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Abstract-A tuple of fuzzy constraints defined on a 

discrete satisfaction scale defines a lattice structure, called 
relaxation space, made of the tuples of level cuts of the 
fuzzy constraints, equipped with the partial order induced 
by the scale ordering. Then choosing a way of combining 
the fuzzy constraints has two joint effects: usually a 
completion of the ordering between tuples of levels, and 
possibly a simplification of the relaxation space (by 
eliminating subsumed tuples corresponding to the same 
level of global satisfaction). The paper investigates the 
possibility of specifying the ordering between tuples of 
level cuts constraints on a simplified relaxation space, 
without resorting to the use of explicit aggregation 
operations. The idea is to elicitate the preferences between 
the tuples of constraints representing various relaxations 
of the set of fuzzy constraints, directly from the user. How 
to express these preferences in a local manner is also 
discussed. 

I.  INTRODUCTION 

Constraints in a satisfaction problem are sometimes 
flexible and can be conveniently modelled by fuzzy sets 
for expressing preferences between more or less 
acceptable choices. 

Fuzzy constraint satisfaction problems (FCSP) are an 
extension of constraint satisfaction problems (CSP), 
where elastic constraints can replace crisp ones. In a 
FCSP a constraint is satisfied to a degree (rather than 
satisfied or not satisfied), and the acceptability of a 
potential solution w.r.t. an aggregated set of fuzzy 
constraints becomes a gradual notion [15][3][6]. FCSPs 
are naturally encountered in different areas such as 
structural design [11], or scheduling [9] for instance. 

In FCSPs, fuzzy constraints are usually aggregated 
by min operation. More recently, it has been shown 
[14][13] that any monotonically increasing aggregation 
operators can be dealt with, in the framework of a level 
cut representation of the fuzzy constraints. This is 
handled by introducing more nodes (than with min) in 
the relaxation space made of relaxed problems 
constituted by sets of level cuts of the fuzzy constraints, 
when a finite scale is used. 

In this paper, we pursue the idea briefly suggested in 
[13] of taking advantage of the relaxation space [10] for 
expressing how the levels of satisfaction of the fuzzy 
constraints interact in the global satisfaction level 
attached to a solution of a FCSP, without necessarily 
referring to the explicit use of some aggregation 
operator. Indeed this interaction, which may be 

compensatory or not, can be directly expressed by 
simple requirements which complete the ordering in the 
relaxation space. It may lead to simplify the relaxation 
space, which is exploited for finding a solution to the 
FCSP. 

The paper is organized as follows. Section 2 recalls 
how a fuzzy constraint can be viewed as a weighted 
collection of crisp constraints. Section 3 defines the 
relaxation space associated with a set of fuzzy 
constraints. Section 4 discusses min ordering and its 
refinements, discrimin and leximin, on the relaxation 
space. Section 5 analyzes how aggregation modes 
between fuzzy constraints are associated with further 
specifications of the ordering on the relaxation space 
and possible simplifications of this space. Section 6 
suggests how the ordering and the simplifications on the 
relaxation space can be directly specified through 
requirements, given by the user. Section 7 briefly 
addresses some computational issues. 

II.  FUZZY CONSTRAINTS 

A fuzzy constraint C over a set of variables is 
represented by a fuzzy set on the Cartesian product of 
the domains of the variables involved. The membership 
degrees express preferences among solutions of the 
constraint by ranking the instantiations, which are more 
or less acceptable for the satisfaction of this flexible 
constraint C. 

Fuzzy sets are defined on a finite linearly ordered 
valuation set, denoted L = {α0 = 0 < α1 < …< αL = 1}, 
where 0 and 1 denote the bottom and top elements. The 
order-reversing map of the scale is still denoted by 1 -
 (·). 

A fuzzy constraint C can be viewed as a set of 
prioritized crisp constraints (see Fig. 1) [6]. Let Cj = 
(C)αj

 = {x | µC(x) ≥ αj} be the αj-cut of C for j = 1, L. 
The priority attached to the crisp constraint Cj is 1 – αj –

 1. C1, the support of C, is the crisp constraint with the 
highest priority, say 1 = 1 - α0; CL, the core of C, has the 
lowest positive priority, 1 - αL - 1. A fuzzy constraint C 
expresses how C can be progressively relaxed. Letting 
µCj

(x) = 1 if x ∈ Cj, and 0 otherwise, we have  

 µC (x) = minj max (αj, µCj
(x)). (1) 



A fuzzy constraint C is thus equivalent to the set of 
nested crisp constraints C1 ⊇ C2 ⊇ … ⊇ CL. Cj = Cj+1 is 
not forbidden. By convention, C0 denotes the domain on 
which C is defined (C0 ⊇ C1). C0 can be viewed as the 
most extreme relaxation of C, which is always satisfied. 
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Fig. 1. α-cut view of a fuzzy constraint. 

A fuzzy constraint C can be itself relaxed into C’ by 
means of two elementary operations [13]:  
- ρ−importance weighting:  
 µC ’ (x) = max (1 - ρ, µC(x)). (2) 

It amounts to delete the most relaxed crisp constraints, 
from C1 to Ck, where k is such that ρ = 1 - αk. In Fig. 1, 
for ρ = 0.6 (αk = 0.4 and thus k = 2) the two crisp 
constraints C1 and C2 are deleted. 
- θ−thresholding: 

 µC ’ (x) = θ → µC(x), (3) 
where a → b is Gödel implication (a → b = 1 if a ≤ b, a 
→ b = b if a > b). It amounts to erase the hardest crisp 
representatives of C, from CL to Cm, where m is such 
that θ = αm-1. In Fig. 1, for θ = 0.8 the crisp constraint C5 
is deleted. 

III. FUZZY CONSTRAINTS AS A RELAXATION SPACE 

Let {C1, …, CK} be a set of fuzzy constraints  with 
their associated crisp representatives Ck

j (with priority 1 
- αj-1). It defines a relaxation space made of a lattice 
structure between K-tuples of crisp constraints (C1

j1
, …, 

Ck
jk
, …, CK

jK
) equipped with a partial order <c (defined 

below). For the sake of simplicity the K-tuple (C1
j1
, …, 

Ck
jk
, …, CK

jK
,) will be represented by the K-tuple J = (j1, 

…, jk, …, jK). Given two K-tuples J = (j1, …, jk, …, jK) 
and I = (i1, …, ik, …, iK), I is a relaxation of J, denoted 
by I ≤c J, iff for all k from 1 to K, αik

 ≤ αjk
, and I is said 

to be a strict relaxation of J, denoted by I <c J, iff 
additionally there is a k such that αik

 < αjk
, and Ck

ik
 ⊃ 

Ck
jk
. When Ck

jk
 = Ck

ik
 for all k from 1 to K, then I =c J, 

even if for some k, jk ≠ ik since Cj = Cj+1 is not forbidden.  
Figure 2 shows the relaxation space associated with 

the set of three fuzzy constraints {A, B, C} with grades 
ranging on level scale L = {α0 < α1 < α2 < α3}. This 
lattice structure reflects the tightness of the tuples of 
constraints. (A3, B3, C3) made of the cores of the fuzzy 
constraints, is the hardest set of constraints, while (A1, 
B1, C1), made of the supports, is the most relaxed set 
(where no constraint is completely forgotten).  
It is worth stressing that it is not necessary that a 
relaxation space contain all possible K-tuples of level 
cuts of the fuzzy constraints. In fact, any subset of K-
tuples of level cuts of the fuzzy constraints is a 
relaxation space. The number of nodes in the relaxation 
space is the result of the granularity required by the 
user. 



 

Figure 2. The relaxation space associated with the set of fuzzy constraints {A, B, C}. 
Actually, the relaxation space shown in Fig. 2 is a 

subset of the largest relaxation space associated to the 
set of fuzzy constraints {A, B, C}. Indeed, none of the 
K-tuples shown in Fig. 2 includes one of the trivial 
relaxations A0, B0 or C0. This provides a first example of 
specification that can be obtained from the user. Is (s)he 
interested in relaxing constraints beyond the support, is 
it permitted to forget some constraints? If the answer is 
no, the domains C1

0, …, CK
0 are not considered in the 

relaxation space. 

IV.  FUZZY CSP AND ORDERINGS 

A FCSP is defined by a set of decision variables X = 
{X1, …, XN}, a set of domains D = {D1, …, DN} where 
Di is the finite domain of Xi, and a set of fuzzy 
constraints C = {C1, …, CK}where Ck is a fuzzy set 
defined over the Cartesian product of the domains of the 
variables involved in Ck. A membership value is 
associated to each tuple of values of the variables in Ck.  

A solution to a FCSP, denoted by x, is a vector of 
values in D1 x … x DN. The level of satisfaction of the 
constraints reached by x, denoted by sat(x), is defined 
by [1]: sat(x) = mink µCk(x). It is the satisfaction degree 
of the least satisfied constraint. A min optimal solution 
is any x* such that sat(x*) = maxx mink µCk

(x). 

Since min-optimal solutions to a FCSP may be 
numerous, two refinements of the ranking of solutions 
have been proposed, the discrimin and leximin 
orderings [7][8], where not only the least satisfied 
constraint is taken into account, but the other 
satisfaction levels are also compared. 

Discrimin ordering looks for the lowest satisfied 
constraint among the constraints that are not equally 
satisfied. Namely, let Δ(x, y) be the subset of constraints 
that are not equally satisfied by x and y, i.e., the Ck such 
that µCk(x) ≠ µCk(y). Discrimin is a partial ordering 
defined by x >disc y iff  

minCk∈ Δ(x, y) 
 µ Ck(x) > minCk∈ Δ(x, y) 

 µ Ck(y). 

Let Sx be the fuzzy set of constraints satisfied by x 
which associates to each constraint Ck its satisfaction 
level µ Ck(x). (Sx)α = {Ck ∈ C | µCk

(x) ≥ α}, the α-cut of 
Sx, is the set of constraints of C that are satisfied at least 
at level α. The discrimin ordering can be interpreted in 
terms of inclusion of α-cuts. It consists in comparing the 
α-cuts of Sx and of Sy, from the lowest level to the 
greatest one, until reaching a level α such that (Sx)α ≠ 
(Sy)α. At this level if a strict inclusion (Sx)α ⊃ (Sy)α 
holds, then x >disc y. Otherwise, the solutions are 
incomparable. 

The leximin ordering (e.g., [7]) is a refinement of 
min and discrimin orders. Let sx be an increasingly 
arranged vector of the satisfaction degrees in Sx, i.e., 
sx = (s[1], …, s[K]), such that s[i] ≤ s[i+1] where s[i] = 
µC[i]

(x) (the constraints are renumbered). Then, the 
leximin ordering is defined by: 

x >leximin y ⇔ ∃i  ∀ j < i  sx[j]
 = sy[j]

 and sx[i]
 > sy[i]

. 

This corresponds to a lexicographic comparison of the 
vectors sx and sy. A solution x is leximin preferred to a 



solution y, if there is a threshold α such that for all β < 
α, the number of constraints satisfied by x at level at 
least β is equal to the number of constraints satisfied by 
y, and x satisfies more constraints than y at level α. 

While these orderings are originally defined over the set 
of FCSP solutions they are equivalently defined in terms 
of the K-tuples on the relaxation space. The leximin 
ordering provides a refinement of the relaxation order 
<c. For instance, in Fig. 2, (A3, B3, C2) is <c-
incomparable to {A2, B2, C3} while {A3, B3, C2} >-
leximin {A2, B2, C3}. It also induces ties: {A2, B2, C3}, 
{A2, B3, C2}, {A3, B2, C2} are leximin equivalent. With 
the leximin refinement all the tuples of constraints 
become comparable. This is not the case with discrimin, 
which offers a less strong refinement. For instance {A3, 
B3, C2} and {A2, B2, C3} remain discrimin-incomparable, 
while {A2, B1, C3} is discrimin preferred to {A3, B1, C1} 
although they are <c-incomparable.  

 

Fig. 3. Relaxation space of min-FCSP. 

These two refined orderings take place on the same 
relaxation structure. The relaxation space associated 
with the min ordering is pictured in Figure 3. Note that 
it is a very simplified version of the one defined by <c in 
Fig. 2. It appears that two phenomena are at work: 
suppressing incomparabilities on the one hand, and 
simplifying the relaxation space on the other hand. 
Clearly, there are many ways to get rid of 
incomparabilities (in agreement with <c). Besides, it 
may be desirable to decouple the simplification of the 
relaxation space and the suppression of 
incomparabilities (which are mixed together by the use 
of the min operation). 

It has been shown that the result of any monotonic 
combination of fuzzy constraints can be encoded as a set 
of prioritized crisp constraints, which can be 
syntactically obtained from the initial ones [14][13]. 

This includes noticeable particular cases such as the 
product, or the average of fuzzy constraints. This also 
allows for the use of different operations for combining 
more than two constraints (e.g., a weighed average of A 
with the min combination of B and C), thus modeling 
different types of interactions between constraints such 
as tradeoffs or pure conjunctive aggregations. However, 
such an approach has some limitations although it can 
accommodate any practical aggregation mode. First, as 
in the case of min, the simplification of the relaxation 
space and the suppression of incomparabilities cannot 
be controlled separately.  

Second, it is not always easy to capture all the 
possible aggregation modes by means of a set of 
combination operations. In the following, a more 
flexible way of specifying the interactions between 
fuzzy constraints is proposed. 

V. IMPLICIT AGGREGATION IN THE RELAXATION SPACE 

In this section we consider the case of the interaction 
between two fuzzy constraints A and B defined using the 
same scale L = {α0 = 0 < α1 < …< αL = 1}. We assume 
that if some thresholding or importance weighting takes 
place, the result of these elementary modifications is 
already integrated in the constraint. As already said the 
relaxation space does not specify all the preferences 
between pairs of crisp constraints (Ai, Bj) and (Ak, Bl). If 
Ai (resp. Bj) is satisfied, at least the satisfaction level αi 
(resp αj) is reached. What <c reflects is a partial Pareto 
order on the pairs of valuations (αi, αj), namely (α0, α0) 
<c (α0, α1) <c (α1, α1) <c … <c (αL-1, αL) <c (αL, αL). For 
notational simplicity we shall write (0, 0) < (0, 1), etc. 
Since the constraints are assumed to play symmetrical 
roles, pairs (i, j) and (j, i) are equivalent and by 
convention when we write (i, j) it is assumed that i ≤ j. 
More generally, we have (i, j) < (k, l) as soon as i ≤ k 
and j < l, or i < k and j ≤ l. What remains to specify is 
the ordering between pairs (i, j) and (k, l) such that i > k 
and j < l.  

The situation is pictured in Fig. 4, for two 
constraints, and L = {α0 = 0 < α1 < α2 < α3 = 1}. The 
orderings remaining to specify are pictured in dotted 
lines. Such a refinement of <c will be denoted by <p 
(preference ordering). 

 

 

Fig. 4. Refinements of Pareto ordering . 

For instance, from Fig. 4, (1, 3) <c (2, 3) and (2, 2) <c 
(2, 3), while (2, 2) is <c-incomparable to (1, 3) and to (0, 
3). Moreover, the specifications should obey the 
transitivity requirement, for instance the user cannot 
enforce both (1, 3) <p (2, 2) and (2, 2) <p (0, 3). 
Additionally the user may consider some pairs as 
equally good. For instance, (0, 2) =p (1, 2), or even (2, 
3) =p (2, 2). Such equalities can eventually simplify the 
relaxation space as we will explain later. 

Figure 5 exhibits the leximin linearization of <c. Note 
that it corresponds to the following requirements: a) (2, 
2) >p (1, 3) (which implies that (2, 2) >p (0, 3)); b) (1, 2) 
>p (0, 3) (which could be deduced from the previous 
requirement assuming similar preferences along the 



satisfaction scale); c) (1, 1) >p (0, 3) (which implies that 
(1, 1) >p (0,  2)). 

 
 Fig. 5. Leximin. 

Figure 6 shows a different linearization, which can 
be interpreted as an average refined by the min. The 
necessary requirements to reach this linearization are 
similar to the previous ones except for the requirement 
c) replaced by c’): (0, 3) >p (1, 1) and the additional 
requirement, d) (1, 1) >p (0, 2). Figure 7 shows a 
possible combination mode, which is more difficult to 
interpret in terms of known aggregation operators. 
However, it can be specified using simple requirements 
as in the previous cases: a) (2, 2) >p (1, 3) (which 
implies that (2, 2) >p (0, 3)); b) (0, 3) >p (1, 2) (which 
implies that (0, 3) >p (1, 1)); c) (0, 2) >p (1, 1) (which 
could be deduced from the previous requirements 
assuming similar preferences along the satisfaction 
scale). 

 
Fig. 6. Average refined by min. 

 
Fig. 7. A non classical aggregation. 

It is worth stressing that in the three previous 
examples <p has no ties and the number of global 
satisfaction levels uses a scale with 10 elements (from 
(0, 0) to (3, 3)). There are 12 different linearizations of 
<c without ties for two constraints and L = 3, and the 
relaxation space is always the same, differing only on 
the preferred nodes. 

If we relax the requirement of strict preference 
specification and allows ties then other combinations 
would be obtained. Note that these other combination 
schemes take place on other relaxation spaces, which 
are simplified versions of the initial one. Whenever the 
user defines equalities between <c-comparable tuples the 
relaxation space becomes more simplified, i.e., some 
relaxation graph nodes are removed . 

Figure 8 shows the relaxation space corresponding to 
the average aggregation. Here, the average is not refined 
by the min (or by any other way) and ties are exhibited. 
Suppose that (A1, B3), (A2, B2) and (A3, B1) are 
maximally consistent. While in the case of Fig. 6 (A2, 
B2) would be the preferred one, here any of those three 
pairs are considered equally satisfactory. 

 

Fig. 8. Average. 
Figure 9 exhibits a complete order, which can be 

viewed as an aggregation by the product. Note that in 
this case the number of relaxation space nodes is smaller 
than in the previous examples. In fact due to the ties 
from (0, 0) to (0, 3) the relaxation space is simplified by 
keeping only the more relaxed pair(s) from the pairs 
within a tie. 



 

Fig. 9. Product. 

It is worth stressing that simplified relaxation spaces 
can also be specified without the explicit use of 
aggregation operators. Figure 10 shows a relaxation 
space which is specified through the following 
requirements: a) (1, 3) >p (2, 2); b) it is not acceptable to 
relax any constraints beyond its support. 

 

Fig. 10. A simplified specified relaxation space. 

VI. SPECIFICATION OF CONSTRAINT INTERACTIONS 

The previous section has shown, in the particular 
case of the combination of two fuzzy constraints, how 
the refinements of the ordering on the relaxation space 
and the simplification of the space are reflecting 
aggregation modes. Indeed, we can directly take 
advantage at the computational level of the specification 
of any refinement of the ordering <c on the relaxation 
space, or of the simplification of this space. Simplifying 
the relaxation space enforces that tuples of level cut 
constraints (constituting crisp representatives of the 
original fuzzy constraint satisfaction problem) have an 
equal level of satisfaction from the user point of view, 
and amounts to eliminate subsumed tuples (just keeping 
the easiest set of constraints). It may be interesting to 
start with a rather simplified relaxation space, and 
depending on what set of constraints in this space 
reveals to be feasible or infeasible, to later specify a 
partial refinement of the ordering leading to a local 
unfolding of the relaxation space, once a maximal 
consistent satisfaction problem has been identified. 
Let us now suggest how requirements on the ordering 
between the tuples of crisp level cut constraints can be 
expressed. While it is easy to express the relative 
position in the ordering of e.g., (0,2) with respect to 
(1,1), it may be much more tedious to express the direct 
assessment of orderings between K-tuples with K larger 
than 2 or 3. What might be more natural is to 
reconstruct the ordering from partial comparisons of 
levels of satisfaction of small subsets of constraints. 
This will also enable the expression of tradeoffs 

between some constraints, while others are combined in 
a pure conjunctive style for instance. 

Generally speaking, a (partial) ordering, refining <c, 
between K-tuples (α1, …, αK), where αk ∈ L, can be 
specified through different types of requirements: 

-  (partial) examples of preferences such as, e.g., (α1, 
…, αk-1, 0, …, αm-1, 2, …, αK) is not preferred to (α1, 
…, αk-1, 1, …, αm-1, 1, …, αK) for any pair k ≠ m; 

- preferences between reduced tuples of global 
satisfaction levels of subsets of constraints, assuming 
that each subset is aggregated using some standard 
combination operation; 

- generic preferences expressing, for instance, 
statements about the relative importance of criteria, 
e.g., "k is as important m": (…., αk, …, αm, …) ≅p 
(…., αm, …, αk, …) for all αk and αm, the other αi 
being identical in both tuples; "k is more important 
than m" (…., αk, …, αm, …) >p (…., αm, …, αk, …) 
for αk > αm. 
- generic statements expressing preferential 
independence between sets of criteria I and Ic, i.e., 
(αI, αIc) >p (βI, αIc) ⇔ (αI, βIc) >p (βI, βIc) where I is 
a subset of {1, …, K} and Ic its complement and αI 
stands for the vector of the αi ‘s where i ∈ I. 

All such requirements contribute to a partial 
specification of an ordering complementing <c. The 
consistency of requirements can be checked. 
Requirements and simplifications can be expressed 
progressively as mentioned at the beginning of this 
section. Note also that requirements provided through 
examples might be generalized, i.e., extrapolated into 
generic requirements. For instance if we state that (…, 
0, …, 2, …) >p (…, 1, …, 1, …), it might be 
extrapolated into (…,0 + x, …, 2 + x, …) >p (…, 1 + x, 
…, 1 + x, …). 

VII. CONCLUSIONS: COMPUTATIONAL ISSUES 

This paper advocates the idea that preferences 
between potential solutions of a set of fuzzy constraints 
can be expressed through examples based on generic 
requirements, which can be directly exploited on the 
relaxation space, rather than through the use of explicit 
aggregation operations. This should enables a more 
flexible and local representation of preferences, as also 
recently discussed in [2] in a multiple criteria 
aggregation setting. 
The control of the relaxation space through the 
requirements, which are entered by the user, has also 
some computational interest. Given a relaxation space 
the user intends to find one or all <c-maximal consistent 
K-tuples in the relaxation space. Note that all maximal 
consistent problems are <c-incomparable. Once a 
refinement <p is provided the task is then to find one or 
all <p-maximal consistent problems, which are generally 
less than the number of <c-maximals. In general, the 
determination of consistency of a set of crisp constraints 
is a NP-complete problem [12]. Solving a min-FCSP, 
whose relaxation space is pictured in Fig. 3, amounts to 
solve, in the worst case, L sets of crisp constraints, L 



being the number of positive levels of the satisfaction 
scale. Min-optimal solutions for FCSP can be obtained 
by solving a logarithmic number of CSP’s [4]. 

The flexibility which is introduced in min-FCSPs has 
a computational price that is controllable by the user, 
through the number of satisfaction levels in the 
satisfaction scale. In other words, a greater granularity 
of the relaxation space provides a greater flexibility at 
the expense of some computational price. 

The idea of a tradeoff between granularity and 
computational price can be considered for any 
relaxation space. The hardness of finding one <p-best 
maximal consistent K-tuple in the relaxation space 
grows with the number of nodes in the relaxation space.  
As said before, ties in <p can produce simplified 
versions of the relaxation spaces. Starting with a 
preference relation <p with many ties will provide a 
small relaxation space, for which a solution can be 
found. Successive redefinitions of <p breaking ties will 
locally unfold the relaxation space and will provide 
solution refinements. Another way to produce 
simplified relaxation spaces is by θ−thresholding all the 
fuzzy constraints. Similar ideas for solving Valued-CSP 
by successive approximations can be found in [5]. 
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