
HAL Id: hal-03403392
https://hal.science/hal-03403392

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying fuzzy constraints interactions without using
aggregation operators
Joao Moura-Pires, Henri Prade

To cite this version:
Joao Moura-Pires, Henri Prade. Specifying fuzzy constraints interactions without using aggregation
operators. 9th IEEE International Conference on Fuzzy Systems (FUZZ- IEEE 2000), May 2000, San
Antonio (Texas), United States. pp.228–233. �hal-03403392�

https://hal.science/hal-03403392
https://hal.archives-ouvertes.fr

Specifying fuzzy constraints interactions without using aggregation

operators

João Moura-Pires
Dep. de Informática - FCT

Universidade Nova de Lisboa
2825 Monte Caparica, Portugal

jmp@di.fct.unl.pt

Henri Prade
I.R.I.T., Université Paul Sabatier

118 route de Narbonne
31062 Toulouse Cedex 4, France

Henri.Prade@irit.fr

Abstract-A tuple of fuzzy constraints defined on a

discrete satisfaction scale defines a lattice structure, called
relaxation space, made of the tuples of level cuts of the
fuzzy constraints, equipped with the partial order induced
by the scale ordering. Then choosing a way of combining
the fuzzy constraints has two joint effects: usually a
completion of the ordering between tuples of levels, and
possibly a simplification of the relaxation space (by
eliminating subsumed tuples corresponding to the same
level of global satisfaction). The paper investigates the
possibility of specifying the ordering between tuples of
level cuts constraints on a simplified relaxation space,
without resorting to the use of explicit aggregation
operations. The idea is to elicitate the preferences between
the tuples of constraints representing various relaxations
of the set of fuzzy constraints, directly from the user. How
to express these preferences in a local manner is also
discussed.

I. INTRODUCTION

Constraints in a satisfaction problem are sometimes
flexible and can be conveniently modelled by fuzzy sets
for expressing preferences between more or less
acceptable choices.

Fuzzy constraint satisfaction problems (FCSP) are an
extension of constraint satisfaction problems (CSP),
where elastic constraints can replace crisp ones. In a
FCSP a constraint is satisfied to a degree (rather than
satisfied or not satisfied), and the acceptability of a
potential solution w.r.t. an aggregated set of fuzzy
constraints becomes a gradual notion [15][3][6]. FCSPs
are naturally encountered in different areas such as
structural design [11], or scheduling [9] for instance.

In FCSPs, fuzzy constraints are usually aggregated
by min operation. More recently, it has been shown
[14][13] that any monotonically increasing aggregation
operators can be dealt with, in the framework of a level
cut representation of the fuzzy constraints. This is
handled by introducing more nodes (than with min) in
the relaxation space made of relaxed problems
constituted by sets of level cuts of the fuzzy constraints,
when a finite scale is used.

In this paper, we pursue the idea briefly suggested in
[13] of taking advantage of the relaxation space [10] for
expressing how the levels of satisfaction of the fuzzy
constraints interact in the global satisfaction level
attached to a solution of a FCSP, without necessarily
referring to the explicit use of some aggregation
operator. Indeed this interaction, which may be

compensatory or not, can be directly expressed by
simple requirements which complete the ordering in the
relaxation space. It may lead to simplify the relaxation
space, which is exploited for finding a solution to the
FCSP.

The paper is organized as follows. Section 2 recalls
how a fuzzy constraint can be viewed as a weighted
collection of crisp constraints. Section 3 defines the
relaxation space associated with a set of fuzzy
constraints. Section 4 discusses min ordering and its
refinements, discrimin and leximin, on the relaxation
space. Section 5 analyzes how aggregation modes
between fuzzy constraints are associated with further
specifications of the ordering on the relaxation space
and possible simplifications of this space. Section 6
suggests how the ordering and the simplifications on the
relaxation space can be directly specified through
requirements, given by the user. Section 7 briefly
addresses some computational issues.

II. FUZZY CONSTRAINTS

A fuzzy constraint C over a set of variables is
represented by a fuzzy set on the Cartesian product of
the domains of the variables involved. The membership
degrees express preferences among solutions of the
constraint by ranking the instantiations, which are more
or less acceptable for the satisfaction of this flexible
constraint C.

Fuzzy sets are defined on a finite linearly ordered
valuation set, denoted L = {α0 = 0 < α1 < …< αL = 1},
where 0 and 1 denote the bottom and top elements. The
order-reversing map of the scale is still denoted by 1 -
 (·).

A fuzzy constraint C can be viewed as a set of
prioritized crisp constraints (see Fig. 1) [6]. Let Cj =
(C)αj

 = {x | µC(x) ≥ αj} be the αj-cut of C for j = 1, L.
The priority attached to the crisp constraint Cj is 1 – αj –

 1. C1, the support of C, is the crisp constraint with the
highest priority, say 1 = 1 - α0; CL, the core of C, has the
lowest positive priority, 1 - αL - 1. A fuzzy constraint C
expresses how C can be progressively relaxed. Letting
µCj

(x) = 1 if x ∈ Cj, and 0 otherwise, we have

 µC (x) = minj max (αj, µCj
(x)). (1)

A fuzzy constraint C is thus equivalent to the set of
nested crisp constraints C1 ⊇ C2 ⊇ … ⊇ CL. Cj = Cj+1 is
not forbidden. By convention, C0 denotes the domain on
which C is defined (C0 ⊇ C1). C0 can be viewed as the
most extreme relaxation of C, which is always satisfied.

1 - !0 = 1.0

!1 = 0.2

!2 = 0.4

!3 = 0.6

!4 = 0.8

!5 = 1.0

C5

C2

!0 = 0.0

1 - !3 = 0.4

1 - !4 = 0.2

C

1 - !1 = 0.8

C3

C
1

1 - !
2
 = 0.6

C4

Fig. 1. α-cut view of a fuzzy constraint.

A fuzzy constraint C can be itself relaxed into C’ by
means of two elementary operations [13]:
- ρ−importance weighting:
 µC ’ (x) = max (1 - ρ, µC(x)). (2)

It amounts to delete the most relaxed crisp constraints,
from C1 to Ck, where k is such that ρ = 1 - αk. In Fig. 1,
for ρ = 0.6 (αk = 0.4 and thus k = 2) the two crisp
constraints C1 and C2 are deleted.
- θ−thresholding:

 µC ’ (x) = θ → µC(x), (3)
where a → b is Gödel implication (a → b = 1 if a ≤ b, a
→ b = b if a > b). It amounts to erase the hardest crisp
representatives of C, from CL to Cm, where m is such
that θ = αm-1. In Fig. 1, for θ = 0.8 the crisp constraint C5
is deleted.

III. FUZZY CONSTRAINTS AS A RELAXATION SPACE

Let {C1, …, CK} be a set of fuzzy constraints with
their associated crisp representatives Ck

j (with priority 1
- αj-1). It defines a relaxation space made of a lattice
structure between K-tuples of crisp constraints (C1

j1
, …,

Ck
jk
, …, CK

jK
) equipped with a partial order <c (defined

below). For the sake of simplicity the K-tuple (C1
j1
, …,

Ck
jk
, …, CK

jK
,) will be represented by the K-tuple J = (j1,

…, jk, …, jK). Given two K-tuples J = (j1, …, jk, …, jK)
and I = (i1, …, ik, …, iK), I is a relaxation of J, denoted
by I ≤c J, iff for all k from 1 to K, αik

 ≤ αjk
, and I is said

to be a strict relaxation of J, denoted by I <c J, iff
additionally there is a k such that αik

 < αjk
, and Ck

ik
 ⊃

Ck
jk
. When Ck

jk
 = Ck

ik
 for all k from 1 to K, then I =c J,

even if for some k, jk ≠ ik since Cj = Cj+1 is not forbidden.
Figure 2 shows the relaxation space associated with

the set of three fuzzy constraints {A, B, C} with grades
ranging on level scale L = {α0 < α1 < α2 < α3}. This
lattice structure reflects the tightness of the tuples of
constraints. (A3, B3, C3) made of the cores of the fuzzy
constraints, is the hardest set of constraints, while (A1,
B1, C1), made of the supports, is the most relaxed set
(where no constraint is completely forgotten).
It is worth stressing that it is not necessary that a
relaxation space contain all possible K-tuples of level
cuts of the fuzzy constraints. In fact, any subset of K-
tuples of level cuts of the fuzzy constraints is a
relaxation space. The number of nodes in the relaxation
space is the result of the granularity required by the
user.

Figure 2. The relaxation space associated with the set of fuzzy constraints {A, B, C}.
Actually, the relaxation space shown in Fig. 2 is a

subset of the largest relaxation space associated to the
set of fuzzy constraints {A, B, C}. Indeed, none of the
K-tuples shown in Fig. 2 includes one of the trivial
relaxations A0, B0 or C0. This provides a first example of
specification that can be obtained from the user. Is (s)he
interested in relaxing constraints beyond the support, is
it permitted to forget some constraints? If the answer is
no, the domains C1

0, …, CK
0 are not considered in the

relaxation space.

IV. FUZZY CSP AND ORDERINGS

A FCSP is defined by a set of decision variables X =
{X1, …, XN}, a set of domains D = {D1, …, DN} where
Di is the finite domain of Xi, and a set of fuzzy
constraints C = {C1, …, CK}where Ck is a fuzzy set
defined over the Cartesian product of the domains of the
variables involved in Ck. A membership value is
associated to each tuple of values of the variables in Ck.

A solution to a FCSP, denoted by x, is a vector of
values in D1 x … x DN. The level of satisfaction of the
constraints reached by x, denoted by sat(x), is defined
by [1]: sat(x) = mink µCk(x). It is the satisfaction degree
of the least satisfied constraint. A min optimal solution
is any x* such that sat(x*) = maxx mink µCk

(x).

Since min-optimal solutions to a FCSP may be
numerous, two refinements of the ranking of solutions
have been proposed, the discrimin and leximin
orderings [7][8], where not only the least satisfied
constraint is taken into account, but the other
satisfaction levels are also compared.

Discrimin ordering looks for the lowest satisfied
constraint among the constraints that are not equally
satisfied. Namely, let Δ(x, y) be the subset of constraints
that are not equally satisfied by x and y, i.e., the Ck such
that µCk(x) ≠ µCk(y). Discrimin is a partial ordering
defined by x >disc y iff

minCk∈ Δ(x, y)
 µ Ck(x) > minCk∈ Δ(x, y)

 µ Ck(y).

Let Sx be the fuzzy set of constraints satisfied by x
which associates to each constraint Ck its satisfaction
level µ Ck(x). (Sx)α = {Ck ∈ C | µCk

(x) ≥ α}, the α-cut of
Sx, is the set of constraints of C that are satisfied at least
at level α. The discrimin ordering can be interpreted in
terms of inclusion of α-cuts. It consists in comparing the
α-cuts of Sx and of Sy, from the lowest level to the
greatest one, until reaching a level α such that (Sx)α ≠
(Sy)α. At this level if a strict inclusion (Sx)α ⊃ (Sy)α
holds, then x >disc y. Otherwise, the solutions are
incomparable.

The leximin ordering (e.g., [7]) is a refinement of
min and discrimin orders. Let sx be an increasingly
arranged vector of the satisfaction degrees in Sx, i.e.,
sx = (s[1], …, s[K]), such that s[i] ≤ s[i+1] where s[i] =
µC[i]

(x) (the constraints are renumbered). Then, the
leximin ordering is defined by:

x >leximin y ⇔ ∃i ∀ j < i sx[j]
 = sy[j]

 and sx[i]
 > sy[i]

.

This corresponds to a lexicographic comparison of the
vectors sx and sy. A solution x is leximin preferred to a

solution y, if there is a threshold α such that for all β <
α, the number of constraints satisfied by x at level at
least β is equal to the number of constraints satisfied by
y, and x satisfies more constraints than y at level α.

While these orderings are originally defined over the set
of FCSP solutions they are equivalently defined in terms
of the K-tuples on the relaxation space. The leximin
ordering provides a refinement of the relaxation order
<c. For instance, in Fig. 2, (A3, B3, C2) is <c-
incomparable to {A2, B2, C3} while {A3, B3, C2} >-
leximin {A2, B2, C3}. It also induces ties: {A2, B2, C3},
{A2, B3, C2}, {A3, B2, C2} are leximin equivalent. With
the leximin refinement all the tuples of constraints
become comparable. This is not the case with discrimin,
which offers a less strong refinement. For instance {A3,
B3, C2} and {A2, B2, C3} remain discrimin-incomparable,
while {A2, B1, C3} is discrimin preferred to {A3, B1, C1}
although they are <c-incomparable.

Fig. 3. Relaxation space of min-FCSP.

These two refined orderings take place on the same
relaxation structure. The relaxation space associated
with the min ordering is pictured in Figure 3. Note that
it is a very simplified version of the one defined by <c in
Fig. 2. It appears that two phenomena are at work:
suppressing incomparabilities on the one hand, and
simplifying the relaxation space on the other hand.
Clearly, there are many ways to get rid of
incomparabilities (in agreement with <c). Besides, it
may be desirable to decouple the simplification of the
relaxation space and the suppression of
incomparabilities (which are mixed together by the use
of the min operation).

It has been shown that the result of any monotonic
combination of fuzzy constraints can be encoded as a set
of prioritized crisp constraints, which can be
syntactically obtained from the initial ones [14][13].

This includes noticeable particular cases such as the
product, or the average of fuzzy constraints. This also
allows for the use of different operations for combining
more than two constraints (e.g., a weighed average of A
with the min combination of B and C), thus modeling
different types of interactions between constraints such
as tradeoffs or pure conjunctive aggregations. However,
such an approach has some limitations although it can
accommodate any practical aggregation mode. First, as
in the case of min, the simplification of the relaxation
space and the suppression of incomparabilities cannot
be controlled separately.

Second, it is not always easy to capture all the
possible aggregation modes by means of a set of
combination operations. In the following, a more
flexible way of specifying the interactions between
fuzzy constraints is proposed.

V. IMPLICIT AGGREGATION IN THE RELAXATION SPACE

In this section we consider the case of the interaction
between two fuzzy constraints A and B defined using the
same scale L = {α0 = 0 < α1 < …< αL = 1}. We assume
that if some thresholding or importance weighting takes
place, the result of these elementary modifications is
already integrated in the constraint. As already said the
relaxation space does not specify all the preferences
between pairs of crisp constraints (Ai, Bj) and (Ak, Bl). If
Ai (resp. Bj) is satisfied, at least the satisfaction level αi
(resp αj) is reached. What <c reflects is a partial Pareto
order on the pairs of valuations (αi, αj), namely (α0, α0)
<c (α0, α1) <c (α1, α1) <c … <c (αL-1, αL) <c (αL, αL). For
notational simplicity we shall write (0, 0) < (0, 1), etc.
Since the constraints are assumed to play symmetrical
roles, pairs (i, j) and (j, i) are equivalent and by
convention when we write (i, j) it is assumed that i ≤ j.
More generally, we have (i, j) < (k, l) as soon as i ≤ k
and j < l, or i < k and j ≤ l. What remains to specify is
the ordering between pairs (i, j) and (k, l) such that i > k
and j < l.

The situation is pictured in Fig. 4, for two
constraints, and L = {α0 = 0 < α1 < α2 < α3 = 1}. The
orderings remaining to specify are pictured in dotted
lines. Such a refinement of <c will be denoted by <p
(preference ordering).

Fig. 4. Refinements of Pareto ordering .

For instance, from Fig. 4, (1, 3) <c (2, 3) and (2, 2) <c
(2, 3), while (2, 2) is <c-incomparable to (1, 3) and to (0,
3). Moreover, the specifications should obey the
transitivity requirement, for instance the user cannot
enforce both (1, 3) <p (2, 2) and (2, 2) <p (0, 3).
Additionally the user may consider some pairs as
equally good. For instance, (0, 2) =p (1, 2), or even (2,
3) =p (2, 2). Such equalities can eventually simplify the
relaxation space as we will explain later.

Figure 5 exhibits the leximin linearization of <c. Note
that it corresponds to the following requirements: a) (2,
2) >p (1, 3) (which implies that (2, 2) >p (0, 3)); b) (1, 2)
>p (0, 3) (which could be deduced from the previous
requirement assuming similar preferences along the

satisfaction scale); c) (1, 1) >p (0, 3) (which implies that
(1, 1) >p (0, 2)).

 Fig. 5. Leximin.

Figure 6 shows a different linearization, which can
be interpreted as an average refined by the min. The
necessary requirements to reach this linearization are
similar to the previous ones except for the requirement
c) replaced by c’): (0, 3) >p (1, 1) and the additional
requirement, d) (1, 1) >p (0, 2). Figure 7 shows a
possible combination mode, which is more difficult to
interpret in terms of known aggregation operators.
However, it can be specified using simple requirements
as in the previous cases: a) (2, 2) >p (1, 3) (which
implies that (2, 2) >p (0, 3)); b) (0, 3) >p (1, 2) (which
implies that (0, 3) >p (1, 1)); c) (0, 2) >p (1, 1) (which
could be deduced from the previous requirements
assuming similar preferences along the satisfaction
scale).

Fig. 6. Average refined by min.

Fig. 7. A non classical aggregation.

It is worth stressing that in the three previous
examples <p has no ties and the number of global
satisfaction levels uses a scale with 10 elements (from
(0, 0) to (3, 3)). There are 12 different linearizations of
<c without ties for two constraints and L = 3, and the
relaxation space is always the same, differing only on
the preferred nodes.

If we relax the requirement of strict preference
specification and allows ties then other combinations
would be obtained. Note that these other combination
schemes take place on other relaxation spaces, which
are simplified versions of the initial one. Whenever the
user defines equalities between <c-comparable tuples the
relaxation space becomes more simplified, i.e., some
relaxation graph nodes are removed .

Figure 8 shows the relaxation space corresponding to
the average aggregation. Here, the average is not refined
by the min (or by any other way) and ties are exhibited.
Suppose that (A1, B3), (A2, B2) and (A3, B1) are
maximally consistent. While in the case of Fig. 6 (A2,
B2) would be the preferred one, here any of those three
pairs are considered equally satisfactory.

Fig. 8. Average.
Figure 9 exhibits a complete order, which can be

viewed as an aggregation by the product. Note that in
this case the number of relaxation space nodes is smaller
than in the previous examples. In fact due to the ties
from (0, 0) to (0, 3) the relaxation space is simplified by
keeping only the more relaxed pair(s) from the pairs
within a tie.

Fig. 9. Product.

It is worth stressing that simplified relaxation spaces
can also be specified without the explicit use of
aggregation operators. Figure 10 shows a relaxation
space which is specified through the following
requirements: a) (1, 3) >p (2, 2); b) it is not acceptable to
relax any constraints beyond its support.

Fig. 10. A simplified specified relaxation space.

VI. SPECIFICATION OF CONSTRAINT INTERACTIONS

The previous section has shown, in the particular
case of the combination of two fuzzy constraints, how
the refinements of the ordering on the relaxation space
and the simplification of the space are reflecting
aggregation modes. Indeed, we can directly take
advantage at the computational level of the specification
of any refinement of the ordering <c on the relaxation
space, or of the simplification of this space. Simplifying
the relaxation space enforces that tuples of level cut
constraints (constituting crisp representatives of the
original fuzzy constraint satisfaction problem) have an
equal level of satisfaction from the user point of view,
and amounts to eliminate subsumed tuples (just keeping
the easiest set of constraints). It may be interesting to
start with a rather simplified relaxation space, and
depending on what set of constraints in this space
reveals to be feasible or infeasible, to later specify a
partial refinement of the ordering leading to a local
unfolding of the relaxation space, once a maximal
consistent satisfaction problem has been identified.
Let us now suggest how requirements on the ordering
between the tuples of crisp level cut constraints can be
expressed. While it is easy to express the relative
position in the ordering of e.g., (0,2) with respect to
(1,1), it may be much more tedious to express the direct
assessment of orderings between K-tuples with K larger
than 2 or 3. What might be more natural is to
reconstruct the ordering from partial comparisons of
levels of satisfaction of small subsets of constraints.
This will also enable the expression of tradeoffs

between some constraints, while others are combined in
a pure conjunctive style for instance.

Generally speaking, a (partial) ordering, refining <c,
between K-tuples (α1, …, αK), where αk ∈ L, can be
specified through different types of requirements:

- (partial) examples of preferences such as, e.g., (α1,
…, αk-1, 0, …, αm-1, 2, …, αK) is not preferred to (α1,
…, αk-1, 1, …, αm-1, 1, …, αK) for any pair k ≠ m;

- preferences between reduced tuples of global
satisfaction levels of subsets of constraints, assuming
that each subset is aggregated using some standard
combination operation;

- generic preferences expressing, for instance,
statements about the relative importance of criteria,
e.g., "k is as important m": (…., αk, …, αm, …) ≅p
(…., αm, …, αk, …) for all αk and αm, the other αi
being identical in both tuples; "k is more important
than m" (…., αk, …, αm, …) >p (…., αm, …, αk, …)
for αk > αm.
- generic statements expressing preferential
independence between sets of criteria I and Ic, i.e.,
(αI, αIc) >p (βI, αIc) ⇔ (αI, βIc) >p (βI, βIc) where I is
a subset of {1, …, K} and Ic its complement and αI
stands for the vector of the αi ‘s where i ∈ I.

All such requirements contribute to a partial
specification of an ordering complementing <c. The
consistency of requirements can be checked.
Requirements and simplifications can be expressed
progressively as mentioned at the beginning of this
section. Note also that requirements provided through
examples might be generalized, i.e., extrapolated into
generic requirements. For instance if we state that (…,
0, …, 2, …) >p (…, 1, …, 1, …), it might be
extrapolated into (…,0 + x, …, 2 + x, …) >p (…, 1 + x,
…, 1 + x, …).

VII. CONCLUSIONS: COMPUTATIONAL ISSUES

This paper advocates the idea that preferences
between potential solutions of a set of fuzzy constraints
can be expressed through examples based on generic
requirements, which can be directly exploited on the
relaxation space, rather than through the use of explicit
aggregation operations. This should enables a more
flexible and local representation of preferences, as also
recently discussed in [2] in a multiple criteria
aggregation setting.
The control of the relaxation space through the
requirements, which are entered by the user, has also
some computational interest. Given a relaxation space
the user intends to find one or all <c-maximal consistent
K-tuples in the relaxation space. Note that all maximal
consistent problems are <c-incomparable. Once a
refinement <p is provided the task is then to find one or
all <p-maximal consistent problems, which are generally
less than the number of <c-maximals. In general, the
determination of consistency of a set of crisp constraints
is a NP-complete problem [12]. Solving a min-FCSP,
whose relaxation space is pictured in Fig. 3, amounts to
solve, in the worst case, L sets of crisp constraints, L

being the number of positive levels of the satisfaction
scale. Min-optimal solutions for FCSP can be obtained
by solving a logarithmic number of CSP’s [4].

The flexibility which is introduced in min-FCSPs has
a computational price that is controllable by the user,
through the number of satisfaction levels in the
satisfaction scale. In other words, a greater granularity
of the relaxation space provides a greater flexibility at
the expense of some computational price.

The idea of a tradeoff between granularity and
computational price can be considered for any
relaxation space. The hardness of finding one <p-best
maximal consistent K-tuple in the relaxation space
grows with the number of nodes in the relaxation space.
As said before, ties in <p can produce simplified
versions of the relaxation spaces. Starting with a
preference relation <p with many ties will provide a
small relaxation space, for which a solution can be
found. Successive redefinitions of <p breaking ties will
locally unfold the relaxation space and will provide
solution refinements. Another way to produce
simplified relaxation spaces is by θ−thresholding all the
fuzzy constraints. Similar ideas for solving Valued-CSP
by successive approximations can be found in [5].

REFERENCES

[1] R.E Bellman, and L.A. Zadeh, "Decision-making in a
fuzzy environment", 1970, Manag. Sc., 17, 141-164.

[2] S. Benferhat, D.Dubois. H.Prade (1999), Toward a
possibilistic logic handling of preferences. Proc. 16th Int.
Joint Conf. in Artificial Intelligence (IJCAI-00),
Stockholm, 2000. 1370-1375.

[3] J. Bowen, R. Lai, and D. Bahler, "Fuzzy semantics and
fuzzy constraint networks", Proc. of the National Conf.
on Artificial Intelligence (AAAI'92), San Francisco, 1992.
1009-1016.

[4] M Cooper, "Computational complexity of fuzzy
constraint satisfaction", Tech. Report, Univ. of Toulouse,
France, 1994.

[5] DeGivry, S. and G. Verfaillie. “Optimum anytime
bounding for constraint optimization problems.” in Proc.
of the AAAI'97, Workshop on "Building Resource-
Bounded Reasoning Systems", Providence, Rhode Island,
USA, 1997.

[6] D. Dubois, H. Fargier, and H. Prade, "Possibility theory
in constraint satisfaction problems: Handling priority,
preference and uncertainty", Applied Intelligence, 6,
1996, 287-309.

[7] D. Dubois, H. Fargier, and H. Prade, "Refinements of the
maximin approach to decision making in a fuzzy
environment", Fuzzy Sets and Syst., 81, 1996, 103-122.

[8] D. Dubois, H. Fargier, and H. Prade, "Beyond min
aggregation in multicriteria decision: (Ordered) weighted
min, discri-min, leximin", in The Ordered Weighted
Averaging Operators — Theory and Applications (R.R.
Yager, J. Kacprzyk, eds.), Kluwer Publ., 1997, 181-192.

[9] H. Fargier, "Fuzzy scheduling: principles and
experiments", in Fuzzy Information Engineering: A
Guided Tour of Applications (D. Dubois et al., eds.),
Wiley, New York, 1997, pp. 655-668.

[10] E. C. Freuder, "Partial constraint satisfaction", Proc. of
the Inter. Joint Conf. on Artificial Intelligence (IJCAI'89),
Detroit, 1989, 278-283.

[11] Q. Guan, and G. Friedrich, "Extending constraint
satisfaction problem solving in structural design", Proc.
of the 5th Inter. Conf. IEA/AIE, Paderborn, 1992, LNAI
nº 604, Springer Verlag, 341-350.

[12] Mackworth, A., “Consistency in networks of relations.”
Artificial Intelligence 8, 1977, 99-118.

[13] Moura-Pires, J., Dubois, D. and Prade, H, “Fuzzy
constraint problems with general aggregation operations
under possibilistic logic form, Proc of 6th Europ. Cong.
on Intelligent Techniques and Soft Computing (EUFIT-
98), Aachen, Germany Sept 7-10, 1998, 535-539.

[14] Moura-Pires, J. and Prade, H, “Logical analysis of fuzzy
constraint satisfaction problems” Proc. of the 7th IEEE
Int. Conf. on Fuzzy Systems, Anchorage, May 5-9, 1998,
857-862.

[15] K. Satoh, "Formalizing soft constraint by
interpretation ordering", Proc. of the Europ. Conf. on
Artificial Intellig. (ECAI'90), Stockholm, 1990, 585-
590.

