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Abstract—Real-time applications based on streaming data
collected from remote devices, such as smartphones and vehicles,
are commonly developed using Artificial Intelligence (AI). Such
applications must fulfill different requirements: on one hand,
they must ensure good performance and must deliver results in
a timely manner; on the other hand, with the objective of being
compliant with the AI-specific regulations, they shall preserve
data privacy and guarantee a certain level of explainability. In
this paper, we describe an AI-based application to predict the
Quality of Experience (QoE) for videos acquired by moving
vehicles from Beyond 5G and 6G (B5G/6G) network data.
To this aim, we exploit a Takagi-Sugeno-Kang (TSK) fuzzy
model learned by employing a federated approach, thus meeting,
simultaneously, the requests for explainability and data privacy
preservation. A thorough experimental analysis, involving also
the comparison with an opaque baseline (i.e., a neural network
model), is presented and shows that the TSK model can be
regarded as a viable solution which guarantees on the one side
an optimal trade-off between interpretability and accuracy, and
on the other side preserves the data privacy.

Index Terms—Federated Learning, Explainable AI, FED-XAI,
Linguistic fuzzy models, QoE

I. INTRODUCTION AND MOTIVATIONS

Nowadays, Artificial Intelligence (AI) empowered solutions
are gaining significant momentum favoured by the ubiquitous
presence of data sources, including mobile, IoT and wearable
devices. Looking ahead, the next generations of wireless
networks, beyond 5G (B5G) and 6G, are expected to further
amplify the pervasiveness of AI. At the same time, they will
leverage AI in order to improve the offered services and
accommodate a much higher number of connected devices [1].

In this framework, end-user trust in AI systems is considered
one of the cornerstones in the design of B5G/6G networks,
as attested by the research efforts in flagship initiatives such
as HEXA-X1 Horizon Project, in Europe. According to the
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recommendation of the European Commission, the pursuit
of trustworthiness requires that AI systems are i) lawful -
complying with all applicable laws and regulations, ii) ethical
- adhering to ethical principles and values and iii) robust - both
from a technical perspective and taking its social environment
into account [2]. Furthermore, the Artificial Intelligence Act
[3] has been recently published to define a common ground
of rules that AI-based systems must abide by to uphold a set
of fundamental rights of the citizens.

One of the key requirements towards trustworthy AI is
related to the data privacy and governance. Among the existing
approaches aimed at ensuring data privacy while building
AI systems based on Machine Learning (ML) models, the
Federated Learning (FL) paradigm has recently gained increas-
ing attention [4]. In a nutshell, FL allows multiple parties
(or clients) to collaboratively train an ML model without
disclosing their private data: raw data are not transferred
from local devices to a server for “traditional” centralized
processing; instead, model training takes place on the end-
user side and only model parameters or updates are shared
with the central server for generating a global aggregated
model. Intuitively, the knowledge extracted from scattered data
is embedded into the federated model.

Another relevant component towards trustworthy AI is
transparency, for which “AI systems and their decisions should
be explained in a manner adapted to the stakeholder con-
cerned” [2]. This is particularly relevant in contexts such as
healthcare or autonomous vehicles, where the stakeholders are
interested in understanding how a decision is made by the sys-
tem (e.g., for accountability reasons). The terms explainability
and transparency are sometimes used as synonymous. Here,
we follow the terminology proposed in [5]: given a certain
audience, explainability refers to the details and reasons a
model gives to make its functioning clear or easy to under-
stand, whereas transparency refers to the characteristic of a
model to be inherently understandable for a human. As regards
explaining how an AI model works, two approaches are viable:
adoption of transparent by-design models and exploitation of
post-hoc techniques [5]. Decision trees and rule-based systems
pertain to the former approach, as the inference process
(based on simple tests on input attributes) somehow resembles
the human reasoning and hence it is easy to understand.
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Post-hoc explainability techniques target models generally
considered as opaque, such as Neural Networks (NNs) and
ensemble methods. The methodologies used in this context
include text explanations, visualizations, local explanations,
explanations by example, explanations by simplification, and
feature relevance [5]. It is worth noticing that modelling
capability (measured, e.g., in terms of inference accuracy) and
explainability are generally conflicting objectives, especially in
scenarios where the phenomenon being modelled is complex:
thus it becomes crucial to investigate the trade-off between
them. The investigation of XAI models in the federated setting
is aimed at further catalyzing the trustworthiness of AI systems
and is at the core of the Federated Learning of eXplainable
AI (Fed-XAI) models [6].

In this paper, we address a time series forecasting problem
in an automotive case study resorting to a Fed-XAI approach.
The ability to forecast Quality of Experience (QoE) metrics
will be crucial in several applications enabled by the future
B5G/6G networks; here we consider the QoE perceived on
instances of vehicular User Equipment (UE), connected to the
wireless network, experiencing a video stream. The perceived
quality of the video may be critical for enabling services
such as see-through or tele-operated driving [7], which serve
as, or impact on, the driving assistance system. Specifically,
we compare two ML models for regression, both learnt in
a federated fashion: the first model consists of a Takagi-
Sugeno-Kang Fuzzy Rule-Based System (TSK-FRBS) [8],
which is generally considered as “light-grey” model. We
employ a federated approach for learning TSK-FRBSs with
enhanced interpretability, which has been recently proposed
by us in [9] under the umbrella of Fed-XAI. The second
model, generally considered as opaque, consists of a Multi
Layer Perceptron Neural Network (MLP) and its federation
procedure leverages the well-established federated averaging
method [4]. The comparison between the results of TSK-FRBS
and the MLP model used as baseline highlights that the former
can achieve accuracy comparable with the latter preserving the
explainability characteristic.

This work has the following contributions:

• we exploit a TSK-FRBS learnt in a federated fashion for
a QoE forecasting case study, in the context of B5G/6G
networks;

• we discuss the effectiveness of our approach through a
comparative analysis with an approach based on neural
networks, as an example of opaque model;

• we present how the inherent interpretability of TSK-
FRBS can be leveraged to explain the decision making
process;

• we simulate a real scenario where some of the participants
in the federation cannot contribute to the learning process
and we discuss how the number of the participants can
affect the performance of the federated TSK-FRBS.

The rest of the paper is organized as follows: in Section
II we report the basic concepts of Fed-XAI, in Section III
we describe our specific application for QoE forecasting,

discussing the context and the dataset. In Section IV, we
illustrate the experimental setup, whereas in Section V we
report and discuss the results. Finally, in Section VI we draw
some conclusions.

II. FED-XAI: BACKGROUND

Since the Federated Learning (FL) paradigm has been intro-
duced a few years ago, several surveys have covered the topic
from many facets [6], [10]–[14]. From an algorithmic point
of view, mainstream FL approaches revolve around the round-
based federated averaging (FedAvg) protocol: at each round
the server broadcasts the global model to the participants (or a
subset thereof); each involved participant updates the model by
performing one or more epochs of Stochastic Gradient Descent
(SGD) on its local dataset and transmits the updated model
to the server; finally, the server computes the average of the
locally updated models, weighted according to the cardinality
of the local datasets, to obtain a new global model. It turns
out that FedAvg is suitable for handling collaborative learning
of models optimized through SGD, e.g. NN models, but it
requires proper adaptation for models that are not typically
learned through the optimization of a differentiable global ob-
jective function. In this regard, Fed-XAI has been conceived as
a branch of FL focused on the explainability of the AI systems
and it supports the quest for trustworthiness by simultaneously
addressing the requirements of privacy preservation and model
interpretability. Since a few years, several studies have been
exploiting a Fed-XAI approach. Some of them consider post-
hoc explainability methods [15]–[19], whereas others involve
transparent models, including TSK-FRBSs [9], [20], [21], or
Decision Trees [22], [23].

In this work we exploit the federated learning of TSK-
FRBSs proposed in [9]. In particular, we adopt first-order
TSK-FRBSs characterised by having a linear model of the
input variables as consequent of the rules. In the following
we first recall some notions underlying TSK-FRBSs and then
describe the federated approach to learn such a model.

TSK-FRBS employs if-then rules to perform regression
tasks in ML. The rule base is learned from a training set,
typically following a two-stage approach: first, in the structure
identification stage, the number of rules and the antecedent
part of the rules are determined either with grid-partitioning of
the input space or exploiting fuzzy clustering methods. Then,
in the model parameter identification stage, local linear models
are fitted on the subspaces determined in the first stage. The
generic kth rule of a first-order TSK-FRBS is expressed in the
following form:

Rk : IF X1 is A1,jk,1
AND . . . AND XF is AF,jk,F

THEN yk = γk,0 +

F∑
i=1

γk,i · xi

(1)
where F is the total number of input variables in the dataset,
Ai,jk,i

identifies the jth fuzzy set of the fuzzy partition over
the ith input variable Xi, and γk,i (with i = 0, . . . , F ) are the



coefficients of the linear model, which is used to evaluate the
associated output yk.

In the inference stage, given an input pattern x =
[x1, x2, . . . , xF ]

T , first the strength of activation of each rule
is computed as follows:

wk(x) =

F∏
f=1

µf,jk,f
(xf ) for k = 1, . . . ,K (2)

where µf,jk,f
(xf ) is the membership degree of xf to the fuzzy

set Af,jk,f
. Then, the output is evaluated either as the average

of the outputs associated with the activated rules (weighted
by their firing strengths) or coincides with that of the highest
firing strength rule (maximum matching policy).

The first-order TSK model used in this work has been
introduced in one of our previous works [9], and is generated
as follows. A strong uniform fuzzy partition is defined over
each input variable, limiting to three the number of fuzzy sets
used in each partition. The choice of using uniform partitions
with a limited number of fuzzy sets enhances interpretability
from a twofold perspective. On one hand, the geometric
characteristics of the partitions make them more interpretable
as they satisfy the criteria of coverage, completeness, distin-
guishability and complementarity [24], which are generally
not met when using classical clustering-based, data-driven
approaches. On the other hand, the three fuzzy sets of each
partition can be mapped to as many highly intuitive linguistic
terms (e.g. low, medium, and high) thus increasing semantic
interpretability. Furthermore, the inference process is based on
maximum matching: in this way the final output can be easily
explained by analysing the single rule which determines the
output.

The FL approach for building TSK-FRBSs is not iterative,
but it generates the global model in one-shot. First, the local
TSK-FRBSs are generated by each client and sent to the
central server. Then, the server aggregates the received rule
bases. The aggregation procedure consists in juxtaposing rules
collected from clients, and resolving possible conflicts, i.e.,
rules from different models having antecedents referring to
identical regions of the attribute space and different conse-
quents. Conflict resolution consists in the creation of a single
rule from each set of conflicting rules. Such rule retains
the common conflictual antecedent as antecedent, and the
average of the conflicting rules consequents coefficients as new
consequent.

Finally, it is worth emphasising that the FL approach can be
considered as an alternative to two baseline learning settings,
schematically depicted in Figure 1.

In FL schematized in Fig. 1a, clients collaborate in obtaining
a single federated model without compromising their privacy.
In Local Learning (LL) shown in Fig. 1b, each client individu-
ally learns a model from its local data only. In this setting, raw
data privacy is preserved but there is no collaboration among
clients. Hence, the assessment of the performance of a FL
approach entails measuring the gain with respect to the local
learning setting. In Centralized Learning (CL) schematised in

(a) (b) (c)

Fig. 1. Schematized representation of three learning settings: (a) federated
learning (FL), (b) local learning (LL), (c) centralized learning (CL).

Fig. 1c, data from all clients are first gathered and stored on
a single device and then are used to learn the model. This
setting represents the utmost form of collaborative training,
but implies the violation of users privacy, as raw data need to
be transmitted.

In our previous work [9] we have experimented the approach
on several benchmark datasets showing that the FL scheme
generally achieves better results compared to models generated
locally, yet being sometimes outperformed by the centralized
approach (we point out that this approach is not however viable
due to privacy limitation).

III. FED-XAI FOR VIDEO STREAMING QOE PREDICTION

The development of new generation networks B5G/6G is
currently ongoing and will enable several services, which will
be likely based on AI as enabling technology. In this work, we
consider an automotive application where connected vehicles
are User Equipments (UEs) of a mobile network. Each UE is
connected to its respective base station (BS) and receives a
live video acquired by the camera of the vehicle in front of it,
possibly enabling advanced driving assistance support systems,
such as safety distance evaluation. An essential requirement
to offer such services is that the video should be continuously
displayed with high quality. One indicator, typically used in the
context of telecommunications, is the Quality of Experience
(QoE): a measure of end-user satisfaction in enjoying a service
[25].

A prediction of real-time QoE to monitor the system,
early-detect problems and/or predict incoming failures can be
achieved using AI-based approaches [25]–[27]. However, there
are some challenges to consider: i) the availability of rep-
resentative datasets (network operators are reluctant to share
data, in particular for B5G/6G scenarios); ii) systems need to
comply with stringent requirements, both technical, ethical and
legislative. In particular, the prediction must be delivered in
a timely way (if the system is too slow in providing outputs,
the prediction would be outdated and, thus, useless). Next,
the system must be able to leverage knowledge in data from
different UEs without directly accessing it in order not to
violate users’ privacy. We describe a method to deal with these
challenges using: i) an ad-hoc dataset created via a simulation
carried out with Simu5G [28] (an open-source model library



for the OMNeT++ simulation framework2), and ii) exploiting
a Fed-XAI model designed to be trustworthy and, at the same
time, achieve good accuracy. The application is conceived
in a FL-as-a-Service (FLaaS) fashion, providing the B5G/6G
network with flexible mechanisms that allow end-users to
exploit the FL service. This scenario was already introduced
in one of our previous works [29], but the learning of the
model for QoE prediction was not addressed by employing a
federated approach as it would be natural in this domain. In
the following, we describe the generation of the dataset we
used in the experimental analysis and its preprocessing.

A. Dataset description

Raw data are publicly available3 and consist of a set of Qual-
ity of Service (QoS) and QoE metrics obtained by simulating
scenarios in which 15 vehicles (UEs) acquire video-streams
while moving. In the simulations, video-streams flow from a
video server towards the UEs and each UE collects data for
120 seconds at discrete time-tagged moments. One experiment
is defined as one independent replica of one simulation lasting
120 seconds for one UE. The dataset used in this work consists
of 24 independent runs. Several time-tagged metrics reported
in Table I are associated with each simulation run. More details
on the dataset simulation and content are reported in [29].

TABLE I
DESCRIPTION OF THE METRICS INCLUDED IN THE DATASET:

CQI = CHANNEL QUALITY INDICATOR; SINR: SIGNAL TO INFERENCE
PLUS NOISE RATIO; RTP: REAL-TIME TRANSPORT PROTOCOL

DL = DOWNLINK. ALL METRICS ARE RECORDED BY THE UES, EXCEPT
THE AVGSERVEDBLOCKSDL ONE, WHICH IS INSTEAD RECORDED BY THE

BSS

Name Description

Context
UE position (x, y, z) coordinates of the UE in the floorplan
UE speed Speed of the UE in m/s

QoS metrics
avgServedBlocksDl Number of Resource Blocks occupied in downlink
averageCqiDl CQI values reported in DL
rcvdSinrDl SINR value measured at packet reception
servingCell ID of the new serving cell after the handover
frameSize Size of the displayed frame (Byte)
rtpPacketSize Size of the RTP packet (Byte)
end2EndDelay Time between transmission and reception of an

RTP packet
interArrivalTimeRtp Interarrival time between two RTP packets
rtpLoss RTP packets of frame lost

QoE metrics
framesDisplayed Frame percentage arrived at the time of its display
playoutBufferLength Frame buffer size
firstFrameElapsedTime Three values:

1) timestamp of the UE request
2) timestamp of the sender
3) time between the request and the first frame

displayed

2OMNeT++ Website: https://omnetpp.org, accessed May 2022
3http://docenti.ing.unipi.it/g.nardini/ai6g qoe dataset.html, last visited Feb.

2023

B. QoE prediction task as a regression problem

We formulate the QoE prediction problem as a regression
task. The target of the regression is to estimate the average
value of the framesDisplayed metric at a specific time horizon
H in the near future. The target value is estimated considering
as input to our regression model a set of statistics calculated
on the historical values of the metrics shown in Table I, within
a time window W .

The following steps have been carried out to transform
the raw dataset into a regression dataset suitable for the
downstream adoption of AI approaches:

• before calculating the statistics, any missing value in the
metrics has been filled with pre-defined values;

• in our experiments, we fixed H and W equal to 1 and
3 seconds, respectively. We extracted and considered as
input features for our regression model the following
statistics for each metric: mean, median, max, min, vari-
ance, standard deviation, kurtosis, skewness, Q1, Q3, and
the number of actual samples used for computing the
statistics;

• we clipped extracted features in the range [0, 1] after
robust scaling using quantiles (0.025, 0.975).

• the analysis carried out in [29], where a Decision Tree
was applied to predict the QoE in a non-Federated
fashion, suggested us that a reduced set of the extracted
features can be effective for the target estimation. Specif-
ically, we selected the following features:
– framesDisplayed Q3,
– framesDisplayed mean,
– playoutBufferLength mean,
– interArrivalTimeRtp max,
– framesDisplayed median,
– playoutBufferLength counter,
– distanceBS variance,
– distanceBS stdev,
– interArrivalTimeRtp counter,
– interArrivalTimeRtp skew,
– framesDisplayed kurtosis,
– end2endDelay mean,
– rcvdSinrDl Q3,
– end2endDelay counter,
– distanceBS skew.

More details on how we built the original regression dataset
from the raw data con be found in [29].

IV. EXPERIMENTAL SETUP

The experimental analysis follows the footprints of the work
described in [29], where a Decision Tree was applied to predict
the QoE in a non-Federated fashion. Unlike the previous work,
we use the TSK-FRBS model and we compare it with a
MLP model, as opaque reference model, in terms of predictive
accuracy. We trained both the models according to the FL, LL
and CL settings.

The first 20 out of 24 runs of each UE are used as training
sets for the models, and the last 4 runs are employed as

https://omnetpp.org
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test sets to evaluate their generalization capabilities. From
now on, we will refer to the last four runs as Run 1, Run
2, Run 3, and Run 4. We already described the TSK-FRBS
model and its parameters in Section II. As for the MLP, the
architecture consists of a linear stack of two fully connected
layers having 64 neurons each, with ReLu (Rectified Linear
Unit) as activation function, followed by a single unit linear
layer, which is a typical setup for scalar regression. Mean
Squared Error (MSE) is used as Loss function and Adam
as optimizer. Although finding the optimal hyperparameters
was out of the scope of this work, we tried out different
architectures, monitoring training and validation loss on our
data (using a basic hold-out validation as evalutation method).
We chose the architecture standing right at the border between
underfitting and overfitting.

As regards the FL parameters for the MLP, let K be the total
number of UEs; let C be the fraction of UEs participating in
the training stage; let E be the number of local epochs each
client executes over its data; let B be the local mini-batch size
and R the number of federation rounds. In the experiments,
we set K = 15, C = 1, E = 5, B = 64 and R = 5.

The quality of prediction of the models is evaluated through
the MSE and the coefficient of determination (R2). For the
purpose of performance assessment, we evaluate the metrics
as follows: regardless of the learning setting, we consider the
actual partition of the dataset across UEs and we evaluate the
models generated by CL, FL and LL on the local training and
test sets.

V. EXPERIMENTAL RESULTS

In this section, we report and discuss the results. We
consider four perspectives: prediction accuracy, interpretability
of the used models, communication cost and sensitivity to
the number of clients involved in the federation. All the four
perspectives are relevant in our use case and we need to find
a good trade-off among them.

A. Prediction accuracy

Table II shows the average values of MSE and R2 obtained
on the training and test sets for the different approaches.

TABLE II
AVERAGE VALUES OF MSE AND R2 ON THE TRAINING AND TEST SETS,

OBTAINED WITH THE THREE LEARNING SETTINGS, FOR EACH OF THE
MODELS USED.

FL LL CL
Train Test Train Test Train Test

MSE (TSK) 0.052 0.066 0.030 0.094 0.045 0.057
MSE (MLP) 0.056 0.060 0.047 0.062 0.047 0.055

R2 (TSK) 0.614 0.559 0.799 0.376 0.692 0.617
R2 (MLP) 0.560 0.590 0.675 0.576 0.678 0.628

We can observe how the FL approach outperforms the LL
one both for MLP and TSK-FRBS, but, as expected, does
not achieve the performance of the CL approach. The values
obtained by the FL models in Table II show that the difference

between the baseline MLP and the TSK-FRBS on the test
set is around 10%. In the specific application, such difference
is deemed as acceptable, also considering that interpretability
is a major requirement. In Table II we have also shown the
CL setting results with the aim of presenting a complete
overview. For the sake of simplicity, and since CL represents
an unfeasible scenario in practice (recalling the discussed data
privacy constraints), from here on we will mostly omit the CL
results.

The average values of MSE and R2 give a general overview
of the behaviour of the models. With the aim of carrying out
a more effective and robust evaluation and comparison, we
execute a statistical test. Namely, we adopted the pairwise
Wilcoxon signed-rank test of the distributions of 60 values of
both MSEs and R2 metrics: such values consists of the metrics
computed on the local test sets by single run (4 Runs each) of
the 15 UEs involved in the experimentation. Table III shows
the results of the statistical test. These results confirm that the

TABLE III
RESULTS OF THE PAIRWISE WILCOXON SIGNED-RANK TEST APPLIED TO
THE DISTRIBUTIONS OF MSES AND R2 OBTAINED ON THE TEST SET FOR

A SIGNIFICANCE LEVEL OF α = 0.05. R+ (R−) IS THE SUM OF RANKS OF
THE DIFFERENCES IN WHICH THE FIRST (SECOND) REPORTED FL MODEL

OUTPERFORMED THE SECOND (FIRST) ONE.

MSE
Comparison R+ R− p-value Hypothesis

FL-TSK vs LL-TSK 1563 267 2e-06 Rejected

FL-MLP vs FL-TSK 1247.5 582.5 0.014 Rejected

R2

Comparison R+ R− p-value Hypothesis
FL-TSK vs LL-TSK 1575 255 1e-06 Rejected

FL-MLP vs FL-TSK 1243 587 0.016 Rejected

FL approach outperforms the LL one, both considering MSE
and R2. We also observe that the federated MLP (FL-MLP)
approach achieves better results than the federated TSK-FRBS
(FL-TSK).

Figures 2 and 3 report the average MSEs of the two
models on the test set (average computed over Runs 1, 2, 3,
and 4) of each UE. The FL setting allows an improvement
in performance for all clients with respect to LL models.
As regards the TSK model, Clients 6 and 10 particularly
benefit from the adoption of the FL model which shows good
performance while LL models severely overfit. This confirms
that the FL models generalize better than the LL ones thanks
to the additional knowledge contained in data of the other
clients.

B. Interpretability Analysis of the Federated TSK-FRBS for
QoE Prediction

Complexity, often calculated as the total number of rules,
is usually adopted as a measure of the global interpretability
of a TSK-FRBS: the lower the complexity, the higher the
interpretability. Table IV shows the number of rules for the
TSK-FRBSs obtained by the FL, LL and CL approaches. In
the case of the LL setting, we report the average and standard



Fig. 2. Average MSEs on test set for the FL and LL settings of the TSK-FRBS
model for each UE

Fig. 3. Average MSEs on test set for the FL and LL settings of the MLP
model for each UE

deviation of the number of rules of the local TSK-FRBSs
generated by the fifteen UEs. As expected, the number of rules
of the FL and CL approaches is equal. It is worth to notice
that the average number of rules of the local TSK-FRBSs is
around one third of the number of rules of the TSK-FRBSs
generated with the FL and CL settings. Indeed, in the LL
approach each UE uses only the fraction of the data available
locally to train the model, consisting of about 2300 samples
on average. In CL all the data (about 35400 samples) are
used in the training phase, and in FL rules are aggregated
as discussed in Section II. However, the prediction capability
of models generated using FL and CL is statistically higher
than the one of the single local models. Thus, from a global
interpretability point of view, we can state that the federated
TSK-FRBS represents a good trade-off solution, especially
because its prediction capability (considering the R2) is, on
average, almost two times higher that the one of local models.

TABLE IV
MODEL COMPLEXITY: NUMBER OF RULES OF THE TSK-FRBSS.

FL LL CL
TSK-FRBS 997 289.1 ± 21.6 997

Another important aspect to take into consideration is the
local intepretability of the TSK-FRBS, discussed in Section
II. Indeed, this model adopts only one rule for making a

prediction, namely the one with the highest firing strength.
Thus, to some extent our TSK-FRBS is able to explain why
and how an output has been generated. As an example, in the
following we show a rule (Eq. 3) of the TSK-FRBS, generated
in FL fashion for QoE prediction task:

Rk : IF framesDisplayed Q3 is High

AND framesDisplayed mean is Medium

AND playoutBufferLength mean is Medium

AND interArrivalT imeRtp max is High

AND framesDisplayed median is Low

AND playoutBufferLength counter is Medium

AND distanceBS variance is Low

AND distanceBS stdev is Low

AND interArrivalT imeRtp counter is High

AND interArrivalT imeRtp skew is High

AND framesDisplayed kurtosis is Low

AND end2endDelay mean is High

AND rcvdSinrDl Q3 is Medium

AND end2endDelay counter is High

AND distanceBS skew is Medium

THEN : QoE = −0.210

+ 0.246 · framesDisplayed Q3

+ 0.465 · framesDisplayed mean

+ 0.636 · playoutBufferLength mean

− 0.291 · interArrivalT imeRtp max

+ 0 · framesDisplayed median

+ 0.293 · playoutBufferLength counter

+ 0.001 · distanceBS variance

+ 0.019 · distanceBS stdev

+ 0.223 · interArrivalT imeRtp counter

− 0.21 · interArrivalT imeRtp skew

+ 0 · framesDisplayed kurtosis

− 0.257 · end2endDelay mean

+ 0.454 · rcvdSinrDl Q3

+ 0.223 · end2endDelay counter

− 0.031 · distanceBS skew

(3)

It is worth recalling that a high semantic interpretability of
the antecedent part of the rules is ensured by using uniform
strong fuzzy partitions with only 3 fuzzy sets labeled as Low,
Medium and High.

The rule suggests that a situation where frames-
Displayed mean, playoutBufferLength mean, and rcvdSin-
rDl Q3 are Medium, the predicted output is positively affected
by those features (higher values of the coefficients associated
with these features). However, the rule also suggests that QoE
decreases when interArrivalTimeRtp max is high. This can be
interpreted as follows: on one hand, when the current scenario
shows no large anomalies from a nominal situation regarding
number of frames displayed, length of the playout buffer and
SINR, we could expect an incoming high value of QoE. On
the other hand, a degradation of the QoE is expected when
the inter-arrival time between two packets in the past window
is high. Thanks to the explainability provided by each rule,
some countermeasures can be taken in the situations where a
QoE degradation is predicted. Indeed, we can expect that the



rules activated for each specific prediction can be stored in a
logging file or shown on an interactive dashboard. The logging
file or the dashboard may be used by an operator for actually
deciding if taking any specific countermeasures.

C. Communication cost analysis

In the proposed QoE prediction application, the aggregator
must be able to deploy the generated model to the clients in
a timely manner to ensure a highly performing service. Since
the environment where the vehicles are moving is dynamical,
and the signal can degrade due to the presence of obstacles or
tunnels, it is important that the transmission time is adequate.
One of the main factors influencing the time is the size of
the data amount to be exchanged. In the case of the MLP, this
size is about 6 MB: for each of the 5 federation rounds, the 15
clients exchange with the server about 5000 parameters (the
MLP weights). Then, the server sends the aggregated model
back to each client. As regards the TSK-FRBS, the amount
of data exchanged between each client and the server is about
70 kB. After that, the aggregated model sums up to 240 kB
and can be redeployed locally in the clients. Thus, the total
size of exchanged information is about 0.3 MB, an order of
magnitude smaller than the MLP scenario.

D. Sensitivity to the number of clients involved in the FL of
TSK-FRBSs

We performed a sensitivity analysis on the number of clients
involved in the FL of TSK-FRBSs by changing this number
from a minimum of 3 to a maximum of 15 clients (default
strategy). We aimed to recreate a possible real-world scenario,
when, for instance, some clients are not available or have
not been authorized to share local models or have lost the
connection. We expect that the smaller is the number of clients
involved in the federation, the lower is the accuracy. We
randomly sampled 3, 6, 9, and 12 clients out of the total 15,
repeating the procedure 10 times, and we calculated the results
on the test set of Runs 1, 2, 3 and 4. Figure 4 shows the
MSEs obtained by the FL approach for the different numbers
of clients. We can note that actually the MSE increases with
the decrease of the number of clients, thus confirming our
expectations. The non-overlapped confidence intervals suggest
that the differences between the MSEs in the various scenarios
are significant, supporting the intuition that a higher fraction
of participating clients is preferable.

The difference between the MSEs obtained by a federation
with all the possible clients involved (15) and the minimum
number (3) is evident. We observe however that the TSK-
FRBSs learned with this least favourable scenario still out-
perform the ones learned with the LL approach. Indeed, the
average MSE on the test set is 0.094 with the LL approach
and 0.077 with the federation of 3 clients.

VI. CONCLUSIONS

This paper has presented the results obtained by the applica-
tion of TSK-FRBS models learned with a federated approach
to the prediction of Quality of Experience metrics from

Fig. 4. Average MSEs obtained by TSK-FRBSs generated by FL over 10
randomly repeated experiments extracting n clients without replacement, with
n=3,6,9,12. Error bars indicate the 95% confidence interval.

simulated time series of Beyond 5G/6G networks data. The
approach allows simultaneously addressing the requirements
of trustworthiness and data privacy. The results showed that the
TSK-FRBSs learned through a federated approach overcome
the ones learned by using only the local training sets. Since one
of the challenges is being able to balance between model per-
formance and explainability, we compared the results achieved
by the TSK-FRBS learned with the federated approach with
a baseline represented by a federated multi-layer perceptron
neural network. The results have highlighed that the baseline
overcomes the TSK-FRBS in terms of MSE and R2 scores,
but does not guarantee the same level of interpretability.
Concerning the communication cost, the size of the data
exchanged by the baseline federated approach is significantly
larger than the one of the federated TSK-FRBS. Finally, we
carried out a sensitivity analysis on the number of clients
participating in the federation, confirming how the accuracy
is considerably affected by this number.

The results presented in the paper are encouraging and
show that the application of a federated approach to learn
explainable AI models in the context of Beyond 5G and 6G
networks is viable. As future work, we plan to improve the
accuracy of the TSK-FRBS models by exploiting second-order
TSK-FRBSs and modifying accordingly the federated learning
approach for taking these models into consideration.
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[29] J. L. Corcuera Bárcena, P. Ducange, F. Marcelloni, G. Nardini, A. Noferi,
A. Renda, G. Stea, and A. Virdis, “Towards Trustworthy AI for QoE
prediction in B5G/6G Networks,” in First Int’l Workshop on Artificial
Intelligence in Beyond 5G and 6G Wireless Networks (AI6G 2022), 2022.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://ceur-ws.org/Vol-3277/paper8.pdf
https://www.sciencedirect.com/science/article/pii/S1383762122000583
https://www.sciencedirect.com/science/article/pii/S1383762122000583
https://arxiv.org/abs/2007.10987
https://doi.org/10.14778/3407790.3407811
https://www.sciencedirect.com/science/article/pii/S0020025511001034

	Introduction and motivations
	Fed-XAI: background
	Fed-XAI for video streaming QoE prediction
	Dataset description
	QoE prediction task as a regression problem

	Experimental setup
	Experimental results
	Prediction accuracy
	Interpretability Analysis of the Federated TSK-FRBS for QoE Prediction
	Communication cost analysis
	Sensitivity to the number of clients involved in the FL of TSK-FRBSs

	Conclusions
	References

