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Abstract— Although probabilistic networks and fuzzy
clustering may seem to be disparate areas of research,
they can both be seen as generalizations of naive Bayes
classifiers. If all descriptive attributes are numeric, naive
Bayes classifiers often assume an axis-parallel multidimen-
sional normal distribution for each class. Probabilistic net-
works remove the requirement that the distributions must
be axis-parallel by taking covariances into account where
this is necessary. Fuzzy clustering tries to find general or
axis-parallel distributions to cluster the data. Although it
neglects the class information, it can be used to improve
the result of the abovementioned methods by removing the
restriction to only one distribution per class.

I. INTRODUCTION

Probabilistic networks are a method to decompose a
multivariate probability distribution in order to make rea-
soning in multidimensional domains feasible. Fuzzy clus-
tering is a method to find groups of similar objects or
cases, which compared to classical (crisp) clustering has
the advantage that an object or a case can belong (with a
degree between 0 and 1) to more than one cluster. Hence
these methods may appear to be relatively unrelated.
Nevertheless, they are closely connected, since they can
both be seen as generalizations of naive Bayes classifiers.

Our rationale is that the three techniques share the
idea that the process that generated a given dataset can
be modeled by a set of probability distributions/density
functions. They differ w.r.t. the assumptions they make
about these distributions and whether they take into ac-
count the value of a distinguished class attribute (super-
vised: naive Bayes classifiers, probabilistic networks) or
not (unsupervised: fuzzy clustering). Of course, there
are still other methods, for example, radial basis function
neural networks [18], that can be interpreted in much the
same way. However, a complete list of such methods and
a discussion of their similarities and differences is beyond
the scope of this paper. We selected the three methods
mentioned above as examples, because the first two show
very clearly the properties we are interested in and be-
cause the connection to fuzzy clustering points out inter-
esting directions to improve these techniques.

To simplify the explanation, we confine ourselves to nu-
meric attributes (with the exception of the class attribute,
of course). With this restriction a common assumption is
that the process that generated the data can be modeled
by a set of multidimensional normal distributions. The
three methods differ in the constraints they place on this

set. Naive Bayes classifiers and probabilistic networks as-
sume exactly one distribution per class. Naive Bayes clas-
sifiers, in addition, assume that the descriptive attributes
are independent given the class, thus requiring the distri-
butions to be axis-parallel. Analogously, there are general
and axis-parallel variants of fuzzy clustering algorithms.
In fuzzy clustering, however, the number of distributions
can be chosen freely. This often leads to a better fit to the
data and may be used to improve the two other methods.

The brief overview just given already fixes the order
in which we discuss the methods. In section II we ex-
amine naive Bayes classifiers. In section III we show
how Bayesian networks remove the strong independence
assumptions underlying naive Bayes classifiers. In sec-
tion IV we show how fuzzy clustering approaches can be
used to improve the aforementioned methods by removing
the restriction to one distribution per class.

II. NAIVE BAYES CLASSIFIERS

Naive Bayes classifiers [10], [5], [15], [16] are an old and
well-known type of classifiers, i.e., of programs that as-
sign a class from a predefined set to an object or case
under consideration based on the values of descriptive
attributes. They do so using a probabilistic approach,
i.e., they try to compute conditional class probabilities
and then predict the most probable class. Let C' de-
note a class attribute with a finite domain of m classes,
dom(C) = {c1,...,cm}, and let U = {Aq,...,An} be
a set of descriptive attributes. These attributes may
be symbolic, dom(4;) = {a'?,...
dom(A;) = R. For simplicity, we use the notation agf) for
both symbolic and numeric values. With this notation, a
case or an object can be described by an instantiation
w = (agll), . ,CLE:)) of the attributes Aq,..., A, and the
universe of discourse is 2 = dom(A;) X ... x dom(Ay).

For a given instantiation w, a naive Bayes classifier tries
to compute the conditional probability
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for all ¢; and then predicts the class ¢; for which this
probability is highest. Since it is usually impossible
to store all of these conditional probabilities explicitly,
naive Bayes classifiers exploit—as their name already
indicates—Bayes rule and a set of conditional indepen-
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assuming that always f( /\A cv iy = a( )) > 0. It is clear
that we can neglect the denominator of the fraction on the
right, since for a given case or object to be classified, it is
fixed and therefore can always be restored from the fact
that the distribution on the classes must be normalized.
Next we apply the chain rule of probability to get
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where S is a normalization constant that represents the
denominator of the fraction in the preceding equation.
Finally we make the truly “naive” assumption that given
the value of the class attribute, any attribute A; is inde-
pendent of any other. This yields
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the fundamental formula underlying naive Bayes classi-
fiers. For a symbolic attribute A; the conditional prob-
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abilities P(A; = agj) | C = ¢;) are stored as a simple
conditional probability table. For numeric attributes it is
usually assumed that the probability density is a normal
distribution and hence only the expected values y;(c;) and
the variances sz (¢;) need to be stored. Alternatively, nu-
meric attributes may be discretized [4] and then treated
like symbolic attributes. In this paper, however, we make
the normal distribution assumption. It is obvious that
naive Bayes classifiers can easily be induced from from
a dataset of preclassified sample cases using a standard
estimation method like, e.g., maximum likelihood.

III. PROBABILISTIC NETWORKS

Probabilistic networks—especially Bayesian networks
[19] and Markov networks [17]—are well-known tools
for reasoning under uncertainty. They exploit inde-
pendence relations between attributes in order to de-
compose a multivariate probability distribution into a
set of (conditional or marginal) distributions on lower-
dimensional subspaces. Early efficient implementations
include HUGIN [1] and PATHFINDER [11].

LFor simplicity, we always use a density function f, although this
is strictly correct only, if there is at least one numeric attribute.

Dependence and independence relations have been
studied extensively in the field of graphical modeling [13],
[23]. Though using graphical models to facilitate rea-
soning in multidimensional domains has originated in the
probabilistic setting, this approach has been generalized
to be usable with other uncertainty calculi [21], e.g., in
the so-called valuation-based networks [22] and has been
implemented, for example, in PULCINELLA [20]. Due
to their connection to fuzzy systems recently possibilistic
networks also gained some attention. They have been im-
plemented, for example, in POSSINFER [9], [14]. In this
paper, however, we focus on Bayesian networks.

A Bayesian network is a directed acyclic graph in which
each node represents an attribute and each edge repre-
sents a direct dependence between two attributes. The
structure of the directed graph encodes a set of conditional
independence statements. It also represents a particular
joint probability distribution, which is specified by assign-
ing to each node in the network a family of (conditional)
probability distribution for the values of the correspond-
ing attribute given its parents in the network (if any).

Formally, a Bayesian network describes a factorization
of a multivariate probability distribution. This factoriza-
tion results from applying first the chain rule of probabil-
ity to a joint distribution, which yields
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Then the factors are simplified by exploiting conditional
independence statements of the form

VWEQ:P(WXUy|wZ):P(wX |wz)~P(wy|wz)

whenever P(wz) > 0, where X, Y, and Z are three dis-
joint sets of attributes and wxy = proj x(w) is the pro-
jection of an instantiation w = (A\7_;A4; = a(J)) to the
attributes in X. Since these statements are equlvalent to
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we can remove those attributes from the conditions of
which the conditioned attribute is independent given the
values of the remaining attributes. Thus we arrive at
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where parents(A;) is the set of attributes of which to know
the instantiations is sufficient to determine the probabil-
ity (density) of the values of attribute A;. The name
“parents(A,)” is due to the fact that in a Bayesian net-
work the conditioning attributes are the parents of this
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Fig. 1. A naive Bayes classifier is a Bayesian network with a star-
like structure (left). It can be extended by adding edges between
attributes that are still dependent given the class (right).

attribute in the graph. This makes it very simple to read
the factorization from a Bayesian network: For each at-
tribute there is one factor in which it is conditioned on
the attributes corresponding to its parents in the graph.

Clearly, a sparse graph is desirable to obtain a factoriza-
tion with “small” factors. Whether a sparse graph can be
found sometimes depends on the order of the attributes,
but it cannot be guaranteed that a sparse graph exists.
In such cases usually an approximation is accepted.

Bayesian networks can be used for probabilistic reason-
ing by fixing the values of some (observed) attributes and
then propagating this information in the network to ob-
tain the probabilities of the values of other (unobserved)
attributes. This process, which is usually called evidence
propagation, basically consists in replacing the prior prob-
ability distribution with the posterior one, i.e., the one
conditioned on the values of the observed attributes. To
make it efficient, a Bayesian network is often transformed
into a clique tree for which a simple propagation scheme
exists. The evidence is propagated along the edges of this
clique tree using the marginal probability distributions
associated with the nodes that represent the cliques. For
details on this method, see e.g. [17].

It is easy to see that a naive Bayes classifier is just
a special Bayesian network with a star-like structure as
shown on the left in figure 1. That is, there is a distin-
guished attribute, namely the class attribute. It is the
only unconditioned attribute (the only one without par-
ents). All other attributes are conditioned on the class
attribute and on the class attribute only.

The main drawback of naive Bayes classifiers are the
very strong conditional independence assumptions under-
lying them. By exploiting the more general approach un-
derlying Bayesian networks, this severe constraint can be
relaxed. That is, we may add edges between attributes
that are still dependent given the class (see figure 1). This
can lead to improved classification results, since the ex-
tended conditional probability distributions may be bet-
ter suited to capture the dependence structure. To keep
the resulting graph sparse, one may introduce the restric-
tion that no attribute may have more than a fixed number
of parents. Probabilistic networks of this type have been
successfully applied in telecommunication [7].

As an illustrative example, let us take a look at the

TABLE 1
A NAIVE BAYES CLASSIFIER FOR THE IRIS DATA. THE NORMAL

DISTRIBUTIONS ARE DESCRIBED BY [ £ &.

iris type iris setosa | iris versicolor | iris virginica
prior prob. |0.333 0.333 0.333

petal length|1.46 £0.17|4.26 = 0.46 | 5.55 £ 0.55
petal width {0.24 £0.11|1.33 +£0.20 |2.03 £0.27
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Fig. 2. Naive Bayes density functions for the iris data. The ellipses
are the 20-boundaries.
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Fig. 3. Density functions that take into account the covariance of
the two measures. The ellipses are the 20-boundaries.

well-known iris data. The problem consists in predicting
the iris type (iris setosa, iris versicolor, or iris virginica)
from measurements of the sepal length and width and the
petal length and width. We confine ourselves to the lat-
ter two measures, which are most informative. The naive
Bayes classifier induced from all 150 cases is shown in ta-
ble I. The conditional probability density functions used
by this classifier are depicted in figure 2: The ellipses are
the 20-boundaries of the (bivariate) normal distributions.
Due to the strong conditional independence assumptions,
these ellipses are axis-parallel (no covariance is taken into
account). However, even a superficial glance reveals that
the two measures are far from independent given the iris
type. If we allow for an additional edge between the petal
length and width, which is easily implemented by estimat-
ing the covariance of the two measures, a much better fit
to the data can be achieved (see figure 3, again the el-



Fig. 4. An extreme 2-class example
where an approach with one dis-
tribution per class fails.
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lipses are the 20-boundaries of the density functions). As
a consequence the number of misclassifications drops from
six to three (which can easily be made out in figure 3).

To summarize, probabilistic networks generalize naive
Bayes classifiers in two ways. In the first place, by addi-
tional edges, conditional dependences between attributes
can be taken into account. Secondly, in probabilistic net-
works there is usually no distinguished class attribute.
Any attribute (or any set of attributes) can be made the
focus of inferences. Thus several, quite different reasoning
tasks can be solved with the same probabilistic network.

However, there is still the restriction to one density
function per class. This is not always appropriate, es-
pecially under the normal distribution assumption. An
extreme example is shown in figure 4. It is clear that
for this classification problem an approach with only one
density function per class fails, although two density func-
tions for the +-class can fit the data perfectly. To arrive
at such a more general approach, we may exploit ideas
from fuzzy clustering, which we study next.

IV. Fuzzy CLUSTERING

The term “classification” is ambiguous. Up to now we
have used it to denote the process of assigning a class
from a predefined set. In classical statistics, however, this
term usually denotes the process of dividing a dataset of
sample cases, with the groups not predefined, but to be
found by the algorithm. To avoid confusion, the latter
process is often called clustering or cluster analysis.

Cluster analysis is, as already mentioned, a technique
to divide a dataset of sample cases into classes or clus-
ters. The goal is to divide the dataset in such a way that
two cases from the same cluster are as similar as possible
and two cases from different clusters are as dissimilar as
possible. Thus one tries to imitate the human ability to
group similar objects or cases into classes and categories.

In classical cluster analysis [6] each case or object is
assigned to exactly one cluster. Thus we get a crisp par-
titioning with “sharp” boundaries between the clusters.
A crisp partitioning of a dataset, however, though of-
ten undisputedly successful, is not always appropriate. If
the “clouds” formed by the data points are not clearly
separated by regions bare of any data points, but if, in
contrast, there are only regions of higher and lesser data
point density, then the boundaries between the clusters
can only be drawn with a certain amount of arbitrariness.
Due to this arbitrariness it may be doubted, at least for
data points close to the boundaries, whether a definite
assignment to one class is justified.

An intuitive approach to deal with such situations is
to make it possible that a data point belongs in part to
one cluster, in part to a second etc. Fuzzy cluster analy-
sts does just this: It relaxes the requirement that a data
point must be assigned to exactly one cluster by allowing
gradual memberships [2], [3].

Most fuzzy clustering algorithms determine an optimal
classification by minimizing an objective function. Each
cluster is represented by a cluster prototype. This pro-
totype consists of a cluster center and maybe some ad-
ditional information about the size and the shape of the
cluster. The cluster center is an instantiation of the at-
tributes used to describe the domain (which may or may
not appear in the dataset). The size and shape param-
eters determine the extension of the cluster in different
directions of the underlying domain.

The degree of membership to which a given data point
belongs to a given clusters is computed from the distance
of the data point to the cluster center w.r.t. the size and
the shape of the cluster. The closer it is to the center, the
higher is its degree of membership. Hence the problem to
divide a dataset X = {Z1,...,Z,.} C IR" into m clusters
consists in minimizing the distances of the data points to
the cluster centers, since we want to maximize the degrees
of membership. That is, we have to minimize

J(X,U,B) =YY uld(F;, ;) (1)

i=1 j=1

subject to
Zuij >0, for all i € {1,...,m}, (2)
j=1
Swy=1, forallje{l,...,r}, (3)
i=1

where u;; € [0,1] is the membership degree of datum &;
to cluster ¢;, §; is the prototype of cluster ¢;, and d(5;, Z;)
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is the distance between datum ; and prototype §;. B is

the set of all m cluster prototypes 51, . 7ﬁm. The m x r
matrix U = [u,;] is called the fuzzy partition matrix and
the parameter « is called the fuzzifier. This parameter
determines the “fuzziness” of the classification. Higher
values make the boundaries between the clusters softer,
lower values make them harder. Usually a = 2 is chosen.
Constraint (2) guarantees that no cluster is empty and
constraint (3) ensures that the sum of the membership
degrees equals 1 for each datum. Fuzzy clustering algo-
rithms which minimize the objective function J subject
to these constraints are usually called probabilistic cluster-
ing algorithms, since the membership degrees for a given
datum formally resemble the probabilities of its being a
member of the different clusters.

The objective function J(X, U, B) is usually minimized
by updating the membership degrees u;; and the proto-



types ﬁi in an alternating fashion, until the change AU
of the membership degrees is less than a given bound e.

The update formulae are derived by differentiating the
objective function J w.r.t. the membership degrees wu;;
and w.r.t. the prototypes 62 Therefore they vary de-
pending on what additional information is included in
the prototypes (size and shape) and how the distances
are computed. Each choice yields a different algorithm.

Of course, the simplest choice is to use only cluster cen-
ters and a Euclidean distance function (thus implicitly
fixing that the clusters are spheres of equal size). The re-
sult is the well-known fuzzy C means algorithm [2]. This
algorithm, however, is very inflexible and often leads to
an insufficient fit of the data. In addition, it cannot easily
be interpreted probabilistically. Therefore, in the follow-
ing, we discuss a more flexible algorithm that is explicitly
based on a probabilistic model.

The Fuzzy Maximum Likelihood Estimation (FMLE)
[8] is based on the assumption that process that generated
the dataset can be modeled by m n-dimensional normal
distributions, where m is the number of clusters. To rep-
resent the necessary parameters, each cluster prototype
is a triple §; = (i, X4, p;), where fi; is the cluster cen-
ter (expected value) of the cluster ¢;, 3; is the n x n
covariance matrix, which describes size and shape of the
cluster, and p; is the (prior) probability of the cluster (i.e.,
p; determines the relative frequency of data points that
are generated from the distribution underlying the clus-
ter). The set of all cluster prototypes defines a complex
probability density function on the n-dimensional domain
under consideration, from which the probability densities
at the data points in the dataset X can be determined.

The FMLE algorithm classifies the data using a maxi-
mum likelihood approach. That is, it tries to determine
the parameters of the cluster prototypes in such a way
that the probability of the dataset (or, to be more pre-
cise, the sum of the probability densities at the sample
data points) is maximized. The rationale underlying this
is that prior to observing the data all sets of prototypes
are equally likely. With this assumption, the posterior
probability of the dataset given the prototypes is a direct
measure of the probability of the prototypes given the
dataset (simply apply Bayes rule).

The distance measure used in the FMLE algorithm is
inversely proportional to the probability density as de-
fined by a cluster prototype. To be more precise, it is

d(fj,ﬁi) = const.-
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Unfortunately, if the fuzzy maximum likelihood esti-
mation algorithm is applied exactly in the way outlined
above, it tends to be unstable, mainly because of the large

number of degrees of freedom. A serious problem that oc-
curred frequently during our experiments was that one of

the clusters became very small, with the shape either a
sphere or a very thin and long ellipsoid. Therefore we
restricted the relative size of the clusters by constraining
the relative values of the determinants: If they deviate
more than by a factor of three from the average, they are
forced back into the range defined by the average and this
factor. This lead to a much more stable behavior.

If we compare the FMLE algorithm to a naive Bayes
classifier by assuming that the attributes are independent
given the clusters, then the clusters are defined by their
probability, their centers, and the variances for each at-
tribute (i.e., in the covariance matrix all non-diagonal el-
ements are zero). Intuitively, with this assumption, the
clusters are axis-parallel (see above). In this case the de-
gree of membership of a datum to a cluster is computed
in much the same way as a naive Bayes classifier com-
putes the conditional class probabilities. Thus, an axis-
parallel variant of the FMLE algorithm [12] can be seen
as a direct analog of a naive Bayes classifier. The only
difference, of course, is that a naive Bayes classifier al-
ready knows the classes the cases belong to, whereas the
clustering algorithm tries to find a good partitioning into
classes. Nevertheless, if there is class information, and
if the attributes convey information about the class, the
class information can often be used to assess the quality
of a clustering result.

If the assumption that the attributes are independent
given the class does not hold, the normal version of the
fuzzy maximum likelihood estimation algorithm can be
applied. Since it uses full covariance matrices, depen-
dences between the attributes can be taken into account.

As an example we take another look at the iris data. If
we use the axis-parallel variant of the FMLE algorithm
the clusters found are hardly distinguishable from the
naive Bayes clusters shown on the left in figure 2. The
result of the general (not axis-parallel) algorithm (which
for reasons of space is not shown), however, differs con-
siderably from the result obtained with a probabilistic
network that takes into account the covariance of the two
measures. A possible explanation for this behavior is that
the fuzzy maximum likelihood estimation algorithm does
not use any class information. Without such information
the clusters found are much more likely than the proba-
bilistic network clusters.

However, the fact that no class information is taken
into account can also turn out to be an advantage, since
we are not bound to using just one cluster per class. We
may choose the number of clusters freely, and if we take
a closer look at the iris data, a choice of four clusters sug-
gests itself. Indeed, with this number of clusters the fuzzy
maximum likelihood estimation algorithm yields a model
that excellently fits the data as shown in figure 5. The iris
virginica cases have been divided into two clusters, which
is what a human would do under these circumstances. It
has to be admitted though that even with the constraint
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Fig. 5. Density functions generated by the fuzzy maximum likeli-

hood estimation algorithm for the iris data, four clusters. The
ellipses are the 20-boundaries of the density functions.

on the cluster sizes introduced above, the FMLE algo-
rithm is not completely stable and that this is not the
only classification we obtained. Fortunately, the differ-
ent results can easily be ranked by simply computing the
value of the objective function. Since this function has to
be minimized, a smaller value indicates a better solution.
The value of the objective function for the result shown
in figure 5 is only half as large as the value for any other
result we obtained and thus this solution can clearly be
regarded as the one to be chosen.

This example indicates how naive Bayes classifiers and
maybe also probabilistic networks can profit from fuzzy
clustering. Using more than one cluster per class can
often improve the fit to the data. In the future we plan
to investigate combinations of the discussed methods.

V. CONCLUSIONS

In this paper we discussed the relationship between
naive Bayes classifiers, probabilistic networks, and fuzzy
cluster analysis. As we hope to have made clear, both
probabilistic networks and the FMLE algorithm can be
seen as generalizations of naive Bayes classifiers. However,
they generalize them to different degrees. Whereas prob-
abilistic networks only remove the requirement that the
multivariate normal distributions have to be axis-parallel
(by taking covariances into account), fuzzy clustering does
not only this, but also lets us use more than one cluster
per class. Since the normal distribution assumption, even
if covariances are taken into account, is not always appro-
priate, this opens up a route to enhance the capabilities
of the former methods. The idea is simply to split one
or more classes into pseudo-subclasses, each with a mul-
tivariate normal distribution of its own. Fuzzy clustering
methods may be used to find a good split into subclasses,
as the example shown clearly indicates.
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