
 
 

 

  

Abstract—A central role of Geographic Information Systems 
(GIS) is to allow the identification and visualisation of relevant 
spatial features from typically large volumes of data.  This 
requires a querying system to provide both flexibility and 
usability.  While standard GIS querying capabilities are often 
either very limited, or require a user to have knowledge in 
specialised areas, techniques in qualitative spatial reasoning 
have been developed that provide a powerful and intuitive 
method of representing and reasoning about spatial 
information.  In this paper we present a method for querying 
about the qualitative distance between features using dynamic 
networks such as roads, bus or ferry services, and flight paths, 
rather than only using the Euclidean distance.  Linguistic 
values are used to implement qualitative distances for the 
linguistic variable proximity.  TreeSap GIS with qualitative 
querying support is presented to demonstrate how qualitative 
distance measures through a network can provide both a 
computationally practical solution and a mechanism through 
which non-experts benefit from powerful search tools. 

I. INTRODUCTION 

Modern Geographic Information Systems (GIS) 
commonly provide powerful tools that allow a user to 
manipulate, view and query geographic information, 
allowing the identification and visualisation of relevant 
spatial features from typically large volumes of data.  An 
effective querying system must provide flexibility, to 
appropriately capture a user's desired search criteria, and 
usability, so that the system is appropriately accessible [1].  
Despite this, standard GIS querying capabilities are often 
very limited, (particularly many publicly accessible web-
based GIS), or require a user to have knowledge in 
specialised areas such as Structured Query Language (SQL) 
or set theory.  Furthermore, it is not always appropriate to 
completely exclude spatial features that are reasonably close 
to satisfying a query's criteria. 

These difficulties stem from the sole reliance of GIS on 
numerical approaches for representing and analysing spatial 
data.  As previously argued [2] the level of precision and 
absolute frame of reference employed by numerical methods 
are not used or needed for a person’s cognitive model of 
space.  One result is that people find numerical methods less 
intuitive than other approaches. 

Furthermore, uncertainty is an intrinsic property of 
information about the physical world.  For example, 
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measuring instruments will always be limited to a finite 
level of precision, and geographic features continuously 
change, resulting in numerical data becoming out-of-date 
[3].  Managing this uncertainty using numerical methods can 
be awkward, as these methods often rely on the availability 
of suitable error intervals or probability distributions.  A 
further difficulty is managing the inherent vagueness in 
statements such as “The Forest is near the Pond”. 

On the other hand, people reason with imprecise and 
uncertain information in everyday situations, and in 
particular, a qualitative method for reasoning about spatial 
information is often employed [4].  In response to this, 
techniques in Qualitative Spatial Reasoning (QSR) have 
been developed to address the limitations of purely 
numerical GIS, by identifying and reasoning about coarse, 
relevant distinctions between feature relations.  Allen’s 
temporal logic [3] has been particular influential, where a set 
of 13 atomic temporal relations between two time intervals 
are defined (including: “before”, “meets”, “overlaps”, and so 
on) and a composition table is provided so that, given three 
time intervals A, B, C, and given a relation between (A, B) 
and a relation between (B, C) we can infer the possible 
relations that can hold between (A, C).  For example, if A  
meets B, and B is before C, then A must also be before C.  
The composition table forms the basis for an algorithm used 
to reason about networks of temporal relations. 

A qualitative treatment of orientation includes Frank’s [5] 
calculi for reasoning with cardinal directions (“N”, “E”, “S”, 
“W”), and Freksa’s [6] approach where reasoning is 
conducted based on relative orientations (“front”, “left”, 
“back”, “right”).  Schlieder’s panorama [7], is a method 
where an ordering of visible landmarks (e.g. obtained by 
turning clockwise) can be used to qualitatively specify a 
map location.  Reasoning about topology includes Region 
Connection Calculus [8] which uses relations such as 
overlapping, touching, and proper part of, and Hernandez 
[2] presents a combined orientation and distance system. 

In this paper we address the problem of qualitative 
spatiotemporal reasoning about spatial features related in 
dynamic networks, that is, networks grounded in a spatial 
context (such as transportation networks: roads, walkways, 
bus routes, flight paths, and so on), where the cost of 
travelling through the network can change.  In the following 
section the qualitative proximity formalism used to 
transform numerical distance data into qualitative 
representations is reviewed.  Networks are then presented as 
a distance measure for relating features on a map, followed 
by a method of network generation from geometrically 
defined map features, binding features to networks, and 
combining networks.  A qualitative approach for managing 
the continuously changing travel costs in a network is then 
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presented.  Finally, TreeSap GIS supporting qualitative 
querying is described, to demonstrate how qualitative spatial 
reasoning can provide both a computationally practical 
solution to GIS querying, and a mechanism through which 
non-experts benefit from powerful search tools. 

II. QUALITATIVE PROXIMITY FORMALISM 
Qualitative methods aim at taking the coarsest possible 

approach to representing and reasoning about information, 
while still being able to accomplish the required tasks of a 
given domain [9].  Qualitative Spatial Reasoning (QSR) is 
restricted to specifying spatial relationships and properties.  
Being motivated by a cognitive perspective of spatial 
concepts, QSR commonly makes use of everyday language 
such as “near”, “far”, “fast”, “slow”, “disconnected”, and 
“overlapping”.  The Qualitative Proximity (QP) formalism is 
an adapted version of the Fuzzy Proximity formalism 
described in [10], and is used to facilitate querying using 
qualitative distance relationships between spatial objects.  
The proximity linguistic variable may take linguistic values 
that represent possible qualitative distance relationships.  
The linguistic values chosen for this example are:  touching, 
very near, near, moderately near, moderately far, far, very 
far.  Figure 1 illustrates two example relationships between 
objects A, B and A, C.  The proximity concepts are relative 
to a particular dataset (for example, A is near B relative to 
the much greater distance between A and C), and the context 
of the application (for example, the distance between A and 
B is likely to be considered near by a typical target user). 

 

 
 
Fig. 1. Subset of the distance relationships defined in QP, where A and B 
are objects or regions. 

 
We have previously applied fuzzy logic to qualitative 

formalisms for managing vagueness between spatial 
relations [11-14].  A fuzzy set is used to characterise each 
qualitative linguistic value that the proximity linguistic 
variable can take.  A distance relation is then assigned a 
membership degree in each of these fuzzy sets according to 
a membership function.  To illustrate this, consider the 
following query: “Find all objects near A”.  As shown in 
figure 2, a “near” membership value is assigned to every 
distance relationship that A shares with some other object, 
indicating how closely each relationship matches the “near” 
relationship type.  More generally, the standard alpha 
notation can be used, where α0 indicates the highest possible 
membership (a value of 100%, where the relationship is 
definitely considered a “near” relationship), and:  α1 > α2 > 
α3 >… indicating decreasing membership values, where the 
exact values of α1, α2, α3,… can be determined according to 
the application. 

Fuzzy membership values are thus assigned by referring 
to Freksa’s conceptual neighbourhood approach [15] as 
proposed in [13, 14].  Membership grades in each fuzzy set 
are determined according to the distance the associated 
qualitative relation is from a reference relation in the 
conceptual neighbourhood graph [13, 14].  The further away 
a relation is from the reference relation, the lower its 
membership grade.  Figure 3 illustrates the assignment of 
membership grades to relations with respect to the “near” 
relationship type. 

 

 
Fig. 2. Results of the query “Find all objects near A”.  A fuzzy membership 
value is assigned to every relationship that A shares with another object, 
representing how well each relationship matches the definition of “near”. 

 

  
Fig. 3. Extract from the set of QP relations, arranged according to their 
conceptual neighbourhoods.  Membership values (alpha notation) have been 
assigned with respect to the “near” relationship type. 

 
Given numerical geographic data about features on a map, 

a network of qualitative relationships between the features is 
constructed.  In the case of QP this firstly requires the 
distance between each pair of features to be calculated.  A 
typical approach is to calculate the Euclidean straight-line 
distance between each pair of objects, for example, in a 2D 
scene: 

 
The membership degree of the distance relation must then 

be determined for each fuzzy set characterising a proximity 
linguistic value.  In this case we have experimented with a 
discrete membership function in order to explore possible 
tractability benefits, however other membership functions 
can be applied.  Thus, the distance value (d) is mapped to 
one of the seven linguistic values that the proximity 
linguistic variable can take.  A standard criterion for 
determining the distance range of each linguistic value (i.e. 
dupper – dlower) is that the distance ranges must be 
monotonically increasing (e.g. very nearrange ≤ nearrange ≤ 
moderately nearrange) [16].  The following mapping function 
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has been used, where d is the distance from the reference 
object to the beginning of the nth linguistic value distance 
range (for n = 0,1,…,6 representing each linguistic value 
from touching to very far away): 

 
d = c.n2 

 
The factor c is used to scale the ranges based on the 

decision as to what distance qualifies as near and can be 
modified for each dataset.  In this case a quadratic 
relationship has been chosen, however, other mapping 
functions may be more suitable depending on the application 
(for example, the touching relation is represented by a range 
of distances rather than only a distance of zero, which may 
not be appropriate in other contexts).  Once the mapping has 
identified a reference qualitative distance, membership 
values in fuzzy sets associated with the remaining linguistic 
values are then assigned according to the conceptual 
neighbourhood graph. 

The set of qualitative relationships (between every pair of 
objects) makes up the complete relationship network, which 
can then be referred to, in order to facilitate more advanced 
query support. 

III. DISTANCE RELATIONSHIPS USING NETWORKS 
In many cases the Euclidean distance is not an appropriate 

measure for determining the proximity of two objects.  For 
example, other geographical features such as impassable 
rivers or cliff edges can interfere with a straight-line path, 
and the topography can affect the effort required to reach a 
destination.  Other mechanisms for appropriately 
determining proximity are required. 

In this paper we consider the use of directed networks to 
provide distance measures between features on a map.  
Transportation networks (roads, walkways, bus routes, flight 
journeys) are an example of geographically based networks, 
where the components of the network are grounded in a 
spatial context, and where travelling through the network 
corresponds to a change in spatial location.   

A network consists of nodes and weighted arcs.  The 
nodes represent path junctions (such as road intersections) 
or network entry and exit points (such as bus stops, or 
departure and arrival cities for a flight network).  Nodes are 
related by arcs, which are weighted with a cost value for 
travelling from the head node to the tail node.  The 
following sections describe the process of creating networks 
from geometrically defined features, binding other (non-
network) features to a network, and combining networks. 

A. Generating Networks 
A network must be constructed from the geometric 

objects that are used to describe features on a map, such as 
points, lines, and polygons.  Figures 4 and 5 illustrate the 
process for generating a road network and a ferry network. 

 

 
Fig. 4. Using line segment data representing roads (left), determine road 
junctions (centre) to generate nodes of a network (right). 

 
 

 
Fig. 5. Using point and line segment data representing ferry journeys 
between wharfs (left), determine the ferry service entry and exit points 
(centre), to generate nodes in a network (right). 

 
Firstly the network nodes must be identified, by 

determining (a) points where paths in the network join, and 
(b) the network entry and exit points.  In the example of a 
road network, nodes represent road junctions, and are 
determined by calculating the intersection points of line-
segments which belong to different roads.  In the ferry 
network, nodes represent departure and arrival wharfs, and 
are determined by taking the points used to represent those 
wharfs.   

The second step is to create the arcs of the network.  An 
arc is formed between two nodes whenever it is possible to 
travel directly between two nodes, without passing through a 
third.  A cost is assigned to the arc, by applying some cost 
function, representing the cost of travelling from the first 
node to the second node through the network.  For example, 
three different functions for determining the cost of 
travelling between two junctions in a road network are:  (i) 
distance to travel (summation of the line segment lengths 
between the nodes); (ii) time taken to travel between the 
junctions (distance travelled combined with the road’s speed 
limit); (iii) time taken when considering traffic flow and 
congestion (distance travelled combined with average car 
speed along the road).  Two different cost functions for 
travelling between ferry wharfs are:  (i) average travel time; 
(ii) fare charged. 

The next step is to determine the cost of the shortest path 
between every pair of nodes in the network.  This requires 
the application of an all pairs shortest path algorithm, such 
as the Floyd-Warshall algorithm [17]. 

Finally, each cost value is used to produce fuzzy sets for 
the linguistic values of the proximity linguistic variable, as 
described in section II.  This new set of qualitative 
relationships can now be used to process queries about 
different nodes in the network, such as “Find all wharfs near 
Devonport wharf via the ferry network”. 



 
 

 

B. Binding Objects to a Network 
The next step, once a network has been generated, is to 

relate objects and features to one another as a measure of 
distance through this network. 

As illustrated in figure 6, the network and the objects lie 
on separate layers.  A mapping between these layers is 
required to bind the objects to the network.  This requires 
binding criteria, a node selection strategy, and a binding cost 
function. 

Binding criteria determine whether a feature is directly 
accessible through the network, by considering the validity 
of network types, and other geometric and geographic 
conditions.  For example, a café may not be considered 
directly accessible via a bus service, however, it may be 
accessible via the footpath network on the condition that 
some footpath exists in its immediate vicinity. 

 
 
Fig. 6. Objects (e.g. buildings) and networks (e.g. roads) lie on separate 
layers (left).  By applying binding criteria, node selection strategies, and 
binding cost functions, the objects layer is mapped    to the network layer 
(right). 

 
Once an object has met the criteria for binding, one or 

more nodes in the network must be selected to which the 
object will be bound.  For example, a café is bound to the 
node representing the nearest junction (according to the 
network cost function) along the road that best satisfied the 
binding criteria. 

Finally, the binding must be associated with two costs 
representing the cost of entering and exiting the network.  
There is no single way to automatically determine a binding 
cost between a feature and a network, and so a binding cost 
function is required.  For example, the cost for entering a 
bus service network can be the journey fare, or the average 
waiting time before the bus arrives.  Binding cost may also 
be zero, for example, when stepping out of a café onto the 
footpath, or exiting a bus.   

Two arcs (one for entry, one for exit) are then formed 
between the feature and each of the selected nodes in a 
binding, weighted with the appropriate costs.  These binding 
arcs provide a mapping between the network layer and the 
object layer, allowing the distance between two features (i1, 
i2) via the network to be calculated as: 

 
cost(i1, j1) + cost(j1, j2) + cost(j2, i2) 

 
where j1, j2 are the network nodes that i1 and i2 are bound to 
respectively, and cost(x,y) provides the cost of travelling 
from x to y. 

These costs are then used to produce fuzzy sets for the 
linguistic values of the proximity linguistic variable, as 

described in section II.  It is assumed that the costs of 
travelling through the network and entry and exit costs are 
compatible.  This assumption is discussed in more detail in a 
later section. 

C. Combining Networks 
It is often necessary to deal with multiple networks in a 

single query.  For example, finding the shortest journey 
from a café to The University of Auckland can involve 
walking along the footpath, using the bus service, and taking 
a ferry ride.  This requires a strategy for combining the 
networks, so that the shortest path spanning multiple 
networks can be determined. 

Combining two or more networks is similar to the 
previously discussed case of binding objects to a network as 
illustrated in figure 7.  Every node in the first network is 
treated like an object in an object layer, and bound to the 
second network.  This requires (a) binding criteria, (b) a 
node selection strategy, and (c) a binding cost function 
specifying the cost of transferring between networks. 

 

 
 

Fig. 7. Different networks lie on separate layers (left).  Networks are 
combined by providing a mapping between the networks (right), analogous 
to the previous case of binding objects to a network. 

 
The result of combining networks and binding objects is a 

3D structure with n-layers.  The shortest path between two 
nodes or objects can cover nodes and arcs from any layer.   

IV. DYNAMIC NETWORKS 
The cost of travelling through a network is often not 

static.  For example, due to the increased traffic load during 
rush hour, the travel time along an inner city road is much 
greater than during off-peak hours.  In many cases the travel 
cost is changing continuously, and is thus difficult to 
manage from a computational perspective due to issues of 
appropriate granularity (deciding on the level of precision to 
model the continuous change), accuracy of the network 
model (determining the degree of uncertainty in the model, 
given a level of precision), and resource limitations. 

On the other hand, people manage continuous change 
very effectively in everyday life by forming clusters (rush 
hour, lunch time, off-peak, and so on) where the network 
travel costs within a cluster are qualitatively similar.  For 
example, when a person states that it takes 30 minutes to bus 
to work at 8am, it is implied that the case holds for a range 
of departure times including 8:01am, 8:02am and so on, and 
a range of travel durations including 29 minutes, 31 minutes, 
etc. 



 
 

 

The fuzzy community has presented tools to generate 
these clusters from sample data (for example [18]).  A 
qualitative approach is to then discretise the continuously 
changing network by taking a representative sample of the 
network for each identifiable cluster, e.g. the median, mode, 
maximum, or minimum sampled speeds, or calculating a 
representative cost, e.g. the average.  The result is a discrete 
set of network states, where the costs between states are 
qualitatively distinct.  This qualitative approach is far less 
computationally expensive compared to more detailed 
numerical approaches (such as calculating differential 
equations), and for many tasks the degree of imprecision is 
satisfactory. 

V. QUALITATIVE QUERYING WITH TREESAP GIS 
To demonstrate the usability advantages of QSR in GIS, a 

desktop application called TreeSap (Topographic Reasoning 
Application) has been developed that allows qualitative 
querying about geographic information [19, 20].  The query 
criteria consists of qualitative relationships between 
geographic features, for example “Find all Roads near all 
Railways”, rather than requiring a numerical distance value.   

A. Querying with Multiple Distance Measures 
The query is built as a hierarchical tree structure of 

conditions between features.  The criteria are described in 
terms of a subject feature, and the required qualitative 
spatial relationships between other features.  Relationships 
may be nested to an arbitrary depth, e.g. as in figure 8, the 
Building must be moderately near a Powerline, such that the 
Powerline is very near Pylon_16.  The query can be 
represented in either a descriptive format (figure 8 top) or a 
concise presentation (figure 8 bottom).   

 

 
 

 
 

  Fig. 8. Screenshots of TreeSap’s query interface.  The user builds their 
query in a hierarchical tree structure of conditions, using either a descriptive 
query representation (top) or a concise representation (bottom). 

B. Network Queries 
Figure 9 illustrates the results for a query: “Find all 

Buildings near King Edward Parade”, with a network cost 
function of road length.  Transparency is used to indicate 

how poorly a feature meets the criteria.  The roads on the 
eastern Devonport peninsula are opaque, and as we follow 
the network north and west the roads grow increasingly 
transparent.  Roads to the east of the southern shore have a 
small Euclidean distance from Devonport, however they are 
not considered “near” in terms of the road network. 

A second visualisation scheme has been implemented 
where the user controls an alpha-cut for the query solution 
quality.  Only features that meet the query criteria by the 
specified threshold or more are displayed, for example, as 
the threshold is lowered (illustrated in figure 10) the roads 
firstly expand across the northern coastline, and eventually 
down and across the southern coastline.  This clearly 
presents the underlying patterns within the query solution. 

 
 

 
Fig. 9. Transparency used to indicate features that do not completely satisfy 
the query criteria.   

 
 

 
Fig. 10. User controls an alpha-cut for the query: “Find Buildings near 
Devonport café (black circle)” so that a feature is only displayed if it meets 
the query criteria by the given threshold or more. 

VI. DISCUSSION AND CONCLUSIONS 
 
We have presented a method for determining the 

qualitative distance between two features through a network 
in which the cost of travelling through the network may 
change over time.  TreeSap GIS has been developed to 
demonstrate how qualitative spatial reasoning can provide 
both an intuitive and flexible system for querying 
geographic data, primarily due to the effective handling of 
vagueness and uncertainty. 

One concern that arises when dealing with multiple 
networks and features is the mixing of different cost units, 
such as monetary cost and travel time.  In this paper we have 
assumed that costs can be flattened into a single uniform 
measure, as it is awkward to automatically combine 
disparate costs without any information about the user or the 
task.  However, with user input or a clear application 
context, costs can be combined by first normalising the costs 



 
 

 

to derive a common unit (e.g. a value between 0 and 1) and 
then weighting them appropriately. 

Network feedback is another issue, where the cost of 
travelling along a path in the network may affect the state of 
the network and the costs.  For example, if a journey is 
started during off-peak time (e.g. at 7a.m.), the travel time 
may be great enough to lead into the next rush hour (e.g. at 
8:00a.m.).  To deal with this, a cost threshold can be used.  
Cost calculations then refer to a succeeding network state 
when the threshold is exceeded. 
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