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A practical inference method with several implicative gradual rues
and a fuzzy input: one and two dimensions

Hazaél Jones, Didier Dubois, Serge Guillaume and Brigitt@rnomordic

Abstract— A general approach to practical inference with some condition on input partitions, inference becomes easy
gradual implicative rules and fuzzy inputs is presented. Gadual  due to a double decomposition: bycut and by partitioning.
rules represent constraints restricting outputs of a fuzzysystem In the sequel of this article, section Il recalls some rule

for each input. They are tailored for interpolative reasoning. featur The inference mechanism is di d in tion
Our approach to inference relies on the use of inferential eatures. € Inierence mechanism IS discusse Sectio

independence. It is based on fuzzy Output Computation undean Il. In SeC“On |V, we present SUf'fICIent COﬂdItIOﬂS to ObtaJ
interval-valued input. A double decomposition of fuzzy inputs  inferential independence. Then, in section V, we propose
is done in terms of a-cuts and in terms of a partitioning of a3 decomposition method based on inferential independence
these cuts according to areas where only a few rules apply. B 1ha¢ gllows to simplify the inference mechanism for rectan-
case of one and two dimensional inputs is considered. . L2 . .
gular inputs and a limited number of fuzzy sets in the input
partition, as explained in section VI. Section VIl adrestes
two dimensional case.
Fuzzy logic, as an interface between symbolic and numeric
computations, is well known for its ability to represent Il. IMPLICATIVE RULES
uncertainty and imprecision inherent in linguistic cortsep The proposition & € A is possible” meansvu €
Historically, fuzzy inference systems were devised to pel, d0x (u) > pa(u) wheredx (u) is a guaranteed possibility
form a reasoning task based upon expert knowledge yieldimgstribution [3] and U is the universe. In contrast, the
a continuous numerical ouput, as needed in fuzzy contrgiroposition % € A is certain” means:
Afterwards, many learning methods were added to enhance
numerical performance. Vu e U,mx (u) < pa(u) 1)
Conjunctive rules [8] as the ones used in the Mamdani- . . L
: . S wherenx (u) is a (potential) possibility distribution.
style fuzzy inference systems, represent joint possilpatin . . .
i b . Conjunctive rules [8] stand for examples of what is pos-
and output values. They do not really fit an interpretation. . ; o .
. ) : sible under various input conditions. On the contrary, with
in terms of logic. In [7], we outlined several advantage$

T ; : : implicative rul very pi f knowl i nsider
of implicative rules with respect to conjunctive rules. For plicative rules, every piece of knowledge is considersd a

. . . . restriction of ible worlds. Th r ir 1
instance, with conjunctive rules, the more rules a rule bat estriction of possible worlds. They are a direct appirat

. L . Bt Zadeh's theory on approximate reasoning[15] and are an
has, the more imprecise its output becomes. This fact Is : : .
. e extension of classical logic.
usually hidden by defuzzification. Furthermore, the fuzzy . .
The generalised modus ponens is of the form

output width can bias t_he_ result. Gradual implicative _rule?l, AN(A — O) £ O, where is the logical
model constraints restricting output values for each inpu . ; .
; T X ) inference, which means that in presence of an approximate
and have interesting interpolation properties [6]. Theg ar, , o
: . : fact A’ and the implicationA — O, we are able to calculate
fully compatible with logic. Among these rules, the most_, defined by -
interesting for practical purposes use Goguen implication y:
because of its continuous inference result, and ReshereGai por(v) = sup par(u)T(palu) — po(v)) (2
implication if a non fuzzy output is needed. Implicativeasil u€l
are more natural to represent expert knowledge [14] as theyThe outputO’ constrains the value of the output variable.
model constraints mapping input and output values. When an operator— (implication) is obtained fromT
Nevertheless, the practical use of these rules with a fuzggonjunction) by residuation, the standard modus ponens
input is difficult. The aim of this article is to show thatumde A A (A — O ) E O is recovered for fuzzy rules.
o Rule aggregation is conjunctive because the possibility in
_Hazaél Jones is with INRA and Cemagref, UMR ITAP, UMR ASBage  the sense of (1) is potential: a value estimated as possjble b
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1 if a S b V.
0 otherwise

o Resher-Gainest — b = { INFERENTIAL INDEPENDENCE

To design a practical algorithm for implicative inference,

. Godella — b = { 1 fa<b we use the interesting property of inferential independenc
b otherwise [12], leading to well-conditioned systems.
) _ min(1,b/a) if a#0 .
« Goguena — b = { 1 otherwise A. Definitions and results

A rule system{A; — O0;,j = 1...,n} is well-
conditioned if it produces the output fac; when fed with
the input fact4,;, foranyi=1... n:

Vi, Aio[ | (4; — 0;) = O;

J
The partition shape will determine if the system is well-
I conditioned or not. More often than not, this equation is not
LR (N true, and is replaced by the following assertion:

Rule condition

0 /
. \ : - — -) = .
Goguen conclusion Resher-Gaines conclusion v Alo (A] O] ) OZ

J
whereO; C O;. According to Morsi[11], if we substitute
each output of a system by the inferred outpyt the system
Aj — Oj is well-conditioned:

Fig. 1. Inference with a gradual rule and a precise input

IIl. | NFERENCE MECHANISM

With implicative rules, the outpud’ is given by: Aioﬂ (45— O;) =0;
J
- Morsi's proof uses residuated implication properties [10]
/I I . .
0= 4o ﬂ (4i — i) ) verified by Godel and Goguen operators and the relation:

=1

N;4; — 0;) =N,;4; — O} proved in [11]. In a
whereo is the composition operatenp-min. When A’ is  well-conditioned system, rules are inferentially indegent.

a precise input, operatotsand() commute, the output can In the sequel, we check which types of partition yield a

then be written: well-conditioned system. The following proof does not work

for Resher-Gaines but it is true for all residuated implmad

obtained from a continuous t-norm.

0 = )(Ao(4; — 0;))
i=1 B. Sufficient conditions

This formalisation corresponds to the FiTaethod. This ~ From equation (2), and because of the cqnjunctiye ag-
method is easy to implement because the inference can @&gation of implicative rules, we obtain with thein

performed rule by rule. conjunction operatorvy € V,

However, when the inputd’ is imprecise or fuzzy, the
commutation of operators a_md_ﬂ is no longer possible [9]. sup 14, (z) T min (uAj (x) — po, (y)) = 1o, (y)
Only the expression (3) which is a FATihference is correct. zeU JEN

Currently there is no practical way of handling inferencéwi By shifting 4, () and t-normT inside ofmin: Yy,
implicative fuzzy rules, other than the Resher-Gaines case

[13]. Another method had been developed in [1] for Godel ) T B
implication but the partition fuzzy sets must have overlagp D ieN (“Ai (@) T (pa, () = pro, (y))) = po.(v)
kernels.

We are looking for sufficient conditions for this equality to
old. SinceO} C O;, the equation is equivalent toy, 3= €
U,

For a one dimensional approximate fact, the foIIowinq]
inclusion is true:

Ao ((n] A — 01-> N (470 (4 — 0))) min (114, (2)T (4, () = o, (1)) = 1o, (v)

Then, we have the following sufficient conditions:
The FITA method only gives an upper approximation of’y, 3z € U,

the result. Vi 4 i, (2) T (i, (2) = o, (1) > po,(y)  (4)
1FITA means "First Infer Then Aggregate” and
2FATI means "First Aggregate Then Infer” A, ()T (pa, (z) — po, (v)) = po, (y) (5)

764



Choosingz € Core(4;), equation (5) obviously holds U ade,c4ac | ada,, (8)
sincel — po,(y) = po,(y) for Godel and Goguen j=1l,...,n j=1,..,n
implication. For Resher-Gaines implication, this equatio
holds if, Vy, we chooser such thatu,(z) = po, (y).

Now, we must check equation (4). If we considerin 1
the core ofA;, then a sufficient condition is the following:
Yy, dx € Core(4;),Vj # i,

KA (‘T) — Mo, (y) > 1o, (y) (6) 0 5
becausd Tz = z. Then we have two cases: inner external
o 4, (x) > po,(y): then equation (6) is not usually true. Fig. 3. a-cut decomposition

If this strict inequality holds for alk: € Core(4;), the

system is not well-conditioned.

o pa;(z) < po,(y): then equation (6) is always true.
In order to respect this condition, partitions must satisfputput will also contain the true output. It could be intdires

the following property: at least one value in a fuzzy set coreo keep both inner and external approximations in order to
must not belong to the support of other sets. i.e. as we cagason with two approximations like for Rough Sets [2].

see on figure 23 = € Core(A;), pa,(z) = 0,V j # i

External approximations seem to be more appropriate
because they include the fuzzy input. The approximated

Equation (8) shows that the number @fcut chosen will
influence the inferred output accuracy.

B. Partitioning decomposition

To partition the input space, we consider supports and
cores seperately. Lef,, be intervals obtained from such a
decomposition (see figure 4). This decomposition is able to
isolate the fuzzy set cores. Thanks to the well-conditioned

system property, inference is straightforward in the coeaa

x U

Fig. 2. A fuzzy partition allowing inferential independanc 1

For strong input fuzzy partitions (see figure 4) the follow-
ing stronger property holds/ j # iV & € Core(4A;),
pa,; () = 0. Hence the system is always well-conditioned : : : :
in this case. 0 v

We now obtain an interesting property useful for inference: B = B B B
for strong fuzzy partitions, withe € Core(4;), the system
output is O; for Gddel and Goguen and'ore(O;) for

Resher-Gaines. This proof holds for a n-dimensional system
In the presence of a fuzzy input’ on an input partition,

V. DECOMPOSITION BASED ALGORITHM we first decomposel’ using ana-cut decomposition. Then,
Now, we use strong fuzzy partitions and the inferentiathe partitioning decomposition will be carried out oti’s
independence property to design a practical inferenceegsoc support. As a consequence, we have the relation:
by input decompositions. These decompositions are feasibl ,
due to the following property of a fuzzy relatiak: A =U, (O‘(Uk:L...,p Ei N Aa))

wherep is the number of interval&,.

Fig. 4. Partitioning decomposition with strong fuzzy péoti

(AU A"YoR = (AoR) U (A'oR) (7)
VI. INFERENCE WITH A RECTANGULAR INPUT

Output O’ is then equal to:
A. a-cut decomposition

!/ /
An a-cut of A is an interval defined by: 0" =Ua (aT(Ukzl"“’p Ok>)
Va > 0,14, = {zx € Rlpa(x) > a} = [Iu, Lor] where O;, = (Ex N Aq)oR and T the t-norm of the
A is equal tanj6 0,1] Aa; X aj where A, is a rect- residuated implication. Due to partitioning, there are astn
angular input of levell whose width is thex-cut IAaj. A two fuzzy sets by decomposition. Furthermore, duetout
fuzzy setA is bracketted within two approximations: innerdecomposition, it all comes down to handling rectangular
and external (see figure 3). inputs. If the rectangular input is included within the fyzz

First we consider one-dimensional inputs.
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1 A Ait1 1 O; Oin 1 A A1 1 0O; Oit1
ay 231 @ et
et s
; i : @ 0 i N ﬂ() T N
v a x b U 0 2y R a b U a Y
Rule condition Resher-Gaines conclusion Rule condition Resher-Gaines conclusion
1 0; Oi41 1 (?/ Offl L 0, Ot 1 Q, 0,‘“
Ay 1 Wl | .
af | wf | | |
: | a; : ! Qj

0 a Y bV O L 0 a Y 0 o [
Godél conclusion Goguen conclusion Godel conclusion Goguen conclusion

Fig. 5. Inference with two gradual implicative rules and agise input  Fig. 6. Inference with two gradual implicative rules and azy input
decomposed on three levels; < a; < 1

set core of4;, the result is obvious: we obtai; for Godel
and Goguen and),’s core for Resher-Gaines. « because the minimum is the upper bound of t-norms.

Let the interval of interest béi;,i,]. A rectangular in- According to the chosen implication, a different t-norm

put membership function is defined Qy;, ;; such that: will be used. For Resher-Gaines and Godel, t-norm is the
a if g <z <i, minimum. Then, the output is truncated at lewvel but its
M) () = 0 otherwise shape is preserved. For Goguen implication, t-norm is the

If a rectangular input is included within the overlappingoroduct. The output is also truncated at levelbut the
of two fuzzy sets (see figure 6), the output is given by:  support slopes are modified (See figure 6).

Output computation for one rectangular input is straight-
forward depending on the chosen implication. The one-
dimensional inference process is done by performing the
union of outputs inferred from each rectangular input tgkin
both decomposition into account.

por(y) = sup  min (u[n,m(fc)TuAi(x)—>uoi(y))
agngzfl,...,n

In this specific case, it is equal to:

por (y)= sup bmin (u[il,m () Tpa, (x) — po, (),

VII. 2D INFERENCE
iy i (x)TMAi+1 (x) — HO;i41 (y)) (9) . . . . . .

In this section, we focus on Resher-Gaines implication
because the computation provides the core of outputs aderr
for somei. As the input is rectangular, there are two casegjsing residuated fuzzy implications. We need to make sure
o Letpy, . (z) =0, then we can deduce thap (y) =0  fuzzy rule conclusions ensure logical system coherence [5]

becausdTx = 0. Then several cases must be studied according to input
o Letpup, i 1(z) = a, then we get the following equation: location.

A. Fuzzy rule conclusions and coherence
por(y)= sup min (aTuAi(x) — ko, (y),

i <z<i,

As a precise input value may belong to at most two fuzzy
sets in each dimensiom( and As, B; and Bs), four rules

aTpa, (@) = Mom(y)) are likely to be simultaneously triggered by a 2D precise

input:
Sincea and T are independent of andi, the system is o If X is Ay andY is By thenZ is O 3
equivalent to: o If X is A; andY is By thenZ is Oy 2

o If X is Ay andY is By thenZ is O3 ;
o If X is Ay andY is By thenZ is O o

Contrary to the one-dimensional case where rule inco-
herence is easily spotted, the two-dimensional rule sys-
Haun (@) —>uoi+1(y)) tem is not so Zas;) to deal with regarding coherenZe.
In order to maintain system coherence, we must have
Next, the output’s behavior depends on the chosenresih; N O12 N Oz1 N Oz £ (. To in-
uated implication. We’'ll consider Resher-Gaines, Goael a sure coherence [4], we build an output coverage (see fig-
Goguen implication. Figure 5 displays inference resulthwi ure 8) given input partitions (see figure 7) and a mono-
a crisp input and two gradual rules. tonic continuous 2D function. We build outputs such as
Level o« has only a limiting effect on the output’s height.O11 = f(A41,B1), 012 = f(A1,B2),021 = f(As,B1)
No output element could have higher membership than levahdO2 2 = f(As, Bs).

por(y)=aT sup min (uAi () — po, (),
i <z <i,
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A, Ay By B,

Fig. 7. Input partitions

O,

1 O14 05, O35

a+b+2c aN2b+3c
a+2b+2c¢ a+3b+2c  a+3b+3c W

0 a

atb atc a+b+c a+2b+c

Fig. 8. Output partition created with a linear functiant bx + cy

As an example, a linear functiof{z, y) a+bx+cy,
creates an output partition calculated from input vertiaes
in figure 8. In this figureO; ; and O » still make a strong
partition. If b = ¢, thenO; » and O, ; are identical.

B. 2D inference difficulties

With input strong partitions, there are 3 different sitoas
according to the precise input location (see figure 9). In the
sequel, we denote™ (o) the smaller of the two abcissas of
U whose membership degree tbis «. The greater value
of the two abcissas is denoted («) (see figure 10).

« Case 1: both inputs lie within the cores of fuzzy sdis
in U and B; in V. In this situation we can directly infer
the output thanks to the rule inferential independence
(see section 1V). Output is equal t©'ore(Oy,) for
Resher-Gaines implication.

« Case 2: the: input lies within the core of a fuzzy sef;,
and they input lies between the cores &f and B,,,. In

Bz‘ 1 2 1

C

By

is

A Ay

A\

Q
< <0 X 1 U
Q) [~~~
Qg -
1V A Ag

Fig. 11. Case 3: four interesting areas

consequence, only 2 rules are triggerdgAB; — Oy
and A, A By, — Og.m. This behavior is the same for an
input y within the core ofB; and an inputz between
A; and A4,,'s cores.

o Case 3: the input lies between the cores of adjacent
fuzzy sets inU and inV (see figure 11). Four rules are
triggered. This is the most complicated case.

Given a functionf(z,y) and a 2D precise input, we
can compute the Resher-Gaines output [4], which is an
interval: expressions of the lower bousgl;,, and upper
boundz,,,, are summed up in table | for each zone (see
figure 11). Zones are defined according to the value of

m = min(ay, ag, 81, B2) (see fig. 7, wherey; = 1—
ag, 01 = 1—[0s):if m = p; we are in zone 3.1,
m = «p corresponds to zone 3.2 = (> to zone

3.3 andm = «s to zone 3.4.

. Continuity and kink points with rectangular inputs

In presence of a rectangular input, it is important to know

if we can compute output upper and lower bounds using only
the vertices of the input. We need to know if the real output

in the convex hull of outputs inferred with the two versce

of the rectangular input.

To illustrate this problem, we consider a precise input on

Fig. 9. Areas defined by input partitions

a*(a) U

a (o)

Fig. 10. Input notation

dimensionV and we study the output evolution according
to the other dimension (see figure 12). This figure shows a
continuous output and a kink point in the lower output bound
for some value ofy;. It is important to detect this point to
obtain the output convex hull.

A kink point is typically obtained if the two
functions defining an output bound (table 1) evolve
in opposite directions. For example, in figure
12, a kink point appears on the lower bound in
zone 3.1. This bound is the result of expression:
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[ Zone | Lower boundz,,;n

3.1 | max f(a;(ag),b; (ag)),f(al (a1),

( ;@)
32 | max ( F(az (82,63 (82)) £ (a3 (B1), ))
33 | max ( £ (a3 (@2),67 (a2)), £ (a3 (B2), ))
34 | max (1 (a5 (0).b5 (). (o5 (2053 (32)) )

[ Zone | Upper boundzmqx |

31 | min <f(a1+(51),bf<ﬁ1)),f(af<a1),b§(a1>
3.2 (f

3.3

3.4

)
)67 (01)). 1 (af ()b ()

min (f(a; (a2), b (a2)) f <a+(0¢1) bf )))
ECIEETD)

min (f(a (B1), b5 (B1)), faf (B2), ))

TABLE |

b3 (62))

(B2))

OUTPUTINTERVALS (a1 =g — 1,81 =32 —1)
= ' ' I
~ 1 Zone 3.2 Zone 3.1 ! Zone 3.4
a+3b+3 | | |
f(aT(l117;~b1+<&1))
[ A+2bA4-2c :
o, e 22 Fat (B, b (B) if af (B
O cat2btc| f£q- B; 3 b5 (5. %
12 flaz( 2)3 3 (B2)) f f((11 (8): 1)7
(a3 (02), b3 2) /
O, at+h+c
1 kink point |
flag (e}, by (an))
a
i i i nl
1 0 B Bs 1
Fig. 12. Output evolution according t®;

(£ (4 (aa). b5 (02)). £ (a7 (@), 05 ) ).
where the former decreases and
increases. Consequently, the kink point

£ (a5 (02),b5 (02)) = £(ar (0).b5 (e))

the

Iattqﬁ4
is where

. For a linear
function f(z,y) = a + bz + cy, this equality becomes: [15]

a + a; (a2)b + by (a2)c = a + aj (a1)b + by (a1)c.

« testif there are kink points those input values are within
the rectangular input.
« infer from all input values yielding kink points.

The final output is the convex hull of all the outputs so
inferred.

VIII. CONCLUSION

This paper lays the foundation for a practical inference
method with a system of implicative fuzzy rules. In the 2D
case the difficult point is to infer from a rectangular (impre
cise) input. For fuzzy input, we can get an approximation of
the result usingv-cuts and partitioning decomposition. Infer-
ring with this kind of fuzzy system is especially appropsiat
when modeling expert knowledge expressing constraints (as
opposed to Mamdani rules). In the future, this method will
be tested on a predictive diagnosis case-study of cheese
production process, for which expert rules with two input
conditions are frequent. Extending the approach beyond 2D
inputs is also the next challenging task.
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