Fuzzy END-TO-END RATE CONTROL FOR INTERNET TRANSPORT PROTOCOLS

F. Montesino®, D. R. Lépez?, A. Barriga®, S. Sanchez-Solano®

Y nstituto de Microelectronica de Sevilla - Centro Nacional de Microelectrénica
Avda. Reina Mercedes s/n, (Edif. CICA), E-41012, Sevilla, Spain.

2RedIRIS, Spanish NREN. Edif. Bronce,
Pza. Manuel Gomez Moreno s/n. Planta 2. E-28020 Madrid, Spain

Proc. IEEE International Conference on Fuzzy Systems (FUZZIEEE 2006),
Vancouver, July 16-21, 2006.

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere
to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without
the explicit permission of the copyright holder.

Fuzzy End-to-End Rate Control for Internet Transport Protocols

Federico Montesino, Diego R. Lopez, Angel Barriga and Santiago Sdnchez-Solano

Abstract— End-to-end Internet packet dynamics is a com-
plex problem for which models available to date are at best
incomplete. A major research problem in Internet transport
layer protocols is the development of rate control mechanisms
that can cope with the requirements of a growing diversity
of technologies, applications and services. This paper describes
novel mechanisms for intelligent end-to-end traffic rate control
in Internet by means of fuzzy systems. We first outline a fuzzy
logic based generalization of TCP (Transport Control Protocol)
rate control principles. The design of a fuzzy TCP-like window-
based rate controller is then described. A systematic fuzzy
systems design methodology is used in order to simulate and
implement the system as an experimental tool. A comparative
evaluation of simulation an implementation results from the
fuzzy rate controller as compared to that of traditional con-
trollers is outlined. Besides being a useful modelling approach,
the fuzzy rule based rate controller is shown to outperform
other approaches with regards to a number of criteria.

I. INTRODUCTION

End-to-end Internet packet dynamics is a complex problem
for which models available to date are at best incomplete [[1]].
A great deal of attention is being payed by the research
community to two issues in this area: protocols for high
performance networking, and solutions for new services and
applications for which proper congestion control schemes
are sought. These issues have lead to an interest in the
application of artificial intelligence techniques to end-to-
end problems within the End-to-End Research Group of the
Internet Research Task Force.

As shown in figure [I] currently deployed schemes for
traffic regulation in Internet (as well as proposed alternatives)
fit into one of the two following approaches [2]:

« Distributed control, with functionality distributed among
the end nodes in the network and implemented by
means of end-to-end transport protocols. Transmitter
and receiver end nodes of packet flows cooperate so
as to perform flow and congestion control as well as
fair distribution of network resources.

e Queue schedulers in intermediate nodes (routers). These
mechanisms can discriminate packet flows and enforce
resource distribution and reservation.

Thus, regulation of packet flows from sender to receivers
can involve all the network nodes in the end-to-end path and
is performed on both an end-to-end and a per-hop basis. Such

Federico Montesino Pouzols, Angel Barriga Barros and Santiago
Sanchez-Solano are with the Microelectronics Institute of Seville, Spanish
Scientific Research Council, Avda. Reina Mercedes s/n. Edif. CICA. E-
41012 Seville, Spain (phone: +34 955 056 666; fax: +34 955 056 686;
email: {fedemp,barriga,santiago} @imse.cnm.es).

Diego R. Lopez is at RedIRIS, the Spanish National Research and
Education Network, Edificio Bronce, Pza. Manuel Goémez Moreno s/n.
Planta 2. E-28020 Madrid, Spain (phone: +34 912 127 625; fax: +34 915
568 864; email: diego.lopez@rediris.es)

end-to-end
(transport layer) End host

feedback loop
----------------- o]
| IP layer IP layer

End host

F 3 F
Network

Router, Router,

IP layer | IP layer |

A A r'y r'y A A
4 A A 4
1 ! ! |
] ' ! |
' 1 hop by hop 1 |
! : (IP layer) : '
: 1 feedback loops |

1 T 1

e N [|

Fig. 1
FEEDBACK LOOPS IN INTERNET TRAFFIC REGULATION

a scheme leads to a system that comprises multiple feedback
loops with complex interactions.

End-to-end flows traversing routers span a wide range
of user requirements and dynamic characteristics, i.e., the
number of hops in the path can tipically range from a
few up to around 20, round-trip times can range from a
few milliseconds up to seconds, flows can last from a few
milliseconds up to hours and each flow can transfer from a
few KBs up to several GBs.

Quality of service requirements as well as traffic patterns
of emergent services and applications are difficult to char-
acterize and demand deep advances in current rate control
schemes. Because of the nature of these problems (complex-
ity, no feasible analytic solution as well as incomplete and
inaccurate information) one of the alternatives for studying
them is the employment of intelligent systems based on fuzzy
logic and possibly other soft computing techniques.

Both aforementioned approaches can be redefined in terms
of fuzzy systems, which does not only provide a deeply
backgrounded engineering approach but also a modelling and
analysis framework for Internet traffic (which the current
Internet research community lacks [1]). In this paper we
focus on end-to-end rate control. More specifically, we
analyze TCP-like window-based rate control. With this work
we aim at providing a reinterpretation of end-to-end flow and
congestion control mechanisms in terms of fuzzy systems.
We provide an initial set of results based on simulation and
experimental implementation showing a number of advan-
tages as for both performance and model interpretability.

Section [[I] provides an overview of related publications.

Section outlines a fuzzy logic based extension to end-
to-end window based rate control schemes. In section [V]
we detail the design of a fuzzy system for end-to-end
rate control. Section [V| gives an overview of the fuzzy
systems development methodology and tool chain employed.
Simulation and experimental implementation results are then
presented in section |VI| and section respectively. Finally,
we conclude in section

II. RELATED WORK

Formal approaches that have been applied to end-to-
end rate control include classic control theory and fluid
mechanics among others [2]]. While a number of proposals of
fuzzy controllers for packet queues at Internet routers have
been reported, see [3], [4], among others, the only reference
we are aware of that takes a fuzzy logic based approach to
end-to-end rate control is [S)], which outlines a perliminary
study through an off-line simulation based analysis of a non-
linear Takagi-Sugeno fuzzy controller applied to some of the
basic mechanisms of TCP congestion control.

In the area of wireless networks, there have been proposals
of fuzzy systems applied to intelligent discrimination of
congestion induced packet loss and loss due to physical
channel errors and mobility [6], [7].

III. END-TO-END WINDOW BASED RATE CONTROL AND
A FUzZzY GENERALIZATION

A number of classes of rate control have been defined and
applied in packet switching networks, such as window based
and equation based [1]. The prevalent transport protocol in
the current Internet is Transmission Control Protocol (TCP),
which uses window based rate control mechanisms.

TCP includes basic mechanisms for flow control since
its original specification was published. After a series of
congestion collapses in the network [8]], mechanisms for
congestion control have been added throughout the years.
The first proposal of the now widely accepted congestion
avoidance algorithm was introduced [8]], standardized anf
further developed [9]. This process lead to the development,
standardization and wold-wide deployment of congestion
control mechanisms that together with the basic flow con-
trol mechanisms comprise the core rate control functional
block of TCP. TCP rate control comprises four intertwined
algorithms: slow start, congestion avoidance, fast retransmit
and fast recovery.

Let us consider the simplified version in algorithm
(of historical [8] interest only) for the sake of simplicity
in explaining our approach. Wy, is the delay-bandwidth
product of the network path. Details of current standard
algorithms and how congestion is detected (commonly based
on packet loss) are provided in the next section.

The algorithm tries to react quickly to congestion condi-
tions. When the network is congested, the amount of traffic
from competing flows must be large and the queue lengths
will start increasing exponentially. Under the assumption that
the system will stabilize if the traffic sources throttle back at
least as quickly as the queues are growing and considering

Algorithm 1 Basic AIMD
if congestion then

W, =dW;_q, (d < 1)
else

Wi=Wi_i+u, (v < Wpnaa)
end if

that a source controls load in a window-based protocol by
adjusting the size of the window, W, we end up with the
sender policy W; = dW;_4, i.e. a multiplicative decrease
rate that under persistent congestion leads to an exponential
decrease of the sender window.

If there is no congestion, router queues must be near zero
and the network load approximately constant. The network
announces, via a dropped packet, when demand is excessive
but does not notify if a connection is using less than its fair
share (since the network is stateless, this information is not
available). Thus a connection has to increase its bandwidth
utilization to find out the current upper limit. The first thought
is to use a multiplicative increase rate possibly with a longer
time constant, W; = bW;_1,1 < b < 1/d. This is however
a mistake. The result will wild oscillations and poor average
throughput. The analytic reason for this, well known in
queueing systems as the rush-hour effect, is due to the fact
that it is easy to drive the net into saturation but hard for the
net to recover. An increase policy based on small, constant
changes was proposed for TCP [§]. This policy has proven
to be effective.

Nonetheless, the standard additive increase multiplicative
decrease (AIMD) scheme can be too cautious under some
conditions, which has given rise to a great deal of research
towards protocols for high-perforamce networks. A number
of important limitations in TCP rate control are currently
recognized and the Internet research community is devel-
oping protocols with alternative rate control schemes, such
as the TCP-Friendly Rate Control protocol (TFRC) [10],
and protocols with similar yet extended schemes for rate
control, such as the Stream Control Transmission Protocol
(SCTP) [11]. A number of extensions and modifications
to TCP rate control are being developed as well, such as
HighSpeed TCP [12], FAST TCP [2], H-TCP [13]], and
Scalable TCP [14]].

As stated above, interactions between network layers,
end and intermediate nodes lead to a complex non-linear
dynamic system that makes it difficult to develop, simulate,
and test rate control schemes. A great deal of theoretical
analysis are currently being performed and a number of
experimental implementations have been proposed. In this
work we address the problem by means of fuzzy systems. In
what follows we describe a fuzzy model for TCP-like rate
control in an incremental manner.

In the simplified algorithm above, we distinguish two
window evolution stages. Each stage corresponds to a clearly
identified network state and leads to the application of a
specific window update policy. However, the actual state can

be in between these two crisp conditions. Additionaly the
knowledge about network state is uncertain and delayed. We
note here a binary logic problem: when the network state for
which the rate control stage has been defined is constant for
enough time, the system response is proper. However, when
the network state does not exactly match any of the stages
but a combination of them, the response of the system may
be too aggressive or too conservative.

Similarly to the proposal in [3], a first generalization of
the algorithm above could be stated by means of a simple
reformulation of the basic AIMD principle:

wit1 = w; + ap fp(w;) + ar fr(w;))

Where fp and f; set the increase and decrease policies.
ap and o can be thought as degree of truth values that
represent to what extend the system is on the congested
(window decrease) or uncongested (window increase) mode;
these values can be defined as mutually exclusive, ap, ay €
0,1;ap = aj. This formulation suggests a fuzzy approach
for managing the window update process. Instead of con-
sidering the network in one of a set of exclusive states, we
will consider the network to be (to a variable degree) in all
defined states. The degree to what the network is considered
to be in a particular state will be identified by a fuzzy rule
based inference system.

IV. DESIGN OF A FuzzYy END-TO-END WINDOW-BASED
RATE CONTROLLER

It is out of the scope of this paper to provide a complete
description of the TCP rate control and related algorithms.
We will focus on those procedures that perform a direct
action on the window, i.e. those procedures that imply the
definition of a network state (and a stage in the rate control
algorithm) as well as the associated window update policy.
For a full specification of TCP, please, refer to the aforemen-
tioned documents. Though our approach finds applications
in general window-based end-to-end transport protocols, we
analyze the case of TCP as a case of special interest. On
what follows we will describe in an incremental manner
those mechanisms defined for rate control in standard TCP
implementations and how we have extended them by means
of fuzzy inference systems.

The four standard algorithms for controlling the congestion
window in standard TCP systems (slow start, congestion
avoidance, fast retransmit and fast recovery) will be de-
scribed. On what follows, definitions in table [[] are consid-
ered.

A. Slow Start

Beginning transmission into a network with initial un-
known conditions requires TCP to cautiously probe the
network to estimate the available capacity, in order to avoid
congesting the network with an inappropriately large burst
of data. The slow start algorithm is used for this purpose at
the beginning of a transfer. The initial cwnd value is usually
a few SMSS (most common value is 25M SS).

TABLE I
TCP RATE CONTROL PARAMETERS

’ Parameter Description
SMSS Sender Maximum Segment Size. Size of the largest
segment that the sender can transmit
rwnd The most recently advertised receiver window
cwnd Congestion window. A limit on the amount of data
TCP can send. At any given time, TCP does not send
data with a sequence number higher than the sum of
the highest acknowledged sequence number and the
minimum of cwnd and rwnd.
flightSize | The amount of data that has been sent but not yet
acknowledged.
RTT Round-trip time
RTO Retransmission timeout (which depends on RT'T’
w Initial window value for cwnd
Lw Loss window value
ssthresh Threshold between Slow start and Congestion avoid-
ance stages

The initial value of ssthresh may be arbitrarily high
(usually the size of the receiver advertised window) though
may be reduced in response to congestion. ssthresh is used
to select which window update policy should be applied. As
specified in the standard, listed in algorithm [}

Algorithm 2 Standard TCP AIMD
if cwnd < ssthresh then
Perform slow start
else if cund > ssthresh then
Perform congestion avoidance
else
Perform either slow start or congestion avoidance
end if

In the standard TCP slow start stage, cwnd is incremented
each time an acknowledgement packet is received from the
sender that acknowledges new dat{] The increment rate is
defined as follows:

cwnd;+1 = cwnd; + inc,

(inc < SMSS) (2)

It is common for current implementations to choose inc
= SMSS. The slow start stage (with exponential growth
with time in the window) ends when cwnd is greater than
(or greater or equal to) ssthresh or when congestion is
observed.

As a fuzzy extension to the slow start algorithm we
propose an inference system (SlowStartConfidende) that pro-
duces as output the extent to which current network condi-
tions should be managed with the slow start algorithm. In
other words, the system infers an estimate of certainty about
the network being in such a state that should be handled

This point is currently under revision, as better performance can be
achieved by counting the number of octets (instead of the number of packets)
acknowledged.

10 1.0 10 10

Fig. 2
Ttimeout AND T'cwnd MEMBERSHIP FUNCTIONS

IMPOSSIBLE LOWPOSS ~ MEDPOSS HIGHPOSS CERTAIN

Fig. 3
Tloss AND T'con fidence MEMBERSHIP FUNCTIONS

by means of the slow start update policies. The system has
the following inputs: timeout (to which extent a timeout is
expiring), ssthresh, cwnd, the difference ssthresh —cwnd,
and two inputs that provide information on overall network
conditions: the cummulative packet loss fraction, loss, and
the round-trip time, rtt.

Figure [2] shows the fuzzy types and linguistic terms for
inputs temeout and cwnd (T'timeout and T'cwnd). Figure
shows the types for input loss and the output, con fidence.
In order to simplify definition and easing the use of efficient
implementation techniques, only triangular and trapezoidal
membership functions are used. In general, the fuzzy types
are defined using a partition of the crisp input space and
triangular and trapezoidal membership functions. 5 linguistic
terms are defined for inputs, and 5 linguistic terms are defined
(for increasing degrees of certainty from IMPOSSIBLE to
CERTAIN) for the output.

Fuzzy inference follows the Mamdani model, and the
fuzzy mean defuzzification method is employed to compute
the crisp output value. Membership functions were adjusted
considering typical performance values considered in recent
Internet measurement studies [[15]].

Table |l shows the rule base of the SlowStartConfidende
system. Standard TCP rate control activates slow start update
policies when cwnd is lower than ssthresh. As can be seen
in the rule base, the fuzzy system yields a certainty degree
that increases with input ssthresh — cwnd (fourth column).
This behavior can be thought as a generalization of the
crips lower than comparison used in standard TCP. The five
fuzzy rules triggered by input ssthresh —cwnd represent the
informal expression “the bigger ssthresh — cwnd, the more
possibility of slow start being suitable for current network
conditions”.

TABLE II
SLOWSTARTCONFIDENCE RULE BASE.
ssthresh

timeout | cwnd ss—cw | loss conf.

<< < 3
m:::x><><><><><><><><><><><><><><><><><><><:t
oy
o

><><><><><><><><><><><><><><><><><><><§:Zm[\1
< p—
ol il il ol el Rl Rl Rkl el Sl Rl R R I = R = e el Rl R B

xxxxxxxxxé:ngxxxxxxxxxx

< <
xxxxmmmexxxxxxxxxxxxxxx
< b S/ ST FSY {O) 1O 0L V) V) 193 [V (V) (V) {9 1)) [V} [V [V 193 (VR 9
a| T | =

However, additional rules can modify the certainty degree
if other network conditions suggest a different update policy.
Rules that most directly reproduce the non-fuzzy standart
TCP behavior are those triggered by values of the ssthresh—
cwnd input. The degree of certainty given by these five
rules is then ajusted by additional rules that consider further
information on current network conditions. Four rules are at
least fired at any given time. Exactly one of the first five
rules (first five rows) is always active (for input timeout),
as well as exactly one of the next four rules (for input cwnd).
The same applies to ssthresh, and ssthresh — cwnd. Rules
depending on loss and rtt are triggered only under clear
network saturation conditions.

B. Congestion Avoidance

In the congestion avoidance stage, cwnd is incremented
by SMSS per round-trip time. In real implementations, it
is common to increment cwnd for every non duplicated
acknowledgement packet received from the receiver as in:

cwnd; 1 = cwnd; + SMSS - SMSS/cwnd; 3)

Which is generally considered to be an acceptable ap-
proximation and leads to a growth rate linear with time.
Congestion avoidance ends when congestion is detected.

In addition, in any stage ssthresh and cwnd are modified
when a timeout is detected according to:

ssthresh = max(flighSize/2,2 SMSS) 4

cwnd;y1 = cwundro < LW 5)

TABLE III
CONGESTIONAVOIDANCECONFIDENCE RULE BASE.
ssthresh

timeout | cwnd ss—cw | loss

><><><><><><><><><><><><><><><><><><><><><§:§m[\]
< p—
><><><><><><><><><><><><><><><><:m§m€><><><><><

><><><><><><><><><><><EIZUJ§><><><><><><><><><><

méméméxx><><><><><><><><><><><><><><><><><><§
oy
O

< <
><><xxxx::mexxxxxxxxxxxxxxx
szmééxx><><><><><><><><><><><><><><><><><><

With LW wusually being set to 1 full-sized segment.
As with the slow start algorithm, we propose an exten-
sion to congestion avoidance. The extension consists of
a fuzzy inference system (CongestionAvoidanceConfidence)
that produces as output the extent to which current network
state should be managed following the congestion avoidance
algorithm. The system inputs are the same as those of
SlowStartConfidence.

Table [IIT] shows the rule base, which has a similar structure
to that of SlowStartConfidence but employs what can broadly
be seen as a complementary rule base. Note however that
the rules depending on loss and rit are triggered under
different conditions. In this case, the five rules triggered
by ssthresh — cwnd represent the following sentence: “the
smaller ssthresh — cwnd, the more possibility of congestion
avoidance being a proper algorithm for current network
conditions”.

C. Fast Retransmit and Fast Recovery

TCP receivers send an immediate duplicate acknowledge-
ment (ACK) packet back to the sender when an out-of-order
segment arrives. The purpose of this ACK is to inform the
sender that a segment was received out-of-order and which
sequence number was expected instead. From the sender’s
perspective, duplicate ACKs can be caused by a number of
network problems. They can be caused by dropped segments.
In this case, all segments after the dropped segment will
trigger duplicate ACKs. In addition, duplicate ACKs can be
caused by the re-ordering of data segments by the network.
Finally, duplicate ACKs can be caused by replication of ACK
or data segments by the network.

TCP senders use the fast retransmit algorithm to detect
and repair loss, based on incoming duplicate ACKs. The fast
retransmit algorithm uses the arrival of 3 duplicate ACKs
After receiving 3 duplicate ACKs, TCP senders perform a
retransmission of what appears to be the missing segment,
without waiting for the retransmission timer to expire. After
the fast retransmit algorithm sends the apparently missing
segment, the fast recovery algorithm governs the transmission
of new data until a non-duplicate ACK arrives. These two
algorithms are usually implemented together as follows.

1) When the third duplicate ACK is received, the loss
segment is retransmitted and ssthresh and cwnd are
set to

ssthresh = maz(flightSize/2,2SMSS) (6)
cwnd;+1 = cwndpy ps = ssthresh +3SMSS (7)

This artificially inflates the congestion window by the
number of segments (three) that have left the network
and which the receiver has buffered.

2) For each additional duplicate ACK received, increment

cwnd;+1 = cwnd; + SMSS (8)

This artificially inflates the congestion window in order
to reflect the additional segment that has left the
network.

3) Transmit a segment, if allowed by the new value of
cwnd and the receiver’s advertised window.

4) When the next ACK arrives that acknowledges new
data, set cwnd to ssthresh (the value set in step 1).

cwnd;y1 = ssthresh)

As with the slow start and congestion avoidance algo-
rithms, we propose an extension that consists of a fuzzy
inference system (FRFRConfidence) that produces as output
the extent to which the fast recovery/fast retransmit strategy
is suitable for current network conditions. The inputs to the
system are timeout, ssthresh—cwnd, loss and rtt. The rule
base is shown in table Exactly one of the first five rules
(first rows) will be triggered at any time for different values
of timeout. The same applies to the next five rules (for
ssthresh — cwnd values). The last four rules are triggered
when network conditions suggest that the fast recovery, fast
retransmit update policies are suitable.

D. Putting All Pieces Together

In our extended approach, we define three fuzzy stages
(for slow start, congestion avoidance and fast retransmit/fast
recovery). Since the actual network state is known with
uncertainty, all network states are considered to occur at the
same time with a varying degree of certainty. The extent to
which the system is in one of these stages is evaluated by
three fuzzy inference systems whose outputs are regarded as
a degree of certainty about current network state. This way,
we model uncertainty about the actual network congestion
state.

TABLE IV
FRFRCONFIDENCE RULE BASE.

<3
&
~
Q
Q
S

!

loss
X

timeout | ssthresh — cwnd

Ll e R R R R R Kl
e kA Rl R A R A K R R
2

<
jasi
<
jas!
Q
[es]

<
=
e
=

jeni
<
jeni
oy
O

><><><><><><><><><é:§m[\]

xxxxémiwéxxxxx

k<
=
=

Update policies of ssthresh and cwnd given in equa-
tions [2] to 0] are kept. However, as the network state is in
general uncertain, all policies are simultaneously evaluated
and applied to a varying degree given by the three fuzzy in-
ference systems described. Thus, the three inference systems
identify complex network states on the basis of linguistic
rules.

Slow start and congestion avoidance equations are always
evaluated as in standard TCP implementations (equations [2]
to E]) Additionally, when duplicated ACKs are detected,
fast retransmit and fast recovery (equations [6] to [J) are
evaluated as well (and considered to the extent given by the
FRFRConficence fuzzy inference system).

In the simplest case, the three set of policies are combined
as follows. If we denote by fiss, ftcq, and prprrr the output
of the three fuzzy inference systems, and by fsgs, fca and
frrrr the values given by the standard update policies
(which we will generalize to p; and f; (1 < ¢ < n) for
a variable number n of network states (or stages in the rate
control algorithm, or sets of update policies)), we define the
certainty degree c¢; of a stage as:

_ M
Zj:l Hj

Where the rule sets of the fuzzy inference systems should
verify Z?zl p; > 0. The final update policy for cwnd is
computed as the weighted average of the update policies
associated to all possible stages (as in equation [I):

C; =

N
cwnd; 1 = cwnd; + Z ¢ifi(cwnd, ssthresh)
i=1

This way, we basically have a rule based method of
combining update policies that have been shown to be
effective under certain conditions. The rule sets can lead
to compromise solutions under complex conditions. For
instance, policy [9] usually implies a large decrease of the
congestion window. When additional inputs indicate network
congestion, the policy may be adequate. However, when the
network does not appear to be congested, a more aggressive

Description
xfe
.

Metwork simulator
(ns2)

| Verification |"

User space software
implementation (atou)

Fig. 4
Fuzzy SYSTEMS DESIGN FLOW AND TOOL CHAIN

behavior could improve performance in terms of throughput
and responsiveness.

V. DEVELOPMENT METHODOLOGY AND TOOL CHAIN

In order to develop fuzzy inference systems, we adhere
to a design methodology [16] for the whole development
process that covers from initial high-level description to
implementation as software and hardware components. A
complete tool chain for the development stages [17] has been
employed.

As aresult from more than a decade of research experience
on the digital implementation of fuzzy systems, the fuzzy
group at IMSE has developed methodologies and CAD tools
that fulfill the design flow of fuzzy systems. Leveraging on
the Xfuzzy [[17] CAD suite of tools and a methodology [16]
for the development of fuzzy controllers, we have defined a
methodology and tool chain tailored for the development of
fuzzy Internet rate controllers.

The design flow and tool chain employed to develop
fuzzy inference modules is depicted in figure] The whole
development process is covered, from initial description to
final implementation whether as software or hardware. The
first development stage (description) is performed using a
high level fuzzy systems specification language, XFL [18]],
which can be automatically turned into C and VHDL code
among other implementation options.

The development stages after specification have been
tailored for end-to-end rate control as follows. For network
simulation, we have used ns-2 [[19]]. ns-2 is an object oriented
discrete event driven simulator with support for a vast variety
of transport protocols, queueing systems, routing schemes
and access media, thus enabling us to evaluate the per-
formance of traffic controllers under complex and realistic
simulated scenarios. Fuzzy controllers are integrated into ns-
2 as components implemented in C.

Verification can be performed over software and hardware
implementations of fuzzy controllers. Software verification
is performed over a controller implementation within a tool
that implements the TCP protocol in user space (atou), which
is further described in section

128

| "‘IM Wﬂ MM wa M M M wm \‘m

ol (KB)

TCP Reno i
— HighSpeed TCP
Fuzzy TCP

Fig. 5
CONGESTION WINDOW EVOLUTION (SIMULATION)

120

100

60}

Throughput §KERs)

40

TCP Reno
——HighSpeed TCP | |
——Fuzzy TCP

20}

Fig. 6
THROUGHPUT EVOLUTION (SIMULATION)

VI. SIMULATION RESULTS

Simulations of fuzzy rate controllers have been performed
by means of the ns-2 [19], a de facto standard within
the Internet research community. A performance evaluation
study was conducted on traditional and fuzzy rate controllers
so as to compare both approaches. We show results for a
comparison of TCP Reno [9] (the most extended version of
TCP in the current Internet), HighSpeed TCP [12]] and the
fuzzy rate controller described in this work.

Figure [5] shows a comparison of the congestion window
evolution for the three rate controllers being compared, while
figure [6] compares throughput of the four TCP variants
under the same conditions. A common network scenario
was considered for this simulation case. TCP flows are
stablished for 10 seconds along a 10 hops long path with
100 Mbps bottleneck bandwidth at the edges and 400 ms
average round-trip time. Random losses are simulated in
one router in the path. Competing cross traffic with variable
sources, path length and round-trip time, consisting of 10%
UDP traffic and 90% TCP Reno traffic is used.

As overall conclusions we can draw that the fuzzy ex-
tended version of TCP rate control shows higher robustness
to loss events. This fact leads to higher final throughput

bbbl

WWWWW .

as | -
TCP Reno

cumd (<8)

HighSpeed TCP
—— Fuzzy TCP

me 9
Fig. 7
CONGESTION WINDOW EVOLUTION (IMPLEMENTATION)

(improved by approximately 12% and 11% as compared to
TCP Reno and HighSpeed TCP, respectively). Additional
simulations performed on network scenarios under high con-
gestion conditions confirm that the fuzzy rate controller still
provides proper and quick reactions to congestion. Common
fairness principles considered in the design of Internet end-
to-end congestion control schemes [2] are satisfied as well.

VII. EXPERIMENTAL IMPLEMENTATION RESULTS

In order to make the results of our work available for the
Internet research community as a research tool, we have de-
veloped an experimental user space (instead of kernel space)
TCP implementation with fuzzy extensions. A user space
implementation allows maximum experimentation flexibility
for further refinement of fuzzy rule bases and identification
of new rules.

The tool is based on the “Almost TCP over UDP”
(atou) [20] utility, developed as part of the web100 project
of the High-Performance Networks research program of the
U.S. Department of Energy. We introduced changes to atou in
order to incorporate the fuzzy inference scheme presented in
previous sections. These systems were generated as C code
using the Xfuzzy tools. The modified atou tool generates
detailed event logs and packet traces with a configurable
degree of verbosity.

Modifications for enabling and disabling TCP rate control
options and algorithms were also introduced. This way, a
flexible framework for experimenting with highly modified
implementations of TCP rate control at the application level
is available for testing between any two Internet hosts.
Among the options that can be set in a text configuration
file, the modified version of atou supports a number of TCP
rate control variants.

We show a comparison of the three variants of TCP rate
controllers that were compared through simulation. Figures
and [8| compare the evolution of cwnd and throughput. The
network scenario considered is the following: two hosts
transfer a file for 10 seconds; the TCP-like connection
between the two hosts is stablished along a 5 hops long
path. The path bottleneck bandwidth is 100 Mbps and the

120

100 —

TCP Reno

——HighSpeed TCP
201 4
——Fuzzy TCP

5
e
Fig. 8
THROUGHPUT EVOLUTION (IMPLEMENTATION)

average round-trip time is 110ms approximately. Results
from experimental implementation confirm simulation results
as for improvements in robustness and throughput. Overall
throughput improvement is approximately 15% and 13%
with respect to TCP Reno and HighSpeed TCP, respectively.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown that the rate control mechanisms of TCP
(the prevalent transport protocol in the Internet), which is
currently a major topic of research, can be reinterpreted
and extended partially and as a whole in terms of fuzzy
logic. The fuzzy model described provides a rule based
perspective of current evolving rate control schemes, being
the first reported result in the application of fuzzy systems
to intelligent network state inference at end nodes.

Both simulation and implementation results show that the
proposed fuzzy extension to TCP rate control can improve
performance with regards to a number of criteria, namely,
faster convergence to achievable transference rate, higher
throughput and reduced oscillations around the stabilized rate
for long transfers. The proposed fuzzy system also eases
finding comprimise solutions for different user requirements.

We note however that there is still a lot of work to do as
extensions to the system described in this paper. In particular
regarding the identification of new rules, the exploration of
the whole set of possible rules and the addition of new inputs.
As short term future work we consider the following subjects:

o Application of adjustment and learning techniques to
gain further insight on the system dynamics.

« Experimentation with a number of extensions that are
current topics of research, such as the initial cwnd
value, fuzzy extensions to RTT and retransmission
timeout computatiorﬂ and extensions for intelligent
loss-congestion differentiation [6], [[7]. This work paves
the way and provides tools for experimentation with a
number of these mechanisms.

2Current standard retransmission timer computation employs interpolation
techniques to smooth variations in measurements through a simple low-pass
filter and take into account RT'T" variance

ACKNOWLEDGMENT

This work has been supported in part by projects
TEC2005-04359/MIC from the Spanish Ministry of Edu-
cation and Science and TIC2006-635 from the Andalusian
regional Government.

REFERENCES

[1] S. Floyd and E. Kohler, “Internet Research Needs Better Models,” in
ACM SIGCOMM First Workshop on Hot Topics in Networks (HotNets-
I), Princeton, New Jersey, USA, Oct. 2002.

[2] J. Wang, D. X. Wei, and S. H. Low, “Modelling and Stability of FAST
TCP,” in 24th IEEE INFOCOM, Miami, FL, USA, Mar. 2005, pp.
938-9438.

[3] H. C. Cho, M. S. Fadali, and H. Lee, “Dynamic Queue Scheduling
Using Fuzzy Systems for Internet Routers,” in I[EEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2005), Reno, USA, May
2005, pp. 471-476.

[4] B.-S. Chen, Y.-S. Yang, B.-K. Lee, and T.-H. lee, “Fuzzy Adaptive
Predictive Flow Control of ATM Network Traffic,” IEEE Transactions
on Fuzzy Systems, vol. 11, no. 4, pp. 568-581, Aug. 2003.

[5] P. Carbonell, J. Zhong-Ping, and S. Panwar, “Fuzzy TCP: A Prelim-
inary Study,” in 15th IFAC World Congress, Barcelona, Spain, July
2002, pp. 21-26.

[6] Ruy de Oliveira and Torsten Braun, “A Delay-based Approach Using
Fuzzy Logic to Improve TCP Error Detection in Ad Hoc Networks,” in
IEEE Wireless Communications and Networking Conference, Atlanta,
USA, Mar. 2004.

[7] L. Chang and I. Marsic, “Fuzzy Reasoning for Wireless Awareness,”
International Journal of Wireless Information Networks, vol. 8 (1), pp.
15-26, Jan. 2001.

[8] V. Jacobson and M. J. Karels, “Congestion Avoidance and Control,”
ACM Computer Communication Review SIGCOMM 88 Symposium:
Communications Architectures and Protocols, vol. 18, no. 4, pp. 314—
329, Aug. 1988.

[9] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
Internet Engineering Task Force, Network Working Group, RFC 2581,
1999, status: Proposed Standard.

[10] Mark Handley and Sally Floyd and Jitendra Padhye and Jorg Widmer,
“TCP Friendly Rate Control (TFRC): Protocol Specification,” Internet
Engineering Task Force, Network Working Group, RFC 3448, Jan.
2003, status: Proposed Standard.

[11] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J. Schwarzbauer,
et al., “Stream Control Transmission Protocol,” Internet Engineering
Task Force, Network Working Group, RFC 2960, Oct. 2000.

[12] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” Internet
Engineering Task Force, Network Working Group, RFC 3649, Dec.
2003, category: Experimental.

[13] D. Leith and R. Shorten, “H-TCP: TCP for High-Speed and Long-
Distance Networks,” in Second International Workshop on Protocols
for Fast Long-Distance Networks (PFLDNet), Feb. 2004.

[14] T. Kelly, “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks,” ACM Communication Review, pp. 83-91, Apr. 2003.

[15] D. Rolls, G. Michailidis, and F. Hernndez-Campos, “Queueing Anal-
ysis of Network Traffic: Methodology and Visualization Tools,” Com-
puter Networks, vol. 48 (3), pp. 447-473, June 2005.

[16] A. Cabrera, S. Sanchez-Solano, P. Brox, A. Barriga, and R. Sen-
hadji, “Hardware/Software Codesign of Configurable Fuzzy Control
Systems,” Applied Soft Computing, vol. 4, no. 3, pp. 271-285, Dec.
2004.

[17] F. Moreno-Velo, 1. Baturone, S. Sinchez-Solano, and A. Barriga,
“Rapid Design of Fuzzy Systems With Xfuzzy,” in FUZZ-IEEE’03.
The 12th IEEE International Conference on Fuzzy Systems, May 2003,
pp. 342-347.

[18] F. Moreno-Velo, S. Sanchez-Solano, A. Barriga, 1. Baturone, and
D. Lépez, “XFL3: a New Fuzzy System Specification Language,” in
Sth WSEAS/IEEE Multiconference on Circuits, Systems, Communica-
tions and Computers (CSCC’01), Rethymon, July 2001, pp. 361-366.

[19] Information Sciences Institute. University of Southern California,
Viterbi School of Engineering, “The Network Simulator — ns-2,”
http://www.isi.edu/nsnam/ns/, Feb. 2006.

[20] T. Dunigan, F. Fowler, et al., “Almost TCP over UDP (atou),” Oak
Ridge National Laboratory, U.S Department of Energy, Feb. 2006,
http://www.csm.ornl.gov/ dunigan/net100/atou.html|

http://www.isi.edu/nsnam/ns/
http://www.csm.ornl.gov/~dunigan/net100/atou.html

	138- FUZZIEEE2006.FMP.pdf
	Introduction
	Related Work
	End-to-End Window Based Rate Control and a Fuzzy Generalization
	Design of a Fuzzy End-to-End Window-Based Rate Controller
	Slow Start
	Congestion Avoidance
	Fast Retransmit and Fast Recovery
	Putting All Pieces Together

	Development Methodology and Tool Chain
	Simulation Results
	Experimental implementation Results
	Conclusions and Future Work
	References

