̃ ◦X̃ ∼ TÑ(µ, σ2, h, ψ−1).
For any random fuzzy number Ỹ , it is clear that

Ỹ ∼ TÑ(µ, σ2, h, ψ−1)⇔ ψ̃−1 ◦ Ỹ ∼ Ñ(µ, σ2, h). (9)

From Theorem 1, given two transformed GRFNs Ỹ1 ∼
TÑ(µ1, σ

2
1 , h1, ψ

−1) and Ỹ2 ∼ TÑ(µ2, σ
2
2 , h2, ψ

−1), we
have Y1 ⊕ Y2 ∼ TÑ(µ̃12, σ̃

2
21, h12, ψ

−1), where µ̃12, σ̃2
21 and

h12 are given by (6).
Hereafter, we will consider two cases for the choice of

function ψ allowing us to define belief functions on the
positive real line and on a closed real interval.

a) Lognormal random fuzzy numbers: Using a one-to-
one mapping from R to (0,+∞) allows us to define a
random fuzzy number with support equal to the positive real
line. Choosing ψ = exp, we obtain a log-normal random
fuzzy number RFN) Ỹ ∼ TÑ(µ, σ2, h, log). From (9), Ỹ ∼
TÑ(µ, σ2, h, log) if and only if l̃og(Ỹ ) ∼ Ñ(µ, σ2, h). A log-
normal random variable is recovered when h = +∞. From (4)
and (7b), the contour function of Ỹ is

plỸ (y) =
1√

1 + hσ2
exp

(
−h(log y − µ)2

2(1 + hσ2)

)
.

Similarly, the lower and upper cdfs of Ỹ can easily be
computed from (5) and (7).

Example 1. Figure 1 displays two log-normal RFNs Ỹ1 ∼
TÑ(1, 1, 5, log) and Ỹ2 ∼ TÑ(2, 0.1, 2, log) as well as
their orthogonal sum Ỹ1 ⊕ Ỹ2. For each RFN, we plot ten
realizations, the contour functions, as well as the lower and
upper cdfs.

b) Logit-normal random fuzzy numbers: Any cdf F can
be used to define a RFN with support equal to interval [0, 1]
(or more generally, using an additional affine transformation,
an interval [a, b] with b > a). A natural choice is the cdf of
the standard logistic distribution, FL(x) = [1 + exp(−x)]−1.
The corresponding quantile function is the logit function,

F−1
L (y) = logit(y) = log

y

1− y
.

A RFN Ỹ ∼ TÑ(µ, σ, h, logit) will said to be logit-normal.
A logit-normal random variable [20] is recovered when h =
+∞. From (4) and (7b), the contour function of Ỹ is

plỸ (y) =
1√

1 + hσ2
exp

(
−h(logit(y)− µ)2

2(1 + hσ2)

)
.

The lower and upper cdfs of Ỹ can be computed from (5) and
(7) in a similar manner.
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Fig. 1: (a) and (b): Two log-normal random fuzzy numbers
Ỹ1 ∼ TÑ(1, 1, 5, log) and Ỹ2 ∼ TÑ(2, 0.1, 2, log); (c):
combined log-normal random fuzzy number Ỹ1 ⊕ Ỹ2. For
each RFN, we plot ten realizations (black dotted curves), the
contour functions (red curve), as well as the lower and upper
cdfs (blue curves).

Example 2. Figure 3 shows 10 realizations of a logit-normal
RFN Ỹ ∼ TÑ(1, 1, 5, logit), together with its contour function
as well as its lower and upper cdfs.

IV. APPLICATION TO PREDICTION OF PROPORTIONS

In [10], we have introduced the ENNreg model, a regres-
sion neural network that quantifies prediction uncertainty by
GRFNs. This model is appropriate when the response variable
takes values in the whole real line. The notion of transformed
GRFN introduced in this paper makes it possible to apply
ENNreg to learning problems in which the response is positive,
or takes values in a closed interval. We will first briefly recall
the ENNreg model in Section IV-A. Its application to the
prediction of proportions, with uncertainty quantified by logit-
normal RFNs will then be discussed in Section IV-B.

A. The ENNreg model

The Evidential Neural Network for regression (ENNreg)
model solves regression tasks by comparing an input vector
to prototypes. Each prototype is considered as a source of
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Fig. 2: Representation of logit-normal random fuzzy numbers
Ỹ ∼ TÑ(1, 1, 5, logit) (a) and Ỹ ∼ TÑ(−2, 0.1, 2, logit) (b):
ten realizations (black dotted curves), contour function (red
curve), lower and upper cdfs (blue curves).

information, which provides evidence represented by a GRFN.
The total evidence is pooled by a simplified version of the GPI
rule recalled in Section II-A.

More precisely, consider a regression task in which a
response variable Y taking values in the real line is to be pre-
dicted from a p-dimensional input vector x. Let w1, . . . ,wK

denote K p-dimensional prototypes in input space. The simi-
larity between input vector x and prototype wk is measured
by

sk(x) = exp(−γ2
k‖x−wk‖2), (10)

where γk > 0 is a scale parameter. The evidence
of prototype wk is represented by a GRFN Ỹk(x) ∼
Ñ(µk(x), σ2

k, sk(x)hk), where σ2
k and hk are variance and

precision parameters for prototype k; the mean µk(x) is
defined as µk(x) = βTk x+ βk0, where βk is a p-dimensional
vector of coefficients, and βk0 is a scalar parameter. The
output Ỹ (x) for input x is computed by combining the
GRFNs Ỹk(x), k = 1, . . . ,K induced by the K prototypes.
To simplify the computations, hard normalization is used
instead of the soft normalization described in Section II-A. The
network output is a GRFN Ỹ (x) ∼ Ñ(µ(x), σ2(x), h(x)),
with

µ(x) =

∑K
k=1 sk(x)hkµk(x)∑K

k=1 sk(x)hk
, σ2(x) =

∑K
k=1 s

2
k(x)h2

kσ
2
k(∑K

k=1 sk(x)hk

)2 ,

and h(x) =
∑K
k=1 sk(x)hk. This GRFN quantifies prediction

uncertainty: µ(x) is the most plausible value of Y given x,
while σ2(x) and h(x) represent, respectively, aleatory and
epistemic uncertainty. A description of the loss function and
the training process can be found in [10]. This model is
implemented in R package evreg [21].
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Fig. 3: Prediction of crude oil proportion for the Gaso-
line Yield dataset. (a): Contour function (red curve) and
lower/upper cdfs (blue curves) for a predictive logit-normal
RFN associated to a particular test sample; the true proportion
is shown as a broken vertical line; (b): predicted vs. observed
values; black dots with error bars are the ENNreg predictions
with 80% belief intervals; red triangles are the predictions
using Beta regression.

B. Prediction of proportions

Let us now assume that Y is a proportion, taking values
in the interval [0, 1]. Let Z = logit(Y ) be the transformed
proportion. Training the ENNreg model with Z as the re-
sponse variable allows us to compute a GRFN Z̃(x) ∼
Ñ(µ(x), σ2(x), h(x)) quantifying the uncertainty on Z given
x. The uncertainty on Y is then described by the transformed
GRFN Ỹ ∼ TÑ(µ(x), σ2(x), h(x), logit).

Example 3. As an example, let us consider the Gasoline Yield
dataset available in R package betareg [22]. In this dataset,
the response is the proportion of crude oil after distillation
and fractionation. The dataset contains 32 observations of the
response and of the four input variables: crude oil gravity,
vapor pressure of crude oil, temperature at which 10% of
crude oil has vaporized, and temperature at which all gasoline
has vaporized. (The dataset has an additional input factor,
which we did not use in this experiment). We trained a network
with K = 5 prototypes. We used nested cross-validation to
tune the ξ and ρ hyperparameters (see [10]) and to estimate
the prediction performance. An example of a predictive logit-
normal RFN is shown in Figure 3a, and a scatterplot of
predicted vs. observed values with 80% belief intervals (see
[10]) is displayed in Figure 3b. The root mean squared errors
for ENNreg and Beta regression [22] are, respectively, 0.0241
and 0.0285.

V. CONCLUSIONS

The GRFN model introduced in [8] makes it possible to
define belief functions on the real line that can be easily
combined by the GRP rule, a combination operator generaliz-
ing both Dempster’s rule of DS theory and the normalized
product intersection of possibility distributions. The notion

of transformed RFS introduced in this paper allows us to
extend the GRFN model by defining easily combinable belief
functions on a bounded or half-bounded real interval. We have
presented an application to the prediction of a proportion in
machine learning. Even more flexible models can be defined
using a parameterized family of transformations. Applications
to belief elicitation and generalized Bayesian inference, as well
as further applications to machine learning will be reported in
future publications.
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