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The Linguistic Weighted Average

Dongrui Wu, Student Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract— The focus of this paper is the linguistic weighted
average (LWA), which is a generalization of the fuzzy weighted
average (FWA) that is obtained by replacing the type-1 fuzzy
inputs in the FWA by interval type-2 fuzzy sets (IT2 FSs).
Consequently, the output of the LWA is an IT2 FS. In this paper,
the relations between the LWA and the FWA are studied. It is
shown that finding the LWA can be decomposed into finding
two FWAs, where a-cuts and KM algorithms are used. Hence,
the computational cost of a LWA is about twice that of a FWA.
A flowchart for computing the LWA is also provided.

I. INTRODUCTION

The weighted average (WA) is arguably the earliest and
still most widely used form of aggregation. In this paper we
focus on a new situation for the WA, one in which both
the quantities being averaged (the attributes) as well as the
weights are words. The resulting WA is called a linguistic
WA (LWA). Our Example below illustrates a decision-making
situation where the LWA is needed. First, however, we
remind the reader of the well-known formula for the WA,
ie.
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in which w; are the weights that act upon the attributes (e.g.,

decisions, features, indicators, etc.), x;. Normalization is

achieved by dividing the weighted numerator sum by the sum

of all of the weights. While it is always true that the sum of

the normalized weights that act upon each z; add to one, it is

not a requirement that the sum of the un-normalized weights

must add to one. In many situations requiring 2?:1 w; =1

is too restrictive; so, we do not impose such a requirement.

It is the normalization that makes the calculation of the LWA
very challenging.

In the LWA the weights are always words that are modeled
as interval type-2 fuzzy sets (IT2 FSs) [14], and the attributes
may also be (but do not have to be) words that are also
modeled as IT2 FSs!. We denote the LWA as f’LW 4, where

Z?:l X 4 Wz
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The tildes over all quantities denote IT2 FSs.
Before we formalize the LWA more carefully, it is instruc-

tive to provide an example that illustrates where it could be
used.
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"How to obtain IT2 FS models for words is an on-going research area,
and one method for doing this can be found in [11] and [12]. In this paper,
we assume that such models have already been established.

Example: Consider the following distributed and hier-
archical decision-making situation. There are n judges (or
experts, managers, commanders, referees, etc.) who have
to provide a subjective decision or judgement D about a
situation (e.g., quality of a submitted journal article). They
will do this by providing a linguistic evaluation (i.e., a word,
term, or phrase) for each of m pre-specified and pre-ranked
evaluation-categories, C1,Cs, ..., C),, using a pre-specified
vocabulary of ¢; terms (: = 1,2,...,m), because it may
be too problematic to provide a numerical score for these
categories. For a submitted journal article, the categories
might be importance, content, depth, presentation, etc.; and,
for e.g. presentation, the terms might be excellent, good,
adequate, marginal and poor.

We assume that each of the category terms has been
modeled a priori as an IT2 FS T; so, for each C; there is
the associated IT2 FS Tci. Additionally, we assume that the
m evaluation-categories have also been linguistically rank-
ordered a priori, so that each C; is associated with a linguistic
weight, modeled as the IT2 FS W;. The judges do not have to
be concerned with any of the a priori rankings and modeling;
it has all been done before they have been asked to judge.

After the judges have chosen a linguistic term for the m
categories, the following LWA is automatically computed:
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These n IT2 FSs are then sent to a control (command)
center (e.g., the associate editor); however, because judges
may not be of equal expertise, we shall also assume that
each judge’s level-of-expertise has been pre-specified using
a linguistic term T 7, provided by the judge from a small
vocabulary of terms (e.g., low expertise, moderate expertise,
high expertise). The linguistic evaluations from the n judges,
Dj, are then aggregated using a second LWA, as
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This second LWA is also sent to the control (command)
center. Using Dj (3 =1,2,...,n)and/or D, a final decision
or judgement is made at the control (command) center. B

There is a hierarchy of averages that can be associated with
(1). We enumerate them next so that it will be clear where
the LWA studied in this paper stands in this hierarchy.

n. 3)
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1) Yw; and Vx; are crisp numbers: In this case, y is a
crisp number, the commonly-used arithmetic weighted
average, a number that is easily computed using arith-
metic.



2) Yw; are crisp numbers, and Vx; are interval numbers,
i.e. ©; = [a;,b;] where interval end-points a; and b;
are pre-specified: In this case, y is an interval number
(a weighted average of intervals), i.e. y = [y, yr],
where y; and y,- are easily computed [because interval
sets only appear in the numerator of (1)] using interval
arithmetic.

3) Vz; are crisp numbers, and Yw; are interval numbers,
i.e. w; = [c;,d;] where interval end-points c; and d;
are pre-specified: This is a special case of the fuzzy
weighted average (FWA) [1], [8], [4], [7], [3]. [2], [9]
that also corresponds to the so-called centroid of an
interval type-2 fuzzy set (IT2 FS) [14]. In this case, y
is also an interval number, i.e. y = [y;, y,], but there are
no known closed-form formulas for computing y; and
y-. The KM iterative algorithms [5], [14] have been
used to compute y; and y,.. These algorithms are super-
exponentially and monotonically convergent [10], so it
takes very few iterations for them to converge to the
actual values of y; and y,.

4) Vzx; are interval numbers, i.e. x; = |a;,b;] where
interval end-points a; and b; are pre-specified, and
Yw; are interval numbers, i.e. w; = [c;,d;| where

interval end-points c; and d; are pre-specified: This is
another special case of the FWA that also corresponds
to the so-called generalized centroid of IT2 FSs [14].
As in Case 3, y is also an interval number, ie. y =
[y1,y-], but again there are no known closed-form
formulas for computing y; and y,.. The KM iterative
algorithms have also been used to compute y; and y,..

5) Vx; are type-1 fuzzy numbers, i.e. each x; is described
by the membership function (MF) of a type-1 fuzzy
set (T1 FS), px,(x;), where this MF must be pre-
specified, and Yw; are also type-1 fuzzy numbers, i.e.
each w; is described by the MF of a T1 FS, pw,(w;),
where this MF must also be pre-specified. This case
is the FWA, and now y is a T1 FS, with MF py (y), but
there is no known closed-form formula for computing
uy (y). Recently, Liu and Mendel [9] showed how
the KM algorithms can be used to compute an «a-cut
decomposition [6] of uy (y).

6) Vx; are IT2 FSs, i.e. each x; is described by the foot-
print of uncertainty (FOU) of an IT2 FS, FOU(Z;),
where this FOU must be pre-specified, and Yw; are
also IT2 FSs, i.e. each w; is described by the FOU of
an IT2 FS, FOU (w;), where this MF must also be
pre-specified. Of course, there could be special sub-
cases of this case, where only one or the other of the
weights or attributes are IT2 FSs. This case is the LWA,
and now y is an IT2 FS.

In this work we focus on the LWA of Item 6. The rest
of this paper is organized as follows. Section II reviews the
main results on the FWA, which serves as the basis to deduce
the LWA algorithms. In Section III several theorems for the
LWA are introduced. A flowchart for computing the LWA is
presented in Section IV, followed by an example. Section V
draws conclusions.

II. THE FuzzY WEIGHTED AVERAGE

Because the idea of the FWA is used in the derivation of
the LWA, it is briefly introduced in this section.

The FWA is defined as [1], [8], [4], [71, [3], [2], [9]:
2im XiWi
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Note that all W; and X; are T1 FSs. Consequently, Yz 4
is also a T1 FS.

The FWA problem has been studied in multiple criteria
decision making [1], [8], [4], [7], [3], [2] and computing the
generalized centroid of an IT2 FS [5], [14], [13]. The fastest
way to date to perform the computations are KM algorithms
[9] introduced next.

In the KM algorithms approach, we first discretize the
complete range of the membership [0, 1] of the fuzzy num-
bers X1, Xo,..., X, and Wy, Wy, ..., W, into m a-cuts,
o, -+, 0. For each a;, we find the corresponding intervals
for z; in X; and w; in W; (i = 1,2,...,n). Denote the end-
points of the intervals of z; and w; by [a;(c;), bi(c;)] and
[ci(ey), d;i ()], respectively, i.e.
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Yrwa =

z; € [ai(y), bi(ay)] and w; € [ci(ay), di(y)]

The output of the FWA algorithm for this particular a-cut,
Yrw (), is an interval, i.e.

Zy 1 Xi(oy)Wi(ay)

Yrwal(a;) = (6)
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It has been observed that [8], [5]
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These results are easy to prove because X, () appear only
in the numerator of (6), and so the smallest values of X;(c;)
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are used to find the smallest value of (6), whereas the largest
values of X;(c;) are used to find the largest value of (6).

Using KM algorithms [5], [9] presented in [15], fr(c;)
and fr(a;) can be efficiently computed as (11) and (12)
(given at the top of this page), where k;, and kg are switch
points satisfying

(13)
(14)

ary (o) < fray) < agg+1(ay)
b (@) < fr(y) < brpia(ay)

When all m intervals [fz (), fr(c;)] are found, the MF
of Yew A, fypy 4 (y), is computed as

HYpw a (y) = sup ajIYFwA(aj)(y) (15)
Vaj(j=1,....,m
where
1 Vye [fo(ay), fr(a;)]
Iy atan) (W) = { 0 Vyél[frlay), fR(a;)] (1o

is an indicator function of Ypw ().

III. LWA THEORY

The formulas for the LWA are derived in this section. For
the convenience of the readers, we summarize all symbols
used in the derivation in Table I. For notation simplicity
and to save space, we omit the dependence on «; in all
symbols in the derivations. Readers should keep in mind that
all the derivations are for a particular a-cut, o;. Proofs of
all theorems are in [15] and will be included in the journal
version of this paper.

A. Introduction

The definition of the LWA is given in (2). Because an T2
FS is completely determined by its FOU [14], Y7 w4 can
also be expressed as

Yiwa =1/FOU(Yrwa) = 1/[Y rwa, Y Lwal

where Y ;-4 and Y w4 are the lower and upper member-
ship function (LMF and UMF) of YLW A, respectively, and
the notation in (17) means that the secondary membership
grade equals 1 at all elements in FOU (?LW ). Hence,
computing Y74 is equivalent to computing Y;wa and

a7

Yiwa.

B. Computing the LWA

a-cuts are used to calculate Y4 and Y 1w a. First, the
complete range of the membership [0, 1] is discretized into
m a-cuts, oy, - - -, Qqy; then, for each o, the corresponding
intervals for z; in X; and w; in W, are found, where X;
and W, are embedded type-1 fuzzy sets of X; and W; (see
Fig. 1).

TABLE I
NOTATIONS USED IN THE DERIVATION. SEE ALSO FIGS. 1 AND 5.

Notation Meaning
X; ith attribute; an IT2 FS
X; Embedded T1 FS of X
X; UMF of X;
X, LMF of X;
[ai(ery), bi(j)] a-cut on X
[as (), bir ()] a-cut on X;
[air (o), big ()] a-cut on X,
Wi Weight associated with X’i; an IT2 FS
Wi Embedded T1 FS of W;
Wi UMF of W;
w, LMF of W;
[ci(ay), di(oy)] «a-cut on W;
[cir(ey), dir(ay)] a-cut on W
[cir (o), dig(aj)] a-cut on W,
YLW A LWA computed from XZ and Wz
Yiwa UMF of Yrw 4
Yiwa LMF of Yy 4
[fz(a;), fr(a;)] |a-cut on an embedded T1 ES of Yrw 4
[fri(az), frr(j)] a-cut on Y pyw A
[frr(aj), frRi(;)] a-cut on Y oy 4
hmax Maximum height of all X, and all W,
min Minimum height of all X; and all W,
U See (20)
Px See (21)
Py See (22)
al (o) See (45)
bl (o) See (46)
c;(ay) See (49)
dl; (o) See (50)

We always use a normal IT2 FS; i.e. the maximum
membership grades of the UMFs of all type-2 fuzzy sets
equal unity. This means that each a-cut on the UMFs will
produce an interval for «; # 1, or at least, a crisp point for
a; = 1.

Generally, the LMFs of X; and W; have different heights
(maximum membership grades), as shown in Figs. 2(a) and
2(b). Denote the height of X, as hx., and the height of
W, as hy _, respectively. Assume the maximum (minimum)
height of all X, and all W, is hmax (Amin), ..

J— max{ max hx max hw } (18)
Vi€e([l, n] X Vie[lﬁn] -
hmin = min{ min hx min | hw. } (19

Vig[l,n] S ViE[l n
Then, depending on the position of the a-cut, there are three
different cases:
1. 0 < oj < hpin: the a-cuts on all UMFs and LMFs

exist, as shown in Fig. 2;
2. hmin < &5 < hmay: the a-cuts on all UMFs exist while
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Fig. 1. The variables used in the derivation. (a) Variables for Xi; and, (b)
Variables for W;. The dashed curves are embedded T1 FSs.

the a-cuts on some LMFs do not exist, as shown in
Fig. 3;

3. hmax < o < 1: the a-cuts on all UMFs exist, but
none of them exist on the LMFs, as shown in Fig. 4.

In order to distinguish between these three cases, we define

U=A{12,...,n}

and assume Px C U and Py C U are finite sets consisting
of integer indexes such that

(20)

Vi€ Px,hx, <aj;a; and b; do not exist 21
VieU-— P&’ h&i > Q5 Qg and b;; exist

and
Vi€ Pw,hw. < aj;c; and d;; do not exist 22)
VieU— Pw,hw, > aj;c;r and dy exist

For example, in Fig. 2 we have U = {1,2,3}, Py = () and
Py = 0; consequently, «; in Fig. 2 produces intervals on
all X, and W,. In Fig. 3 we have U = {1,2,3}, Px =
{1,2} and Py = {3}; consequently, «; in Fig. 3 does not
produce intervals on X;, X, and W . In Fig. 4 we have U =
{1,2,3}, Px ={1,2,3} and Py = {1, 2, 3}; consequently,
a; in Fig. 4 does not produce an interval on any X, and
w,.

We can now classify the three cases by using Py and Py .
When both Px and Py are empty, we are in Case 1; when
both Px and Py equal U, we are in Case 3; otherwise,
we are in Case 2. Next, we shall consider the three cases
individually.
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Fig. 2. Case 1: 0 < aj < hypin. Variables for (a) X; and (b) W;.
A %, X,
ol BN 24 Ca)\@ \b, b,
5L XA
XX KA,

AU W, W,
| G S aG, o B <.
P EERYAA Y. T
XX X
NN

(d)

Fig. 3. Case 2: hyin < @ < hmax. Variables for (a) and (b) Wl

C. Case 1: 0 < aj < hin

When 0 < o < hpin, the a-cuts on all UMFs and
LMFs of Xi and Wl exist, as shown in Fig. 2. We denote
the interval on X, as [a;,b;], and the interval on W; as
[ci, d;], respectively. If we consider all the embedded T1
FSs, as shown in Figs. 1(a) and 1(b), then a; € [a;, air],
b; € [bihbir]’ Cc; € [011170717”] and d; € [dil7di7"]'

Note that in (11) and (12) for the FWA, each of a;, b;, ¢;
and d; can assume only one value; consequently, f;, and fgr
are crisp numbers. However, in Case 1 of the LWA, a;, b;, ¢;
and d; can assume values continuously in their corresponding
a-cut intervals. Numerous different combinations of a;, b;,
¢; and d; can be formed. f;, and fr need to be computed
for all the combinations. By collecting all f; we obtain a
continuous interval [f7;, fr-], and, by collecting all fr we
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Fig. 4. Case 3: hmax < aj < 1. Variables for (a) X; and (b) W;.

obtain a continuous interval [fg;, fr:|, so that

[frr, fri] (23)

XLWA(%’) =

and

[fri, frr (24

Yiwa(a;) =

as shown in Fig. 5.

Variables for YLW A

Fig. 5.

To find Y,y a(e;) and Yiowa(a;) we need to find
fri, foes fry and fr,. Consider fr; first. It is the minimum
of fr [see (11)] when a; € [aq, air], ¢i € [ciu, ¢ir], and
d; € [dil; dir]s i.e.

Jfoi= min I (25)

Vaj€la;p, ajpl
Vej€legps eipliVdi €Ly, diy]

Substituting f7, in (11) into (25), we obtain

Zald + Z a;iC;

. = i=k+1
min min
Va; € lag, a"1] vke[l,n—1] K

ve; € [Czl Cir Z d —|— Z C;

vdy € [dig, dir] imk1

n
) Zz 1@idi D g g GG
min

Va; € [a;], a;,] . .
vei € lei cinl Zizl di 43 g, 41 Ci
vdg € [dg, dir]

le:

(26)

Because a; appear only in the numerator of (26), the
smallest values of a; should be used to find the smallest
value of (26). i.e.

k
Z L1 alld + Z kL1+1 il C
k
Z it d +Ez kri1+1 Ci

where kp; is the switch point for a particular combination
of (@17, .-, Qniy Ciye vy Cpydr, ... dy).
Similarly, we can also express fr,, fr; and fg, as

k?LQ n
doimi Qirdi + Dy QG

Vei€leir,cirl
Vd;€ld;)diy]

frr=  max (28)
k
Vei€legrseirl L2
vié[dii,dw Z d + Zz kpo+1Ci
k
f - D iy biaci+ 30 g 4 badi (29)
Rl = min
Vej€lejrieipl Zle c; + Z d;
Vd;€ldyy,dp] i=1 "7 i=kgr1+1 7
kRQ b n
SRR e+ S bids
frr = max =1 e i=kpatl 7T (30

k' n
Vei€legrscip R2 .
Vdie[d;;,dir] Zz 1 Gi + Zi:kRngl dl
So far, we have only fixed a; for fr; and fr,., and b; for

fri and fg,. Next, we show that it is also possible to fix ¢;

and d; for fr;, frr, fri and fr,.
Theorem 1: 1t is true that

ak,, 1 < fri < agg41,0 (€1))
and that fr; in (27) can be specified as
kri
1 @adi + a;iC;
= ZE O S Gt

k?Ll
ity dir + Zi:k“-H Cil

where ky; is the switch point for fr;. i.e., fr; is obtained
for

by setting
i < kpi
for i>kp+1
in the right-hand side of (27). This means that fr; only

depends on the UMF of W;, ;. B
Theorem 2: 1t is true that

d; = dr

Ci = Gy

(33)

Akr .., r S fLr S Ay, +1,r (34)
and that fr,. in (28) can be specified as
k'Lr n
o1 Qirdgg + ) QirCir
o = ZL O B Gt o,

kL n
Zi:; dil + Zi:ku-+1 Cir

where kp, is the switch point for fr.. i.e., fr, is obtained
for

by setting
{ < kLT
for i>kp.+1
in the right-hand side of (28). This means that fr, only

depends on the LMF of Wi, w,. n
Theorem 3: It is true that

di = dy

C; = Cir

(36)

b1 < fri < k41,1 37)
and that fr; in (29) can be specified as
le n
1 bacir + ), b d;
le _ szl G Zz kri+1 Yl zl; (38)

k
Zz ml ir + Zz kri+1 dll



where kp; is the switch point for fg;. i.e., fr; is obtained
C; = Cir for

by setting
it < kpi
d; = dy for ©>kr +1

in the right-hand side of~ (29). This means that fg; only
depends on the LMF of W;, W.. B
Theorem 4: 1t is true that

(39)

kar,r S fRT' S kaRT-‘rl,’!' (40)
and that fr, in (30) can be specified as
er n
= birci + i= birdir
i = S D Dl gy

kR, n
Doty Cit T D g, 41 Dir
where kg, is the switch point for fg,.. i.e., fg, is obtained
by setting

C; = Cj for
d; = d;y for

in the right-hand side of (30). This means that fg, only
depends on the UMF of W;, ;. B

Using the above theorems we can show:

Theorem 5: fr, < fr for all 0 < «a; < A ie,
there is a gap (fL,, fri) between the left-hand interval
fr = [fri, frr] and the right-hand interval fr = [fri, frr]-
[ |

(42)

iSer
ZZer‘i‘l

D. Case 2: hmin < Qi S hmax

When Amin < o < hmax, the a-cuts on all UMFs exist.
As shown in Section III-C, fr; and fgr, depend only on the
UMFs; thus, the formulas for them remain unchanged, i.e.
Theorems 1 and 4 can still be used to compute fr; and fg,
in Case 2. However, when hpyin < a; < hmax, the a-cuts
on some LMFs do not exist; i.e. the a-cut cannot produce
intervals on those LMFs lower than «;, as shown in Figs. 3(a)
and 3(b). Because f1, and fr; do depend on the LMFs, i.e.,
frr in (35) depends on a;., d; and c¢;-, and fg; in (38)
depends on b;;, ¢;- and d;;, we need to find new solutions
for them in Case 2.

Comparing a; and b; with their ranges in Case 1, we see
that they change in Case 2, i.e. (see Fig. 3)

a; € lay,al,] 43)
bi € [by,bir] (44)
where ; Vie P
r ir 1€ X
a”{ ar VieU-Py 45)
and Viep
r ) oag 1Eerx
il_{bil VZ’EU—PX (46)
Similarly (see Fig. 3),
¢ € e, cl,)] 47)
di S [d;l’ dir] (48)
where b Viep
/o ir 1€ w
Cir‘{cir VieU— Py “9)

and
; ¢y Vie P&
il_{ dy VZ'EU*PK
Following the same procedure used to prove Theorem 2, we
obtain:
Theorem 2': 1t is true that

(50)

Wopor < frr <@y 41y (D
and that fr, in Case 2 can be specified as
kLr 1 g n o
oo = Dol Wpdiy 30k, 1 @Gy (52)
T b)

krLr q n /
Zi:l di + Zi:kmﬂ Cir

where kg, is the switch point for fr,, and, o]
are defined in (45), (49) and (50). B
Theorem 3': Tt is true that

/ !
r» Cip and d;

/ /
Okt < TRES Bppyn 0 (53)
and that fr; in Case 2 can be specified as
kRri 31 1 n ’ogr
il by Y g Dy 4
le - le , n / ) (5 )
D it Cor D i1 D
where kg is the switch point for fg;, and, b}, ¢/, and d,

are defined in (46), (49) and (50). B

Observe, from Fig. 5, that when fr, < fr;, the interval
[fLi, frr] determined by the a-cut on the UMFs is divided
into two sub-intervals, [fri, fr] and [fri, frr], which are
separated by a gap (fr., fr;). The FOUs must lie within
[fri, frr] and [fri, fre], but they cannot enter the gap
(fLrs fr1)- What if fr,. > fr;? This cannot happen in Case
1 (see Theorem 5) but may happen in Case 2, because in
Case 2 the ranges of a;, b;, ¢; and d; are extended, and
the extended ranges have the effect of eliminating the gap.
Observe that when fr, > fr;, the right bound of [fr;, fL.]
exceeds (or equals) the left bound of [fr;, fr]. i.e. the two
intervals [fr;, frr] and [fri, frr] partially overlap and the
gap is covered. When that happens, the FOU of Yiwa lies
completely within the interval [fL;, frr], which is shown at
a; = ' in Fig. 5.

Although we stated Theorems 2’ and 3’ in the context
of Case 2, they are not limited to Case 2. Actually, we used
(43), (44), (47) and (48) instead of hpmin < aj < Amax in the
derivations, and these equations can also represent Case 1 by
properly setting their parameters, i.e., letting all Py and Px
be empty sets. It is easy to show that (52) and (54) for Case
2 coincide with (35) and (38) in Case 1, respectively. This
means that Theorems 2’ and 3’ can also be used to calculate
frr and fg; in Case 1, i.e., they give the same outputs as
those of Theorems 1 and 2. In the next subsection we will
show that Theorems 2" and 3’ can also be applied to Case 3.

E. Case 3: hpax < aj <1

When hpax < a; < 1, the a-cuts on all UMFs exist.
Consequently, Theorems 1 and 4 can still be used to compute
fri and fg. in Case 3. However, none of the a-cuts on
the LMFs of )~(7; and V~Vz exists; thus, we need to find new
solution for fr, and fg; in this case.



Observe that Case 3 can also be represented by (43), (44),
(47) and (48) by setting all Px and Py to U; thus, Theorems
6 and 7 in Section III-D can also be used here to compute
frr and fr;. Because Px and Py are U, (45), (46), (49)
and (50) in Section III-D become

a, = by Yie[ln]
b, = aa Viell,n]
¢ = dy Vielln] (55
d, = ca Vie[l,n]
Substituting (55) into (52) and (54), we obtain
kr o, n
o= Dzt birci + > g, o birdir 56)
L k1, n
doizicat Zi:kmﬂ dir
k n
le _ szll aildir + Zi:km-‘rl a41Cql (57)

le n
> ity dir + Ei:km+1 Cil

Note that fr; and fr,, which determine the a-cut on Y .y 4,
are calculated by (32) and (41), respectively. Comparing (56)
with (41), it is observed that f7, in (56) is the same as fg,
in (41) 2. Besides, fr; in (57) is also the same as fr, in
(32); thus, in Case 3,

fuo = fm (58)
for = fre (59

Consequently,
[fri, fue] = [fris fRe) = [fL1s fRY) (60)

(60) means that the FOU of ?LW 4 fills in the entire interval
[fLi, frr] (see @” in Fig. 5), which is completely determined
by the a-cuts on the UMFs.

Theorem 6: When hpmax < o < 1, the FOU of YLWA
fills in the entire interval [fr;, fr.]. Consequently, there is
no need to calculate fr, and fr;. B

F. Relations between the LWA and the FWA

By summarizing the results above, we can connect the
LWA and the FWA.

Theorem 7: The UMF of the LWA, Y 11 4, is completely
determined by the UMFs of the attributes, Yq;, and the UMFs
of the corresponding weights, W; (i = 1,2,...,n). More
specifically, Y 1w is the FWA of X; and W,. i.e. let

211 XiW,i
Yrwa = 55— (61)
> i Wi
Then, -
Yiwa=Yrwa N (62)

Generally, it is impossible to find a similar theorem for
Y ;w4 because to compute Y ;4 we need to consider
three different cases; however, we can do that for a special
case of Y ; 1, 4, where all LMFs of X ; and WZ have the same
height.

2The switch point in (56) is denoted as k.- and that in (41) is denoted as
kRrr; however, because all b;,., ¢;; and d;, are the same in (56) and (41),
when the KM algorithm is used to compute (56) and (41), the resulting
switch points will be the same. Consequently, (56) and (41) are the same.

Theorem 8: If all LMFs of Xi and Wi have the same
height, then Y ; ;4 is the FWA of X, and W,. i.e. let

> i XiW,

Yiwa = ST oW, (63)
=11

Then,

Yiwa= YIC“WA u (64)

IV. LWA ALGORITHMS

A flowchart of the LWA algorithms is shown in Fig. 6.
To save computational cost, different a-cuts are chosen for
Y ;wa and Y rwa [15]. The procedures in the two dashed
rectangles can be computed in parallel. Furthermore, the
KM algorithms in the two dotted rectangles in each dashed
rectangle can also be computed in parallel. The detailed
algorithms are given in [15].

As an example, consider fQ and V~Vi shown in Fig. 7(a) and
7(b), respectively. The resulting ?LW 4 1s shown in Fig. 7(c).
201 a-cuts were employed. The dashdot curve in Fig. 7(c)
indicates the overlapped area where fr,(c;) > fri(cy) (see
Section III-D).

Au
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Fig. 7. MFs of (a) X; (b) W; and (¢) Y7 a.

V. CONCLUSIONS

In this paper, we have introduced the concept of the LWA.
a-cuts and KM algorithms were employed to compute it.
Because the LWA is a generalization of the FWA from T1
FSs to IT2 FSs, there should be close relations between them.
We have shown that finding the LWA, Yiwa, is equivalent
to finding its UMF, Y 1y 4, and LMF, Y ;, 4. Moreover,
Y rwa is the FWA of the UMFs of the attributes, f(i

and the UMFs of the corresponding weights, W;. Y ;11,4 is



Select p a-cutsfor Y, |

Set j=1

Y

Finda (a,), by (a)), G (a)),
and d; (a,),

i =12,---,n

Use KM algorithm
to computef, (a;)

Use KM algorithm
to compute f (a;)

Yon(@) =[f.(a)). fa(a))]

j=j+1

Select m a-cutsfor Y, |

Y |

Set j=1

A

Find g, (a)), b, (a)), ¢,(a)),
andd, (a;), 1=12--,n

Use KM algorithm
to computef , (a;)

Use KM algorithm
to compute f (a;)

Y_I.WA(aj) =[f, (aj)7 er(aj )]

|
|
|
j=j+1 |
|
|

Y~LWA =l [YLWA , VLWA]

Fig. 6.

more complicated than Y ;y;, 4, but it can also be computed
efficiently by using «-cuts and KM algorithms. For the
special case where all the LMFs of X’i and Wi have the
same height, Y ;4 is the FWA of the LMFs of X, and
Wi. Hence, the computational cost of a LWA is about twice
that of a FWA.
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