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Abstract— The profile method gives a tool to perform fuzzy
interval computation under a condition of local monotony of
considered functions. This is a plain extension of interval analysis
to fuzzy intervals, viewed as pairs of fuzzy bounds. This method
yields exact results without applying interval analysis to α-cuts.
After a refresher on the notion of profile and its use in fuzzy
interval analysis, we adapt the profile method to the computation
of the empirical variance of a tuple of fuzzy intervals. To this
end, we first reconsider results obtained by Ferson et al. on
computation of the empirical variance of a set of intervals. Finally
we apply our results to the definition of the variance of a single
fuzzy interval,viewed as a family of its α-cuts , and compare this
definition to previous ones.

I. INTRODUCTION

In interval computation, the basic problem is the following:
given a function f (x1, · · · ,xn) and n intervals [x−i ,x+

i ], find the
interval range of the variable y = f (x) such that x ∈×i[x−i ,x+

i ]
[1]. The goal of interval computation is to find the minimum
and the maximum of the function when the different possible
values of the variables xi range in their intervals [x−i ,x+

i ]. Some
methods are based on finding a finite set of points (called
configurations or poles) on which this minimum and maximum
is attained [2]. This is the idea of the vertex method [3].

Modeling possible values of variables by means of real
intervals accounts for some uncertainty interpreted as a lack
of specificity, but we can be more refined by modeling
uncertainty on a variable xi by means of a fuzzy interval Xi [4].
The traditional method for computing the possible fuzzy range
Y of y is to decompose the problem in terms of α-cuts and
then to apply a standard interval analysis method to each tuple
of cuts of level α for a selected finite subset of levels. This
process has drawbacks: it computes only an approximation
of Y , and for each α-cut, the interval algorithm has to be
completely executed. In general case, the basic problem of
interval computation is NP-Hard [5] the complexity of the
approach using decomposition by α-cut cannot be lower.

We have generalized the vertex method to the fuzzy case
without resorting to α-cuts [6], viewing fuzzy intervals, as
pairs of fuzzy bounds. When the function to be computed
possesses n arguments, we avoid exploring at most k · 2n

configurations, where k is the number of α-cuts. We explore at
most 2n fuzzy configurations, a fuzzy configuration being a n-
tuple of fuzzy bounds called profiles. This method gives exact
results expressible in an analytical way up to the enumeration
of fuzzy configurations for analytically expressible functions

having a local monotonicity property, general enough to
encompass well-known examples like the fuzzily-weighted
average.

In this paper, after recalling the profile method, we extend
this approach to the computation of the empirical variance of
a set of fuzzy intervals. This application deserves a special
study as the variance function does not enjoy the proper local
monotonicity property needed for a straightforward application
of the profile method. The last part of the paper applies the
previous results to the definition of the potential variance of a
single fuzzy interval, viewed as its set of α-cuts.

II. BACKGROUND

A. A Refresher On Classical Interval Computation

Consider n intervals [x−i ,x+
i ], we call real configuration an

element of the set X =×i[x−i ,x+
i ]. Among configurations of X ,

let us distinguish the extreme ones, ie the set H =×i{x−i ,x+
i }.

The notion of configuration has been proposed by Buckley for
the fuzzy scheduling problem [7], but, in the literature of fuzzy
intervals, extreme configurations are also called poles [2].

Under suitable monotonicity assumptions, the supremum
of a real-valued function f over X is actually equal to the
maximum of f on H , or on a subset C ⊆ H . An element
ω ∈ H has the form ω = (xε1

1 , · · · ,xεn
n ), with εi ∈ {+,−}. Two

forms of monotonicity are of interest.
Definition 1: f is said (globally) monotonic with respect

to each xi if for each variable xi, the restricted function
from R to R defined by f (a1,a2, · · · ,ai−1,xi,ai+1, · · · ,an)
is either increasing according to xi for all n-tuples
(a1,a2, · · · ,ai−1,ai+1, · · · ,an) ∈ R

n−1 or decreasing likewise.
Definition 2: f is said locally monotonic with respect

to each xi if for each variable xi, for all n-tuple
(a1,a2, · · · ,ai−1,ai+1, · · · ,an) ∈ R

n−1 the restricted function
f (a1,a2, · · · ,ai−1,xi,ai+1, · · · ,an) is monotonic.

In these definitions, f is a function from R
n to R.

In the last definition f can be increasing for one tu-
ple (a1,a2, · · · ,ai−1,ai+1, · · · ,an) and decreasing for another.
Therefore, a locally monotonic function is not monotonic in
the usual sense (Definition 1). For a function to be locally
monotonic with respect to xi, it is enough if the sign of its
partial derivative ∂ f

∂xi
does not depend on xi.

We can now state a well-known proposition:
Proposition 1: Let x = (x1,x2, · · · ,xn) be a tuple of n vari-

ables such that xi ∈ [x−i ,x+
i ], and y = f (x1, · · · ,xn) = [y−,y+].
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If f is locally monotonic with respect to each argument, then
y− = minω∈H ( f (ω)) and y+ = maxω∈H ( f (ω))

Proposition 1 enables computations on functions to be per-
formed under a condition of local monotony. This proposition
is the basis of the (FWA) Algorithm [3] which computes
the weighted averages with fuzzy weights. We recall another
result which decreases the number of configurations used
for the computation of a function f with stronger monotony
conditions:

Proposition 2: Under the assumption of Proposition 1, if
f is locally monotonic with respect to each argument, and
∀ j ∈ E1, f is increasing according to x j and ∀ j ∈ E2, f is
decreasing according to x j, then

y− = minω∈H

(
f (ω)| ∀ j ∈ E1,ω j = x−j

∀ j ∈ E2,ω j = x+
j

)
and y+ = maxω∈H

(
f (ω)| ∀ j ∈ E1,ω j = x+

j
∀ j ∈ E2,ω j = x−j

)
Now, we recall the notion of fuzzy configuration and its

application to fuzzy interval analysis.

B. Fuzzy Interval Analysis Using Profiles

A closed interval is isomorphic to an ordered pair of real
values. It is thus natural to consider a fuzzy interval as a pair
of fuzzy bounds. This is a vertical view of a fuzzy interval,
as opposed to the horizontal view as a set of nested intervals.
However a fuzzy bound is not a fuzzy set. We need to define
a special fuzzy object (called profile) to handle the fuzzy
bounds of a fuzzy interval in the way precise bounds of interval
behave, and also operations between such objects. Intuitively,
they are genuine extensions of numbers that convey some
fuzziness (to quote Zadeh, they are gradual instead of abrupt),
but no imprecision. The following definition was proposed by
the authors [6]:

Definition 3: A profile is an application Φ from (0,1] to R.
A real number r is a special type of profile Φ, such that

∀λ ∈ (0,1] Φ(λ) = r. Note that a profile is not requested to be
monotonic and Φ may not be defined everywhere in (0,1]. We
can now precisely define the increasing and the decreasing part
of a fuzzy interval I. In the following, [s−,s+] will represent
the closure of the support of a fuzzy interval M. This definition
is given for fuzzy intervals which have an USC (Upper Semi
Continuous) membership function, because this type of fuzzy
sets is the most employed.

Definition 4: Let M be an USC fuzzy interval. We call left
profile of M (denoted M−) the profile defined as follows:
I− : (0,1] −→ R

λ �−→ M−(λ) = in f{x|µI(x) ≥ λ, x ≥ s−}
We call right profile of M (denoted M+) the profile defined as
following:
I+ : (0,1] −→ R

λ �−→ M+(λ) = sup{x|µM(x) ≥ λ,x ≤ s+}
When M has a continuous membership function with core

[c−,c+], M− is the converse of the membership function µM on
(s−,c−], and M+ is the converse of the membership function
µM on [c+,s+). An USC fuzzy interval can be entirely defined
by its left profile and its right profile [6]. The definition

of a fuzzy interval as a pair of profiles is akin to the so-
called graded numbers of Herencia [8]. It is clear that profiles
induced by fuzzy intervals are monotonic: increasing (the left
profile of M is its fuzzy lower bound ) or decreasing (the right
profile of M is its fuzzy fuzzy upper bound).

This type of monotonic profiles was already proposed as
natural fuzzy generalizations of real numbers by mathemati-
cians in fuzzy topology (Rodabaugh [9], Höhle [10], Lowen
[11]). Moreover a decreasing profile on the positive integers
corresponds to the fuzzy-valued cardinality of a fuzzy set, as
pointed out by Rocacher [12]. However arithmetic operations
on profiles do not preserve monotonicity (as shown by the
fuzzy relative integers and fuzzy rational numbers of Ro-
cacher). In particular, computations with fuzzy intervals may
lead to non-monotonic profiles as intermediary results. That
is why profiles are defined as any functions from (0,1] to R,
which associate for each possibility level λ ∈ (0,1] a single
abscissa Φ(λ).

Now, a fuzzy extreme configuration induced by fuzzy inter-
vals X1, · · · ,Xn restricting a tuple of n independent variables
x = (x1,x2, · · · ,xn) is a n-tuple of left or right profiles Ω =
(Xε1

1 ,Xε2
2 , · · · ,Xεn

n ), where εi ∈ {+,−}. A fuzzy configuration
is a kind of fuzzy vertex of a Cartesian product of fuzzy
intervals.

We denote H̃ the set of all fuzzy extreme configurations:
H̃ = ×i{X−

i ,X+
i } (|H̃ | = 2n)

We denote Ωi the ith profile of configuration Ω. For any
Ω ∈ H̃ , let Ω(λ) denote the classical configuration obtained
at level λ. Ω(λ) = (Ω1(λ),Ω2(λ), · · · ,Ωn(λ)) ∈ R

n is a vertex
of the hyper-rectangle ×i[Xi]λ.

Real-valued functions can be extended to profile-valued
arguments using the composition of functions:

Definition 5: Let f be a function of arity n. Let us denote
ḟ the extension of f applicable to profiles: for any n-tuple of
profiles Ω = (Ω1,Ω2, · · · ,Ωn), ḟ (Ω) is the profile defined as
follows: ∀λ ∈ (0,1]

ḟ (Ω)(λ) = f (Ω(λ))
= f (Ω1(λ),Ω2(λ), · · · ,Ωn(λ))

Now, let us define a set ξ ⊆ {−,+}n such that for all fuzzy
intervals X1, · · · ,Xn, ξ defines a set of fuzzy configurations:
H̃ξ = {(Xε1

1 , · · · ,Xεn
n )|(ε1, · · · ,εn) ∈ ξ}. Let Y is the fuzzy set

of the possible values of the variable y = f (x).
If there is a set ξ⊆{(ε1, · · · ,εn),εi ∈ {−,+}}, such that for all
α-cuts f attains its maximum and minimum on Xα = ×i[Xi]α
for a configuration in HXα,ξ,
then Y + = ˙maxΩ∈ ˜Hξ

{ ḟ (Ω)}
and Y− = ṁinΩ∈ ˜Hξ

{ ḟ (Ω)}.

As in the interval case, if f is locally monotonic with respect
to each argument,
then Y− = ṁinΩ∈ ˜H ( ḟ (Ω))
and Y + = ˙maxΩ∈ ˜H ( ḟ (Ω))

The fuzzy extension of the interval-based result for locally
monotonic function then holds:

Corollary 1: If f is locally monotonic with respect to each
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argument, and ∀ j ∈ E1, f is increasing according to x j and
∀ j ∈ E2, f is decreasing according to x j, then

Y− = ṁinΩ∈ ˜H

(
ḟ (Ω)| ∀ j ∈ E1,Ω j = X−

j
∀ j ∈ E2,Ω j = X+

j

)
and Y + = ˙maxΩ∈ ˜H

(
ḟ (Ω)| ∀ j ∈ E1,Ω j = X+

j
∀ j ∈ E2,Ω j = X−

j

)
This last corollary was in fact known for strictly increasing

functions [4]. In the remainder of this paper, we will not tell
f from its extension applicable to the profiles ḟ .

C. Example of Application

Let h be the function such as h(x,y) = x + y− xy. h is of
course locally monotonic (and not globally monotonic). So
applying the profile method, we get the following equations:
h(A,B)− = minε1,ε2∈{−,+}(h(Aε1 ,Bε2))
h(A,B)+ = maxε1,ε2∈{−,+}(h(Aε1 ,Bε2))
Now, consider the two fuzzy intervals A and B, defined by
Figure 1. The profiles of A and B are defined as follows:

1

0.5

μ

1−1 x2

B
A

Fig. 1. Possibility distribution of two fuzzy intervals A and B

A−(λ) = λ, A+(λ) = 2−λ,
B−(λ) = λ−1, B+(λ) = 1−λ
Then we get: h(A−,B−)(λ) = −λ2 +3λ−1
h(A−,B+)(λ) = λ2 −λ+1
h(A+,B−)(λ) = λ2 −3λ+3
h(A+,B+)(λ) = −λ2 +λ+1

The computed profile and the result C = h(A,B) are shown
on figure 2. The above calculations are in the style of graded
numbers [8] but some profiles obtained as partial results are
not monotonic.

 0

 0.2

 0.4

 0.6

 0.8

 1

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

A−B−
A−B+
A+B−
A+B+

C

Fig. 2. C = h(A,B) and the computed profiles

Non-monotonic profiles can thus appear in the intermediate
computations, but hopefully, the final result is always a classi-
cal fuzzy interval. The above example is meant for illustration
of non-monotonic profiles.

III. VARIANCE OF A TUPLE OF FUZZY INTERVALS

In the scope of fuzzy random variables, an interesting ques-
tion is to define the counterpart of a variance. The mean value
of a set of fuzzy intervals is already known for a long time, but

the notion of variance has received less attention. Yet, several
definitions already exist by Körner [13], Feng et al [14],
Carlsson and Fuller [15]. They are point-valued variances.
Here we consider a fuzzy-valued variance, understood as the
application of the extension principle to the notion of empirical
variance, based on a sampling of fuzzy numbers.

A. Crisp Interval Case

In this section we are going to see how to calculate exact
bounds on sample variance of interval data. The algorithms
presented in this section come from [16]. We propose a new
presentation of the algorithms, which is more tutorial.

1) Problem Definition: Consider n measurement results
x1, . . . ,xn. Their sample average e(x1, · · · ,xn) and their em-
pirical variance v(x1, · · · ,xn) are defined by:

e(x1, · · · ,xn) =
x1 + · · ·+ xn

n
(1)

V (x1, · · · ,xn) =
(x1 − e(x))2 + · · ·+(xn − e(x))2

n−1
(2)

In practice, the measurement of a variable xi is not perfect
and is better described as an interval Xi, such that xi ∈
Xi = [x−i ,x+

i ]. Xi is the interval of the possible values of the
measured variable xi.

In the remainder of this section, x denotes the tuple x =
(x1, · · · ,xn) and X = (X1, · · · ,Xn).

The computation of the sample average is easy since Equa-
tion 1 is still valid, with elementary operations changed by
interval arithmetic operations1:

E(X1, · · · ,Xn) =
X1 ⊕·· ·⊕Xn

n
(3)

The potential sample variance is an interval, given by:

V (X) = {V (x)|∀i, x ∈ ×iXi} (4)

Computing V (X) is difficult because the simple use of the
Equation 2 with interval arithmetics operations yields too wide
an interval for the variance. This comes from the fact that in
Equation 2, xi and E are linked by Equation 1. Moreover, the
variance is not a locally monotonic function.

In the rest of this section, we present a polynomial algorithm
already outlined by Ferson et al [16] to compute the GLB of
the variance, and an exponential algorithm for the computation
of the LUB of the variance.

2) GLB of the Interval Variance: Suppose that V (.) reaches
its lower bound on ×iXi for a n-tuple x = (x1, · · · ,xn) of known
average e. Then we can find the exact value of x for which
this lower bound is attained:

• if e ∈ Xi then xi = e
• if e > Xi then xi = x+

i
• if e < Xi then xi = x−i

And in this case, we can give the expression of the minimum
of the variance:

1The operators defined on interval are such that [a,b]⊕ [c,d] = [a+c,b+d],
and [a,b]

n = [ a
n , b

n ]
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min(V (X)) =

mine∈E(X)

(
V (x)|xi =

⎧⎨⎩
e if e ∈ Xi

x+
i if e > Xi

x−i if e < Xi

)
Now, suppose that we know an interval E j ∈ E such that E j is
contained or is disjoint from each interval Xi. So, ∀e′,e′′ ∈ E j,
{i|e′ ∈ Xi} = {i|e′′ ∈ Xi}. If this interval is included in all Xi,
then it is easy to see that the minimum of the variance is zero
since we can choose x1 = x2 = · · · = xn = e ∈ E j. If E j is not
included in all Xi, and if V (X) reaches its lower bound on a
n-tuple of average e ∈ E j, then this average must be:

e(E j) =
∑

Xi≥E j
x−i + ∑

Xi≤E j
x+

i

‖{Xi|Xi≥E j or Xi≤E j}‖ .
Where A ≤ B means sup(A) ≤ in f (B). We use this order
relation because E j ⊆ Xi or E j ∩Xi = /0. Now we can state
the following proposition:

Proposition 3: Let E = {E1,E2, · · · ,Ek} be a partition of
E(X) such that ∀i = 1..n, E j ⊆ Xi or E j ∩Xi = /0. Let c j =
‖ {Xi|Xi ≥ E j or Xi ≤ E j} ‖.
Then min(V (X)) = min j=1..k(V E j) such that
• if c j = 0, V E j = 0

• otherwise let e(E j) =
∑

Xi≥e
x−i + ∑

Xi≤e
x+

i

c j
.

and if e(E j) /∈ E j, V E j = +∞

otherwise V E j =
∑

Xi≥E j
(x−i −e(E j))2+ ∑

Xi≤E j
(x+

i −e(E j))2

n−1
To obtain the partition E of E(X) we just have to compute

E(X) = [e−X ,e+
X ] and to sort all 2n + 2 values x+

i , x−i , e−X , e+
X

into a sequence x(1) ≤ x(2) ≤ ·· · ≤ x(2n+2). E is constituted by
the intervals [x(k),x(k+1)] ⊆ EX .

The resulting algorithm computes min(V (X)) in complexity
of O(n2): The calculation of E(X) can be made in linear time,
sorting the 2n+2 values can be done in O(n∗ log(n)), and the
computation part is O(n) for each interval [x(k),x(k+1)].

3) LUB of the Interval Variance: Computing the LUB of
the interval variance is NP-hard [16].

Proposition 4: The LUB of the variance is attained on a
vertex of the hyper-rectangle ×Xi.
Proof : This comes from that E(.) is a quadratic function with positive

coefficients for the terms in x2
i . It is well-known that such functions attain

their maximum on intervals on the boundaries of their definition domains. �
A brute-force algorithm to get the LUB of E is then to

compute the variance of the 2n vertex of ×Xi, keeping the
greatest computed value. This algorithm is of complexity 0(n ·
2n).

We can find a better algorithm using Proposition 5. It
presupposes that for some values of the average, we can find
the best values of particular xi:

Proposition 5: Let E = {E1,E2, · · · ,Ek} be a partition of
E(X) such that ∀i = 1..n, E j ⊆ Xi or E j ∩ Xi = /0. Then
max(VX ) =

maxEi∈E

{
V (x)|xi =

⎧⎨⎩
x−i if Xi ≤ E j

x+
i if Xi ≥ E j

x−i or x+
i otherwise

)
So owing to this last proposition, we can write an algorithm,
of time complexity O(n ·2l) which computes max(V (X)) if l if

the maximal number of overlapping intervals Xi. In particular,
the maximal complexity is attained when the Xi are nested
(l = n).

4) Example of Variance Computation: Let X1 = [0,2],
X2 = [2,5] and X3 = [4,8] be three intervals representing the
possibles values of three variables x1, x2 and x3. The interval
average is E(X1,X2,X3) = [2,5]. Now, we can partition E(X)
in two intervals E1 and E2, for which E(X) = E1∪E2, and for
i ∈ {1,2,3}, j ∈ {1,2}, E j ⊆ Xi or E j ≤ Xi or E j ≥ Xi. Figure
3 gives a graphical representation of the intervals X1, X2, X3,
E(X), E1 and E2.

X
1

2X
X

3

E
E E1 2

0 1 2 3 4 5 7 86

Fig. 3. Example of average and variance computation

Now, for the sample variance, if min(V (X)) is attained for a
tuple of average e1 ∈E1 then the optimal configuration is Ω1 =
(2,e1,4), with e1 = E(2,4) = 3. e1 ∈ E1 so we can compute
the variance of the tuple Ω1 by:
V (Ω1) = 1

2

(
(2−3)2 +(4−3)2

)
= 1

On the other hand, if

we suppose that the minimum of the variance is attained for a
tuple of average e2 ∈E2 then this tuple must be Ω = (2,e2,e2),
with e2 = E(2) = 2. e2 /∈ E2 so the minimum of the variance
can not be attained for a tuple of average in E2, and so we
know that min(V (X)) = 1.

For the computation of the maximum of V (X), suppose
that this maximum is attained in E1. If so, then the possibles
tuple are Ω3 = (0,2,8) and Ω4 = (0,5,8). If the maximum is
attained in E2, then the tuples can be Ω3, Ω4, Ω5 = (0,2,4)
and Ω6 = (0,5,4). So we finally got:
max(V (X)) = max(V (Ω3),V (Ω4)V (Ω5)V (Ω6))

= max(17.33,16.33,6.33,7)
= 17.33

B. Fuzzy Case

In this section, X = (X1, · · · ,Xn) is a n-tuple of fuzzy
intervals. First of all, E(.) is increasing according to each
argument, so E(.) can be computed by the following formulas:
E− = E(X−

1 , · · · ,X−
n ) E+ = E(X+

1 , · · · ,X+
n )

In the calculation of the crisp interval variance, we divided
the average interval such as for all E j in the partition, E j is
contained or is disjoint from each domain Xi. Before dividing
the fuzzy average E(X), we need to ensure that the profiles
of fuzzy intervals Xi and E(X) can be compared. We say
that a function f is smaller than g (from D in R) if ∀x ∈ D,
f (x) ≤ g(x). So let Φ(λ1,λ2] be the restriction of a profile
Φ on (λ1,λ2] ⊆ (0,1]. Now, we must divide the interval
(0,1] representing the possibility degrees into k domains
P = {(λ−

i ,λ+
i ]|i ∈ [1,k]} such that for each element p ∈ P the

restriction of two profiles of Xi or E(X) can be compared two
by two (∀p ∈ P, ∀I1, I2 ∈ {X−

1 , · · · ,X−
n ,X+

1 , · · · ,X+
n ,E−,E+}
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we need I p
1 ≤ I p

2 or I p
2 ≤ I p

1 ).

1

x

0.5

C

E
D

e

ba

c

d

g
f

h i

Fig. 4. Two fuzzy intervals C and D and their average E(C,D)

In the example of Figure 4, we need to divide the interval
(0,1] into two parts (0,0.5] and (0.5,1]. The restrictions of the
profiles of C, D and E(C,D) do not intersect on these two sub-
intervals. Now we can decompose the fuzzy average E(X). In
the crisp interval case, the decomposition of an interval gives
intervals. In the fuzzy case, a fuzzy interval (represented in
practice by an area), is partitioned into sub-areas. Each sub-
area A j must be contained or be disjoint from each fuzzy
interval Xi. In the example of Figure 4, six different areas
appear: A1 = (ae f b), A2 = (b f c), A3 = (c f gd), A4 = (eh f ),
A5 = (h f i) and A6 = ( f ig). Let A j be such an area, we note A−

j
the left profile of A j, and A+

j its right profile (for example, for
A1 = (ae f b), A−

1 is the segment (a : e), and A+
1 is the segment

(b : f )).
Now, as in the interval case, we can discuss the possible

values of the variables Xi when we suppose that the average
ΦE of the tuple which minimize the variance is in an area
A j, representing a part of E(X) on the possibility degrees in
p ∈ P. According to the crisp interval case, the only fuzzy
configuration which can minimize the variance for average
ΦE in A j is:
Ω(λ1,λ2] = (Ω1, · · · ,Ωn)(λ1,λ2] such that:

Ωi =

⎧⎨⎩
X+

i if X+
i ≤ A−

j
X−

i if X−
i ≥ A+

j
ΦE otherwise

Now, we can compute the possible average ΦE of Ω(λ1,λ2]:
if ‖ {Ω(λ1,λ2]

i |Ω(λ1,λ2]
i ⊆ A j ‖�= ∅ then

ΦE = E(Ω(λ1,λ2]) =

∑
Ω

(λ1,λ2]
i ⊆A j

Ω(λ1,λ2]
i

‖{Ω(λ1,λ2]
i |Ω(λ1,λ2]

i ⊆A j‖
otherwise, ΦE = 0.

If ΦE does not intersect A j then the minimum of the
variance can not be obtained for some profiles of average in
A j. On the contrary, if ΦE intersects A j for some possibility
degrees λ ∈ (λ1,λ2], for those degrees (and only those one),
we can compute the variance of Ω(λ1,λ2] by the formula in
Proposition 3 applied to restricted profiles. We note DφE∈A j the
set of possibility degrees λ such that ΦE(λ) ∈ A j. If DφE∈A j

is the empty set, then the variance can not reach its lower
bound on any possibility degree for a n-tuple of average in
A j. Otherwise, we compute the variance of Ω(λ1,λ2], and we
only keep its restriction on DφE∈A j . When we have done this
computation for all areas composing E(X), we need to keep
the minimum of the partial profiles for all possibility degrees
in (0,1]. The result is then the left profile of V (X).

Let us illustrate this method on our example: in the re-
mainder of this section, we will not tell the partial profiles
from the segments which represent them on Figure 4 (for
example (D−)(0,0.5] = (b : f )). Suppose that the variance
reaches its minimum for possibility degrees in (0,0.5] on a
pair of profiles of average ΦE included in area A1 = (ae f b).
Then this pair must be Ω1 = (ΦE ,(b : f )). Its average is the
profile ΦE = (b, f ) ∈ A1. So we can compute its variance
V (Ω1) = 0. The minimal variance is then equal to zero for all
possibility degrees in (0,0.5] and we don’t need to consider
areas (b f c) and (c f gd). For possibility degrees in (0.5,1], we
can first suppose that the variance reaches its minimum for a
pair of profiles of average Φ′

E included in area A4 = (eh f ).
Then this pair must be Ω4 = (Φ′

E ,( f : i)). Its average is then
Φ′

E = ( f , i) /∈A4. So the variance can not reach its lower bound
on a pair of profiles included in A4. If we suppose that the
variance reaches its minimum for a pair of profiles of average
Φ′

E included in area A5 = (h f i), then this pair must be Ω5 =
((h : f ),( f : i)), of average Φ′

E = 1,25 (∀λ,Φ′
E(λ) = 1,25).

Φ′
E ∈ A5, so we can compute its variance:

V (Ω5)(λ) = (1.5−0.5λ−1.25)2

+(1+0.5λ−1.25)2

= 2(0.25−0.5λ)2

For the area A6, the revelant pair of profiles is Ω6 = (( f :
h),Φ′

E) of average Φ′
E = ( f : h) /∈ A6, so the variance can not

reach its lower bound on a pair of profiles included in A6.
Now we can reconstruct the entire profile V− on (0,1] which
is:

V−(λ) =
{

0 if λ ≤ 0.5
2(0.25−0.5λ)2 otherwise

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.5 1 1.5 2 2.5 3 3.5

Fig. 5. V (C,D)

For the right hand side profile of V (C,D), we can make the
same decomposition of E(C,D), and discuss its possible values
with proposition 5. But for this example, it is obvious that the
maximum of the interval variance will be attained for the fuzzy
extreme configuration (C−,D+) of average Φ = 1,25:
V +(λ) = V (A−(λ),B+(λ))

= (0.5λ−1.25)2 +(1.25−0.5λ)2

So we obtain the fuzzy variance of our pair of intervals on
Figure 5.

IV. THE POTENTIAL VARIANCE OF A SYMMETRIC FUZZY

INTERVAL

An intuitive way to define the potential variance of a fuzzy
interval M is to compute the interval variance of a set of n
α-cuts equally distributed in the interval (0,1], where n may
increase to infinity. Of course the minimal potential variance

The 2005 IEEE International Conference on Fuzzy Systems889



of a fuzzy interval is null. This is due to the fact that α-cuts
are nested.

The problem is harder for computing the maximal potential
variance. The problem to compute the maximal variance of
a n-tuple of fuzzy random variables with values in n nested
intervals is known to be NP-hard [16]. The proof is still
valid when all intervals are symetric with respect to a real
number (defining the mid-point of each interval). In practice,
this difficulty is not a problem: as we are going to see, we can
bracket the result in a tight way when n is big enougth. Without
any loss of generality, we can suppose that all intervals are
symmetric with respect to 0 (If not we can translate them
without any change of the potential variance). So if we suppose

μ

x

1

Fig. 6. Decomposition of a interval in α-cuts

that we have n symmetric intervals centred in 0 Zi = [−zi,+zi]
ordered as Zn ⊆ Zn−1 ⊆ ·· · ⊆ Z1, we can approximate the
maximal possible variance V Z of n random variables with
values in Z1, · · · ,Zn due to the following lemma:

Lemma 1: The maximal variance of n random variables
with values in Z1, · · · ,Zn verifies:
∑i z2

i
n−1 − z2

n
n·(n−1) ≤V Z ≤ ∑i z2

i
n−1

Proof : By definition we have:

V (x1, · · · ,xn) = ∑i x2
i

n−1 − (∑i xi)2

n·(n−1) And so VZ ≤ ∑i z2
i

n−1 .

Now, V (.) is quadratic with positive terms in x2
i so the maximum is reached

on a vertex of the hyper-rectangle ×iZi (which is an extreme configuration).

For xi = zi or xi =−zi, the term ∑i x2
i

n−1 is constant ( ∑i x2
i

n−1 = ∑i z2
i

n−1 ). Now, we can

determine the sign for each variable xi by the following way: Let x1 = +z1

and proceed recursively. If the sum ∑ j=1..i x j of already assigned values is

positive, we choose xi+1 = −zi+1 otherwise we choose xi+1 = +zi+1. When

all variables are assigned, their sum ( ∑xn) verifies −zn ≤ ∑xn ≤ zn. And so
·∑i z2

i
n−1 − z2

n
n·(n−1) ≤V (X) �

Now, if we have a symmetric fuzzy interval I centred in
0. We can decompose I into n α-cuts Ii = [I−(i/n), I+(i/n)],
where I−(x) = −I+(x) because the interval is supposed to be
symmetric (see Figure 6). We bracket the potential variance
of I with those n α-cuts. The more α-cuts we take, the
more precie we get. Making n grow to infinity, we obtain
the following proposition:

Proposition 6: Let I be a symetric fuzzy interval centred in
0. The maximal potential variance of I is defined by:
V =

∫ 1
0

( I+(λ)−I−(λ)
2

)2
dλ

Proof : limn→+∞
( z2

n
n·(n−1) )

)
= 0 and limn→+∞

( ∑i z2
i

n−1 ) =
∫ 1

0 I+(λ)2dλ =
∫ 1

0

( I+(λ)−I−(λ)
2

)2
dλ because I is symmetric. �

So we have now an exact analytic expression of the potential
variance of a symmetric fuzzy interval centred in 0, but the
same approach can not be extended to a general fuzzy interval

(centered in 0) as the term ∑i x2
i

n−1 is not constant for all extreme

configurations if the intervals are not symetric. This problem
should be studied in further work. We conjecture the same
result may hold in the general case.

V. CONCLUSION

The profile method extends interval analysis to fuzzy in-
tervals for locally monotonic functions which reach their
maximum and minimum values on the bounds of interval
entries. In basic problems of interval computation, this is of
course not always the case. The variance is an example of non-
monotonic function for which this method can be extended.
However, the extension of interval analysis techniques require
a partition of the unit interval (of membership values) to be
maintained. The complexity of the approach depends on how
many elements this partition can attain. This is a topic for
further research. This method can be applied to all problems
involving fuzzy random variables.

We have defined the potential variance of a symmetric fuzzy
interval based on these results. The obtained definition is
an interval of the form [0,Vmax]. Interestingly the expression
of Vmax is similar to Carlson and Fullér variance [15]. Two
questions remain: is this expression valid for asymmetric fuzzy
intervals? Is Vmax equal to the upper bound of the variance of
all random variables included in the probability family induced
by the fuzzy interval?

REFERENCES

[1] R. Moore, Methods and applications of interval analysis. SIAM Studies
in Applied Mathematics, 1979.

[2] H. Q. Yang, H. Yao, and D. Jones, “Calculating functions of fuzzy
numbers,” Fuzzy Set and Systems, vol. 55, pp. 273–283, 1993.

[3] W. Dong and F. Wong, “Fuzzy weighted average and implementation of
the extension principe,” Fuzzy Set and Systems, vol. 21, pp. 183–199,
1987.

[4] D. Dubois, E. Kerre, R. Mesiar, and H. Prade, “Fuzzy interval analysis,”
in Fundamentals of Fuzzy Sets. Kluwer, 2000, pp. 483–581.

[5] V. Kreinovich, “Range estimation is np-hard for ε2 accuracy and feasible
for ε2−δ,” Reliable Computing, vol. 8, pp. 481–491, 2002.

[6] D. Dubois, H. Fargier, and J. Fortin, “A generalized vertex method for
computing with fuzzy intervals,” in Procedings of the IEEE International
Conference on Fuzzy Systems (Budapest), 2004, pp. 541–546.

[7] J. Buckley, “Fuzzy PERT,” in Applications of fuzzy set methodologies
in industrial engineering. Elsevier, 1989, pp. 103–114.

[8] J. Herencia and M. Lamata, “A total order for the graded numbers used
in decision problems,” International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 7, pp. 267–276, 1999.

[9] S. E. Rodabaugh, “Fuzzy addition in the L-fuzzy real line,” Fuzzy Set
and Systems, vol. 8, pp. 39–51, 1982.
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