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fighty Thtérpretabie Linguistic Knowledge Bases Optimization:
Genetic Tuning versus Solis-Wetts. Looking for a good
interpretability-accuracy trade-off

Jo€ M. Alonso, O. Coréin, S. Guillaume, and L. Magdalena

~ Abstract—This  work shows how to achieve a good modeling literature regarding that trade-off. On the onedha
interpretability-accuracy trade-off through keeping the strong  those who are first focused on the interpretability and then
fuzzy partition property along the whole fuzzy modeling pro- try to improve the accuracy [6]. On the other hand, those

cess. First, a small compact knowledge base is built. It is highly .
interpretable and reasonably accurate. Second, an optimization who build a knowledge base (KB) focused on the accuracy

procedure, which only affects the fuzzy partitions defining @nd then try to improve its interpretability [7]. According
the system variables, is carried out. It improves the system the classification made in [2], the first approach is called

accuracy while preserving the system interpretability. Two |inguistic Fuzzy Modeling with improved accuracy, and

optimization strategies are compared: Solis-Wetts, a local search the second one is known as Precise Fuzzy Modeling with
based strategy; and Genetic Tuning, a global search based . . .
improved interpretability.

strategy. Results obtained in a well-known benchmark medical
classification problem, related to breast cancer diagnosis, show  Of course, systems built from expert knowledge, where
that our methodology is able to achieve knowledge bases with 5 gomain expert is able to describe the system behavior,
high interpretability and accuracy comparable to that obtained are highly interpretable. Moreover, the expert knowledge |
by other methodologies. ghly P : ’ P ' .
usually a general knowledge related to the most influential
. INTRODUCTION variables and the global system behavior. Alternativelg; s
E Loaic 1251 i K ledaed by i I Kk fai tems can also be built using experimental data, which are
uzzy Logic [25] is ac nowledged by Its Well known f"“,rlikely to give a good image of interaction between variables
for linguistic concept mo_delm_g. T_he_ semantic eXpresﬁs'\”tHowever, the induced knowledge from data is always a
(.)f Fl.JZ.Zy Logic (FL.)’ using linguistic variables [26] anOIspeciﬁc knowledge related to the situations described in
linguistic rules [18], is quite close to expert naturalllgage. the available data set. Both kinds of knowledge convey
As a result, the use of FL favours the interpretability of th%omplementary information, and their cooperation is fikel

final model, but does not guarantee it. For that reason, thecrc?yield compact systems with a high performance
are works with the aim of setting restrictions to the fuzzy '

modeling process in order to guarantee the interpretabilit Thanks to the fuzzy logic formalism, induced knowl-
of the fuzzy model finally obtained. For example, [23]edge can be described with the same kind of _Ilngwstlc
establishes semantic constraints for membership furtiory@riables and rules than those used for expressing expert
On the other hand, other proposals [7] are dedicated t§owledge. A new methodology for combining both kinds
improve the interpretability of fuzzy systems. of knowledge was proposed in [161. Its. |mplementat|on is
This paper focuses on classification problems where intgf@lléd HILK (Highly InterpretableL inguistic Knowledge
pretability is of prime concern, such as diagnosis problem8@ses) and it includes integration, simplification, caesisy
Accuracy, at least at a given level, is a prerequisite. TBNlYSiS, optimization, and evaluation processes. Theepte
be worthy of consideration, the system has to be accurdt@Per is focused on the optimization phase. Two different
enough. On the contrary the rules wouldn't be consideregPtimization strategies are analyzed and compared to hene t
as pieces of knowledge. Anyhow, priority is also given ifuzzy ;yste;m membershlp functlons. Starting from a compact
interpretability. In some cases, both criteria can be fiadis KB With high interpretability and an acceptable accuracy,
to a high degree, but in most cases it is not possible. Th&je goal is to improve the interpretability-accuracy trade
are conflicting goals; high accuracy usually means low intef1Cr€asing accuracy but preserving interpretability with
pretability andvice versa Finding a good trade-off between &lt€ring the strong fuzzy partition property.
accuracy and interpretability is one of the most difficutiks The structure of the paper is as follows. Section Il de-
in system modeling. Two main trends are found in the fuzzgcribes the methodology proposed for building highly inter
pretable knowledge bases. Section Il shows two different
Jog M. Alonso is with the Technical University of Madrid, Ciutla tuning methods, Solis-Wetts and Genetic Tuning. Section
Universitaria s/n, 28040 Madrid, Spain (email: jmam@mat.upm.es v lai h ’ . d d the obtai .d |
O. Cordn and L. Magdalena are with the European Centre for softV €xplains the experiments m‘?‘_ e ?m the o tame_ resu_ ts.
Computing, Edificio Cienfico-Tecnobgico, C/. Gonzalo Guéirez Quibs A well-known benchmark classification problem, Wisconsin
s/n, 33600 Mieres, Asturias, Spain (email: oscar.cordorf@suputing.es, phreast cancer, has been tackled with the aim of comparing
luis.magdalena@softcomputing.es). h Lo h Finall . V off
S. Guillaume is with the Cemagref Montpellier, BP 5095, 34196ni the two Opt'm.'zat'on approaches. Finally, section orters
pellier Cedex 5, France (email: serge.guillaume@montpedieragref.fry. some conclusions.



Il. HIGHLY INTERPRETABLELINGUISTIC KBS

The three conditions for a fuzzy rule-based system (FRBS)
to be interpretable have been stated in [15]:

1) Use of linguistic variables with interpretable fuzzy
partitions. Each system variable is described by a
set of linguistic terms, modeled as fuzzy sets. The
use of strong fuzzy partitions [21] satisfies seman-
tic constraints [23] (distinguishability, normalization
coverage, overlapping, etc.) on membership functions.
Figure 1 shows a strong fuzzy partition (SFP) with 5
terms. The granularity for each variable should be kept

small enough to make the system accurate while being ,

understandable. According to psychologists; 2 is a
limit on human information processing capability [19].
A SFP satisfies the next conditions:
M
vV € U, Zl‘&:(x) =1
i=1

VA; 3z, pa,(z) =1

1)
)

where U=[U,;, U,] is the universe of discoursd};
and U, are the lower and upper limits respectively,
M is the number of linguistic terms andy, (z) is the
membership degree af to the A; fuzzy set.

Defining the most influential variables according to
expert knowledge and experimental data. The expert
can provide complete or partial information about the
variables Expert Partition$. On the other hand, fuzzy
partitions can be created from dataduced Partition
SFPs are kept along the whole process.

« Building a common universe for each variable, accord-
ing to both expert knowledge and data distribution.
The integration of all available knowledge for partition
design is made previous to the rule definition.
Describing the system behavior through linguistic rules.
The expert is invited to express his/her system knowl-
edge as linguistic rulesEkpert Rules Also, rules are
built from data (nduced Rules

Integrating both expert and induced rules into the rule
base. Thanks to the common universe previously de-
fined, both types of rules use the same linguistic terms
defined by the same fuzzy sets. As a consequence,
rule comparison can be done at the linguistic level.
During this last step, rule integration, the fundamental
properties of a rule base have to be guaranteed.
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Fig. 1. A strong fuzzy partition

2) Use of a small number of linguistic rules. The system
behavior is described by means of linguistic rules in

the form If condition Then conclusionwhere both,

the condition and conclusion use linguistic terms. The

condition part is made up of tuplesnput variable

linguistic tern), where the absence of an input variable

in a rule means that the variable is not considered i
the evaluation of the rule.

3)
is compact if its premise is defined by a subset of th
input variables.

HILK methodology lets us build highly interpretable lin-

guistic KBs. The cooperation framework was proposed i
[16], and its implementation consists of the next steps:

Use of compact rules for large systems. A fuzzy rule

The expert is supposed to be able to assess induced
knowledge. Hence, the whole integration process at both
levels, partitions and rules, is run under his/her confrbtee
main steps are carried out regarding the rule base integrati

« First, a consistency analysis of the rule base, and the
subsequent process for solving the linguistic conflicts
previously detected.

« Second, a simplification procedure which increases in-
terpretability keeping either consistency or accuracy.

« Third, an optimization process with the aim of increas-
ing accuracy, but maintaining interpretability.

As the first two steps are thoroughly explained in [3] and

[16] this work focuses on the last one. Let us now go into
details about it.

IIl. OPTIMIZATION PROCESS

The optimization phase only affects the fuzzy partitions
that define the system variables. It comes to membership
function tuning. It is constrained in order to maintain the
SFP property. Two strategies were studied:

1) An element by element optimization procedure based
on the classical local search strategy proposed by Solis
and Wetts [22]: It isa hill climbing method with
memorization of the previous succesfkEs]. The goal

is not to find the global optimum, but to improve
accuracy by performing a few iterations. Two cases
are analyzed: Variable by variable, and label by label.
An all-in-one optimization procedure based on a global
search strategy inspired on the evolutionary processes
that take place in nature, a genetic algorithm (GA)
[14]. In our case, it becomes a genetic tuning process
[10]. GAs usually start with a population of several
randomly generated solutions, chromosomes, and get
better solutions by applying genetic operators. All
system parameters are adjusted at the same time.

n 2)

e

n
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In both cases, the coding scheme considered is the sark@stly, the indices used for measuring KB accuracy, as well
The partition basic parameters (fuzzy sets centers or modse the fitness function, are introduced.
points, C; points in figure 1) are adjusted through slight
modifications to increase the system accuracy, but presgrviA- KB accuracy
meaningful fuzzy sets. Figure 1 illustrates an example ef th The two following indices are used to assess classification
kind of SFPs used in this work. They can include memsystem accuracy:

bership functions of several shapes: triangular, trapeoi | \jnclassified case§UC): Number of cases from the data

and semi-trapezoidal (only in the edges). One paran&ter set that do not fire at least one rule with a degree higher
characterizes each fuzzy sdt, except for the trapezoidal than A. In the experimentsA is equal to 0.1.
membership functions where two parameters, and Cis, « Error cases (EC): Number of remaining cases for

have to bg considered. Thelqptimiz.ation procedure will move  \hich observed and inferred values are different.
the C; points of each partition, given as a result nély

points that define a new SFP, without any ambiguity. Th&;hﬁselandu_:e_s (_:on\t/ﬁy copplifmgntary mformaltlon. 'g gc_Jod
initial number and order of linguistic terms are maintained should minimize them by offering an accurate (reducing

This way, a very compact representation is got for thgc)’ and complete (reducingC) set of rules. They can be

optimization procedure, while the SFP property is alwaygomb'm(j to define the accuracy index:

kept.
P Accuracy = 1 — EC + UC

Notice that there are other coding schemes, for instance [5] AC =
makes a very similar proposal considering two parametevghereAC stands for all cases in the data set. The goal of the
for each fuzzy set disregarding its membership functiooptimization procedure is to maximize this accuracy index.
shape. Thus, a vector dfM real numbers characterizesIn order to do that, the next fithess function is minimized. In
a partition of M labels. As a result, the SFP property isthe experiments, the value= 0.5 is considered.
kept, but not the membership function shapes. For example,

. . . . ) EC ucC
a triangular function can derive to a trapezoidal one. We Fitness=a-—— + (1 —a) - =—
prefer to maintain at least the basic shape, even though AC AC
the slopes can change, because it is strongly related to the-€t us now explain the algorithms used by each optimiza-
linguistic term meaning. Remind that an expert supervisd9n strategy.
the fuzzy partition design and we do not want to lose th .
expert knowledge in the optimization phase. Other proposar Solis-Wetts
like [9] code every characteristic point of the fuzzy sets, System variables are ordered regarding the number of
which gives more freedom degrees to the optimization biitmes they are used in the rule base. The procedure begins
disregarding the SFP property. The same stands for recenffy optimize the most used variable. The detailed algorithm
proposed, advanced genetic tuning mechanisms such as iglpescribed in [13]. Its pseudo-code is as follows:
and [8]. Paper [12] shows how breaking the SFP property 1) Choose an initial vector of parameters to optimiz&?.
can yield more accurate systems, but at the cost of a loss Initialize S = 0 andk = 0. 5'is a bias vector to memorize
of interpretability. This work illustrates that it is pobk the previous successes.

i ) i (*)
to achieve a good interpretability-accuracy trade-ofotigh 2 chgi:n %§§E§T§>S$§k> ):'Sﬁ?ef}\?((? S)aussw\n veatan™

4

keeping the SFP property along the entire process. 3) if FitnessC™® + G®) < FitnesgC™)
Some authors [9] suggest the use of short variation inter- then ¢*+D = ¢ 1 g*)
vals (I} in figure 1) for each membership function parameter SEHD —04.G" 10.2. 5%
to prevent meaningful fuzzy sets. They are defined from else ifFitnesgC™* — G™) < FitnesgC™)
the cross points between the adjacent fuzzy sétsand then C**) = ™ — g
A; 41 in the initial partitions. As a consequence, the semantic S = 50 —0.4.GM

elseC*+) = ¢
S+ = 0.5. 5"
4) If k > Maxlter or Fithess< StopThres

consistency checking of the new partition is quite straight
forward. Nevertheless, this constraint reduces signifigan

the search space and it makes more difficult to find a good then stop
solution. Therefore, this work also tries the use of extende elsek=k+1; go to 2.
variation intervals T;). In this case, each new; point The algorithm stops when it gets the maximum number

must be included between both the precedéht () and the of iterations Maxlter), or the fithess functionFjtnesy is
following (C;11) fuzzy set centers. In the edg€$, (i = 0) under a predefined threshol8topThres This procedure is
andU, (1 = M) are considered. Thus, these two approacheepeated for each fuzzy partition. Two cases are studied:

are considered in the experiments: optimization constthin , variable by Variableg(SW-V): VectorC includes all the

extended variation intervals (El). « Label by Label(SW-L): The procedure is repeated for
In the following, the optimization algorithms under anal- each linguistic term. Vectat' includes only on&”; (one

ysis, Solis-Wetts and Genetic Tuning, are deeply described or two parameters) each time.
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TABLE |

When a KB element (label or variable) is modified, the
GENETIC TUNING CONFIGURATION PARAMETERS

process comes back to the starting point (first variable to

optimize; and first label in the partition in the case of SW- Population length | 60
L). The procedure can be repeated for each KB element up Tournament sizeN) | 2
to five times. Mutation probability | 0.1

Crossover probability| 0.6
C. Genet'c Tun'ng a-crossover 0.3

The composition of the genetic tuning procedure consid-
ered is adapted from the proposal in [9]. The initial KB
is used for building the first individual of the population.
A real-coded chromosome is generated by joining the basic best individual of the previous generation
parameterg’; of every fuzzy partition. The variation interval . .
T, for each parameter’; is also computed. Each basic The procedure stops when it ger the maximum number of
parameterC; is considered as a gene. The total numbegeneratmnsMaXGene), or Fltnesgls under the p_redeflned
of genes is computed as the sum of the number of badfyeshold StopThrek In the experimentsStopThress equal
parameters by input variable. The rest of the population f9 Z€ro- The rest of parameters are detailed in table |.
randomly generated. A random value is assigned to each gene IV. RESULTS AND DISCUSSION
within its variation interval.

The pseudo-code is as follows:

1) Initialize the generation countet, = 0.
2) Evaluate the initial populationP®). ComputeFitness for

« Finally, the elitist selection ensures the selection of the

The two optimization strategies proposed in this paper

sification problem WBCD (Wisconsin breast cancer). This

each individual in the population. database was obtained from the University of Wisconsin
3) while n < MaxGenerand Fitness> StopThres Hospitals, Madison, from Dr. William H. Wolberg. It consist
n:=n+l of 683 samples (incomplete patterns with missing values are
SelectP™) from P~ not taken into consideration) that involve 9 features otatdi
I\C/Iruot:g‘]’f(fn) from fine needle aspirates, for two cancer states (benign or

Elitist selection malignant). WBCD is a medical diagnosis problem. In this
EvaluateP™ !<|nd of gppl!catmn the KB interpretability-accuracy teadff
end while is o_f prime importance. o
For each generation, the following steps are repeated: " 'rst of all, HILK methodology was used for building a
Th lection of P™ from P11 is mad compact KB, with a simultaneous good trade-off regarding
° d te s¢€ e_ct_o ¢ 0 to lect N da N ES r'?.training and test patterns. A 5-fold cross-validafig® made
di/i(ejggllnilr? ItcheOLri:ar\]/Evmsigulsa etigrﬁll;zf?) pirscfh;srgﬁ fricm "Sver the whole data set. It is divided into 5 parts of equad,siz
Lo and each part keeps the original distribution (percentdge o
the old one,P("—1) after making a tournament that P P 9 (p 9

. L (n—1)
;[1;]/olveTNt!nd|V|duals randongly sctia.lectteg kf)ronﬁh N thhe KB basic parameters and the accuracy index averaged
€ seleclion pressure can be adjusted by changing 18, - e five folds. Notice that we have selectedMtirimum

g)nu”:(E;S:i2:112ﬁteN‘[’h-(rghlzrbi?ttr!r;dy;(ljuueal\lmﬁhsee!seg:Iderm t-norm as conjunctive operator, and tiénner rule fuzzy
y : g reasoning mechanism.

the chances of weak individuals to be selected. For - "\ \own Quinlan’s C4.5 algorithm, introduced in

have been evaluated using the well-known benchmark clas-

elements for each class) in the whole set. Table Il describes

:zztisiréii{éﬂi\lnﬁ(iglﬂfqtg; ?:?#éagggt Ig:gt}k%,(ﬂ%n a”[2(_)], has t.)e.en selected as comparison baseline because it
A BLX — o crossover operator [11] is applied. to.bu"ds decision trees which are acknowledged as a very
P Chromosomes of the current population par|_nterpretable knowledge repre;gntatlon. Ngvertheldmyt

: . . . ’ are crisp trees, and as a result it is not considered as atrobus
ents, are crossed over in pairs. Each pair of paren

tt%chnique because their accuracy strongly depends on the

da‘é t|:t t(dé’t.). 't’vslg) gndrirrr]wm - (e, mg), r']‘z crisp threshold values that define their configuration. rinte
substituted by two offspringDy = (041, -, 049) @ pretability is assessed in terms of tree dimension (number o
Om = (0m1,"+* ,0mg), Whereog; ando,,; are random

leaves and tree size). In order to make a comparison with
HILK, the number of leaves can be compared to the total
number of rules, and the tree size (computed as the sum
of the number of nodes in every branch) is equivalent to

values from the intervalsijing, mazq] and min,,;,
maz,y,;], respectively. T,=[TY, T}] is the variation
interval of genej.

- mindj = maximum(T},dj — Q- |dJ — mJ|)

— matg; = mlnlmum(dj z+ a-|d; —myl, Tj") 1The data set is available from the UCI machine learning rémosi

= Minm; = maximum(Ty, m; — o - |m; — d;|) (http:/iwww.ics.uci.edumlearn/MLSummary.html)

— mazm; = minimum(m; + o - |m; — d;|, T}") 2| et us remark that current contribution is not dedicated tplar the
« A uniform mutation operator is considered. The valuénhtire _methodology but only the final optimization phase. sdamfer to the

h (ilted literature ([3] and [16]) for a deeper description.

of the selected gene Is Changed by other one random Y3Cross-validation is a method for estimating generalizationrebased

generated within its variation interval. on resampling [17]. It is often used for choosing among difiemodels.
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TABLE Il
KB CONFIGURATION AND ACCURACY (C4.5vs. HILK).

C4.5 HILK
Parameters Mean | Standard deviation Mean | Standard deviation
Number of rules 114 1.9493 3.6 0.5477
Number of premises 46.8 13.5166 5.6 1.5166
Number of input variableg 5.6 1.1402 2.6 0.5477
Accuracy index (training)| 0.9821 0.0039 0.944 0.0202
Accuracy index (test) 0.9546 0.0131 0.9384 0.0319

the total number of premises. Table Il shows the KB basiobtained in case of relaxing the SFP property but we prefer
parameters and the accuracy index averaged with C4.5. Natekeep it in order to maintain the comprehensibility of the
that we have used the implementation of C4.5 in Weka [24KB as high as possible.
a free software tool for data mining tasks, with the same 5 GT yields the best results. The larger the valueMsx-
fold sets used by HILK. Gener the higher the accuracy. BesideSW-L achieves
The comparison between HILK and C4.5 in table Il letdhigher accuracy thasW-V SW results are slightly better
us draw some conclusions. HILK yields more interpretableonsideringEl, but there is no change regardihndaxliter.
KBs, with a smaller number of premises and rules. Not&his is due to our iterative application of the algorithm.
that the number of inputs is clearly smaller than the initial In order to check thoroughly the effect of the variation
one (9). However, C4.5 achieves more accurate KBs. Astervals Sl or El), we have built HILK-REG which corre-
accuracy and interpretability are conflicting goals, we casponds to the same KBs built by HILK but changing the au-
argue that interpretability improvement is obtained at thtomatically learnt fuzzy partitions for uniformly definedes
cost of a loss of accuracy. Therefore, it seems reasonalieeping the same number of linguistic terms. Consequently,
to make an optimization of KBs obtained by HILK, in HILK-REG partitions are worse fitted than HILK ones, so
order to get a better interpretability-accuracy trade-dffe  their accuracy is smaller. HILK-REG optimization is clsarl
two optimization procedures presented in this work havbeetter forGT andEl. We can conclude th&T yields similar
been applied to these KBs, with the aim of improving theiresults no matter the initial KB (HILK or HILK-REG), but
accuracy indices while keeping their high interpretapilit =~ SW achieves more accurate results starting from HILK. On
Table 11l shows the main results. The first column showthe one hand, if a suited solution is taken as starting point,
the name of the method used for building the initial KBs, folthen a local search strategy liK&W is able to yield very
lowed by the optimization strategy, and in brackets the typgood results in a few iterations. On the other hand, if the
of variation intervals and also a number relativeMaxlter initial solution is not so good, a global search stratege lik
or MaxGenerdepending on the optimization algorith®W- GT seems much more effective. Finally, the us&bspreads
V stands forSolis-Wetts Variable by VariablSW-Lmeans the search space and lets us achieve more accurate solutions
Solis-Wetts Label by LahedndGT is Genetic TuningEach Meaningful fuzzy sets are guaranteed through keeping the
strategy is evaluated witBl (short variation intervals) and SFP property. However, it should be notice that the use of
El (extended variation intervals). The last column shows thiel could lead to change the meaning of the initial fuzzy sets.
mean time in seconds spent by the runs (on a Pentium IV 1.8Lastly, SWis much more efficient thaGT regarding com-
GHz and 1 GB RAM). The other columns show the accuracguting time.SWonly spends a few seconds by run wha&
index over training and test sets, using the arithmetic meapends a few minutes. GT yields greater computational cost
and the standard deviation. C4.5 and HILK accuracy indicefue to the evolutionary process that involves the evalnatio
are included in this table for making easier the comparisoof the entire population for each generation.
with the optimization results. They are obtained through 5-
fold cross-validation. However, six runs for each fold are
made in order to assess the optimization strategies randoniThis paper deals with the interpretability-accuracy trade
nature. Therefore, the mean and standard deviation value$ paradigm. It shows how it is possible to build highly
are computed over 30 different runs of each method. interpretable KBs using linguistic variables with SFPs and
HILK optimization results are quite similar for both linguistic rules. Fuzzy modeling based on using SFPs fassour
strategies $W and GT). There is an accuracy improvementinterpretability but it penalizes accuracy due to it is ayver
regarding both training and test patterns, but it is largero strong constraint. However, the use of optimization sgiete
test ones. Although this improvement is not very significantets us improve accuracy. As a result, we are able to get a
we are able to get a much simpler (and thus much mogood trade-off between both modeling criteria.
interpretable) fuzzy classifier with a test classificatioroe In the context of HILK methodology, the optimization
only less than one percent higher than that of C4.5. Werocess starts from a KB that gives us a quite good solution
should remark that a larger accuracy increase could legarding accuracy and interpretability. Therefore, tise u

V. CONCLUSIONS
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TABLE Il
OPTIMIZATION AVERAGED RESULTS(6 X 5-FOLD CROSSVALIDATION ).

Accuracy Mean
Training Test Run time
Method Mean | Standard deviation Mean | Standard deviation (seconds)
C4.5 0.9821 0.0039 0.9546 0.0131 -
HILK 0.944 0.0202 0.9384 0.0319 -
HILK + SW-V (SI, 10) 0.9462 0.022 0.9428 0.0351 1.2
HILK + SW-V (El, 10) 0.9462 0.022 0.9428 0.0351 1.2
HILK + SW-L (SI, 10) 0.9477 0.0222 0.9443 0.0332 2
HILK + SW-L (El, 10) 0.948 0.0226 0.9443 0.0332 2
HILK + GT (SI, 100) 0.9474 0.02 0.9443 0.0293 117.5
HILK + GT (El, 100) 0.9472 0.02 0.9445 0.0291 120.5
HILK + GT (SI, 1000) 0.948 0.0206 0.9465 0.0297 344.3
HILK + GT (EI, 1000) 0.9483 0.0207 0.9462 0.0299 357.2
HILK-REG 0.8723 0.0568 0.8739 0.0841 -
HILK-REG + SW-L (SI, 10) | 0.9191 0.0502 0.9193 0.0638 5
HILK-REG + SW-L (EI, 10) | 0.937 0.0171 0.9443 0.0324 3.8
HILK-REG + GT (SI, 1000) | 0.9231 0.0335 0.9135 0.0674 333.9
HILK-REG + GT (El, 1000) | 0.9483 0.0207 0.947 0.0307 334.8

of the SW-L strategy seems to be the best option for theo] O. Cordn, F. Herrera, F. Hoffmann, and L. Magdalena, “Genetic

current data set if the run time is a key concern. It increases Fuzzy Systems: Evolutionary tuning and learning of fuzzydedge
. . . . bases,’Adv. in Fuzzy Systems - Applications and Theenl. 19, 2001.
the accuracy in a short run time. Otherwise, the GA gives [@1] L. J. Eshelman and J. D. Schaffer, “Real-coded genegiorshms and
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