
In the proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), Imperial College,

London, UK 23-26 July, 2007

© Essex University 2007 1

Abstract— Marine diesel engines operate in highly dynamic

and uncertain environments, hence they require robust and

accurate speed controllers that can handle the encountered

uncertainties. Type-2 Fuzzy Logic Controllers (FLCs) can

handle such uncertainties; however there are a number of

computational bottlenecks posing as significant barriers,

preventing widespread deployment of type-2 FLCs in

commercial embedded control systems. This paper explores the

use of parallel hardware implementations of interval type-2

FLC as a means to eradicate these barriers producing bespoke

co-processors for a soft core implementation of a FPGA based

32 bit RISC micro-processor. These co-processors will perform

functions such as fuzzification and type reduction and are

currently utilised as part of a larger embedded Interval Type-2

Fuzzy Engine Management System (T2FEMS). Numerous

timing comparisons were undertaken between the co-

processors and hard coded type reducers were the type-2 co-

processors reduced the required computational cycles by 99.88

percent. Thus the co-processors enable us to fully explore the

potential of interval and potentially general type-2 systems in

applied commercial embedded applications.

I. INTRODUCTION

Marine diesel engines operate in highly dynamic and

uncertain environments subject to significant transient

disturbances [1]. Also inherent in such an application is high

levels of uncertainty associated with the sensors and

actuators, both affected by diverse environmental conditions

and calibration issues, whilst the former is mainly affected

by high noise levels the latter is additionally influenced by

wear and tear.

Fig.1. Viking 25

Current commercial engine management systems attempt

to address these uncertainties through the use of averaging of

sensor inputs and gain scheduled control algorithms such as

the gain scheduled PID controller with numerous non-linear

gain functions embedded in the Viking 25 industrial

controller illustrated in figure 1. Despite the additional

complexity of applying these supplementary functionalities,

This work was supported by Regulateurs Europa Ltd.

Christopher Lynch, Hani Hagras and Victor Callaghan are with the

Department of Computer Science, University of Essex, Wivenhoe Park,

Colchester, CO4 3SQ, UK (phone: +44 (0) 1206 873333; email:

clynch@essex.ac.uk).

the Viking 25 is still computationally efficient requiring

several hundred micro-seconds to perform all of its speed

control functions, and using the remaining clock cycles to

perform other engine management features such as signal

conditioning, communications, alarm and monitoring etc. On

the other hand, a type-2 FLC requires the equivalent number

of clock cycles to perform type-reduction alone [1]. Thus

despite any performance improvements type-2 FLC may

offer, these computational bottlenecks remain as a barrier to

the type-2 FLC deployment in commercial embedded

control systems. As a result, an alternative solution which

exploits the high level of parallelism offered by type-2 FLC

was required with the constraint that the solution must also

be backwards compatible with the existing Viking 25 core

software written in C/C++. Such compatibility allows the

portability amongst applications

Currently there are only two other hardware

implementations of type-2 FLC available. The first

implementation was presented in [2] and they produced a

VLSI implementation were the type-2 FLC was designed at

the transistor level on a single chip for a dual input single

output type-2 FLC supporting up to 64 rules. This approach

whilst offering a tailored solution does not offer the

flexibility nor re-programmability of a micro-processor

based solution. Alternatively Melgarejo et al [3] designed a

type-2 FLC for an adaptive filter with a rule base of nine

rules using the Wu-Mendel approximation to height type

reduction. This implementation was embedded on a Field

Programmable Gate Array (FPGA) which is a single chip

programmable logic device. This approach is a highly

optimised and pipelined solution offering a type reduced set

in 9 clock cycles at the expense of being highly memory

intensive; making use of memory base fuzzification,

reciprocal division and distributed arithmetic each of which

require a large amount of on chip memory. Although his

approach is applicable to the higher end FPGAs, it is

unsuitable for larger rule bases on lower cost FPGAs with

less on chip memory.

This paper presents parallel hardware implementations of

interval type-2 FLC for the purpose of control which can

accommodate much larger rule bases than the previous

hardware implementations mentioned above. This will create

bespoke co-processors that can perform functions such as

fuzzification and type reduction. The proposed system is

currently utilised as part of a larger embedded Interval Type-

2 Fuzzy Engine Management System (T2FEMS).

Numerous timing comparisons were undertaken between the

co-processors and equivalent sequential floating

implementations were the type-2 co-processors reduced the

Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management

Christopher Lynch, Hani Hagras Senior Member, IEEE and Victor Callaghan

In the proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), Imperial College,

London, UK 23-26 July, 2007

© Essex University 2007 2

required computational cycles by 99.88 percent.

This paper begins by introducing our hardware and the

engine testing platform in section II. Section III discusses

the hardware co-processor design. Section IV presents the

experiments and results followed by the conclusions in

Section V.

II. THE USED HARDWARE AND ENGINE TESTING PLATFORMS

A. The Hardware Platform

The T2FEMS is embedded on a FPGA and exploits a soft

core implementation of a 32-bit RISC Harvard architecture

(the MicroBlaze) with 32 general purpose registers,

Arithmetic and Logic Unit (ALU), and a rich instruction set

optimised for embedded applications.

The MicroBlaze is a soft core developed by Xilinx (a

manufacturer of FPGAs) implemented using the logic

primitives of the FPGA with the key benefits of easy

integration with the FPGA fabric while avoiding

obsolescence [4]. The soft core based solution has several

advantages over a pure hard core based design. Firstly, it

supports a purely software based application development,

allowing portability between FPGAs. Secondly, the soft core

features do not require any silicon area when it is not

needed, while the hard processor based approach always

consumes the same area [4]. Of particular interest is the

prospect of identifying bottlenecks in the embedded

algorithms and replacing them with a customised soft core

co-processor thus accelerating the performance of certain

functional blocks [4]. These customised soft core co-

processors communicate with the Micro-Blaze via a number

of bus interfaces; two of which are widely exploited in the

T2FEMS design which are the On-chip Peripheral Bus

(OPB) and the Fast Simplex Link (FSL). The OPB is a Core-

Connect IBM standard bus used for less time critical

communications. Alternatively the FSL is a dedicated point-

to-point data streaming interface providing a low latency

interface to the processor pipeline. The OPB and the FSL

allow for extending the processor’s execution unit with

custom hardware accelerators (co-processor) [4].

The MicroBlaze also supports development in C code

using the Xilinx Embedded Development Kit (EDK) whilst

the co-processors are developed using Xilinx ISE

Foundation in VHDL (Very High Speed Hardware

Description Language). The functional/timing simulations

were performed in Mentor Graphics ModelSim.

All of the aforementioned co-processors and Micro-Blaze

will be embedded in a Spartan 3E FPGA (shown in figure

2(a)) which is one of the lower cost per gate devices Xilinx

produce and it is also targeted and rated for automotive

applications with respect to temperature, packaging etc.

Currently the functionally of both the co-processors and

MicroBlaze is verified in both simulation with ModelSim

and additionally through the use of a hardware development

platform with an embedded Spartan 3E (XCS500E) with 64

MByte DDR SDRAM and 16 Mbit SPI Flash. Numerous

communications interfaces exist including RS232, Ethernet

and JTAG. The platform also has numerous digital inputs

and outputs (I/O) and analogue I/O. Currently the T2FEMS

is programmed into external flash before being boot-loaded

into the FPGA and executed from external DDR SDRAM or

alternatively internal block RAM.

 (a) (b)

Fig. 2. (a) Spartan 3E FPGA [4]. (b) The testing platform.

B. The Engine Testing Platform

The embedded control algorithms are tested and verified

on the engine testing platform shown in figure 2(b) which is

designed to realistically reflect the characteristics and

operating conditions of the marine diesel engines; with the

ability to alter speed, load, inertia and torque. The platform

uses the same noisy sensors and actuators used on the engine

with the ability to introduce the same uncertainty levels

encountered on the real engines.

The core functionality of the MicroBlaze is defined in c

code whilst the co-processors are developed in VHDL and

communicate with the MicroBlaze via the FSL or OPB

interface bus. Unfortunately the restrictive page limit of this

paper only allows for the type reduction co-processors to be

discussed in detail.

III. HARDWARE CO-PROCESSORS

A. Fuzzification

Numerous fuzzification strategies have been exploited in

the design of FPGA and VLSI based fuzzy controllers. The

most common method is memory based fuzzification [3],

were any arbitrary shaped Membership Function (MF) can

be represented in memory by discretising its universe of

discourse and storing the resultant degree of membership in

memory, providing very fast fuzzification. The disadvantage

of this method relates to the required resolution and level of

discretisation possibly resulting in very large MF tables.

Mathematical approximations of membership functions

[5], [6] are also widely used but any errors produced by

crude approximations can be problematic for adaptive

systems as a continuous function approximation may not

prove to be continuous in all segments.

Analogue fuzzifiers have been developed by [7], [8],

despite being very fast and power efficient analogue

implementations are prone to temperature related drift and

inaccuracies related to component tolerances.

Linear interpolation is applicable for both trapezoidal and

In the proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), Imperial College,

London, UK 23-26 July, 2007

© Essex University 2007 3

triangular MF fuzzification offering fast fuzzification with

minimal resources.

We have implemented type-2 fuzzifiers employing

trapezoidal and triangular MFs. The type-2 fuzzifiers were

implemented as single FSL co-processor. In this

implementation, the triangular MFs were considered a

special case of the trapezoidal MFs. This co-processor

makes use of linear interpolation producing both upper and

lower fuzzified values in 12 clock cycles. Also developed

are type-2 Gaussian fuzzifiers in c code for the MicroBlaze.

B. Rule Base

FPGA based rules bases are typically a binary pattern

used to reference antecedents, consequents and the

connective operator of each rule. The hardware realisation of

the rules involves a number of multiplexers and memory

elements as in [3]. The T2FEMS rule base will be defined in

C code within the Micro-Blaze processor. Hard-coded

VHDL implementation’s were previously designed but

prove a less flexible and maintainable solution. Also the rule

base will form part of an adaptive type-2 FLC planned for

future development making further use of the Micro-Blaze

processor core.

C. Inference

A number of t-norm and t-conorm inference operators

exist. One of the most common t-norms for embedded

systems is the minimum t-norm due to its ease of

implementation and lesser resources required compared to

the product t-norm. Were the product t-norm is defined as a

multiplier while the minimum t-norm needs only a simple

magnitude comparator.

In retrospect, application of the minimum operator is not

necessarily the correct choice for embedded control systems

with more than two inputs [9], [10], as it creates non-

linearities in the control surface. Additionally the

MicroBlaze ALU is already defined in the FPGA resources

and can perform a product operation in a single clock cycle

thus product t-norm will be used throughout this paper.

D. Type-Reduction

The approach taken in this paper is to minimise the logic

used by the co-processor sacrificing speed in favour of a

reduced gate count and lower cost FPGA’s. As with the

fuzzifiers the type-reduction co-processor will interface

directly to the Micro-Blaze via the FSL bus. The co-

processor will support up to 32 fired rules with a resolution

of 16 bits for both the firing intervals [] and

consequent centroids []. Were possible single adders

will be used for large summations (i.e. were s a

single adder) thus requiring M clock cycles for the

summation but utilising less FPGA resources than a

completely parallel implementation requiring M adders and a

single clock cycle.

Currently both the iterative Karnick-Mendel (KM)

procedure for type-reduction [11] (employing the centre of

sets type-reduction) and Wu-Mendel (WM) Uncertainty

Bounds [12] method (approximating type-reduction) are

supported and designed using VHDL as co-processors to the

Micro-Blaze, denoted KM-CP and WM-CP respectively.

Both approaches will now be defined in a manner more

applicable to a FPGA based implementation.

1) KM Co-Processor

The KM procedure is typically defined as a four step

iterative procedure [11]. This procedure will now be

redefined with the removal of step 2 thus not requiring the L

and R index variables used in [11]. The modified procedure

is shown below for .

Without loss of generality assume the are arranged in

ascending order:

1. Compute in Equation (1) by initially setting

 for i=1…M and set

2. Compute in Equation (1) with for

 and for and set

3. If then set and stop, otherwise let

equal to and return to step 2

 (1)

The procedure for can also modified in a similar

manner. This 3 step procedure for both and was

analysed and segmented into a number of parallel processes

and memory elements. Figure 3 depicts a graphical

representation of the final VHDL implementation of KM-CP

in the FPGA.

Figure 3 embeds a number of parallel processes ‘P’ and a

number of memory elements ‘MEM’ (32 bits wide each).

Memory element MEM1 stores the consequents

and of the fired rules,

whilst MEM2 stores the firing interval and . The

firing interval and consequents of the fired rules will be

passed to the type-reducer from the Micro-Blaze processor

via the FSL bus as fixed point integers. Each firing strength

is represented as a 16 bit unsigned value and similarly the

consequent centroids are each 16 bits signed. As each FSL

bus transfer is 32 bit it was deemed more efficient to reduce

the number of FSL bus transfers by combining the centroid

interval into a single 32 bit value, likewise with the firing

interval. Therefore reducing the number of writes via the

FSL bus to M (number of fired rules) writes for each

memory element, thus it requires 2M FSL writes to transfer

all the required data for type-reduction. An additional FSL

write is also required to initiate the co-processor and define

status information such as the number of fired rules etc. As

In the proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), Imperial College,

London, UK 23-26 July, 2007

© Essex University 2007 4

each FSL bus transfer requires two clock cycles it will take a

total of (2M+1)*2 clock cycles to complete all FSL writes to

the KM-CP.

Fig.3. Graphical representation of KM-CP

The processes of figure 3 are represented as a number of

summations (P3 and P4), multiply and summations (P1, P2,

P5 and P6), additions P7, P8, P9 and P10, divisions P11 and

finally comparisons P12 and P13.

Each column of processes operates in parallel i.e. P1 to

P6 (requires M clock cycles) function in parallel and their

outputs are used as inputs to another column of parallel

processes P7 to P10 (requires a single clock cycle).

The process P11 (division) is included twice and

represents a shared process i.e. the same hardware is used

for both divisions. P11 is a VHDL implementation of a

pipelined radix-2 non-restoring signed integer divider

requiring an initial 20 clock cycles for the first division and

1 additional clock cycle thereafter thus both P11 processes

will require a combined total of 21 clock cycles to complete.

The final column contains comparative processes P12 and

P13 representing step three of the modified KM procedure,

comparing or respectively, if either

comparison is false then is set equal to and is fed back

to the inputs of P1-P6, requiring only a single clock cycle to

perform. However when both P12 and P13 are true then type

reduction is complete and , are passed back to the

Micro-Blaze processor via the FSL bus.

The additional signal “initialise” relates to the first

iteration through the modified KM procedure. Therefore

when the initialise signal is set, processes P2, P3 and P5 are

disabled (thus outputting 0), additionally all are set

equal to , also is initially set to a predefined

maximum value whilst is set to a predefined minimal

value. Finally the comparative processes P12 and P13 are

also disabled simply setting equal to and returning

the value to the inputs of P1-P6. After this first iteration the

“initialise” signal changes state and the processes operate as

normal. Finally when both comparisons are true the type

reduced set is combined into a single 32 bit value and

returned via the FSL bus to the Micro-Blaze requiring a

further two clock cycles (FSL Read).

Table 1 defines the complete number of clock cycles

required for each parallel column of figure 3.

TABLE I

KM-CP TYPE REDUCTION CLOCK CYCLES

 M1, M2 P1 to

P6

P7 to

P10

P11 P12 to

P13

FSL

Read

Clock Cycles 4M+2 M 1 21 1 2

The total number of clock cycles required by the KM-CP

is greatly influenced by the number of fired rules and the

number of iterations required to complete type-reduction and

can be represented by the following formula:

 (2)

Were N is the number of iterations required by the KM

iterative procedure (not including the initialisation iteration).

In the following section a similar analysis and is carried out

for the WM-CP.

2) WM Co-Processor

The Wu Mendel Boundary equations provide mathematical

formulas for the inner and outer bound sets which can be

found in [12]. Analysis of these equations will reveal the

WM approach makes use of a larger number of arithmetic

operators than the KM-CP thus requiring more FPGA

resources, but has the added advantage of not being an

iterative process thus does not require any large local

memory elements as in the KM-CP.

Figure 4 depicts a graphical representation of the final

VHDL implementation of WM-CP in the FPGA. Again each

column of processes operates in parallel, were P1 to P4 are

multiply and summation, P5 and P6 summations, P7

summation and a subtraction, finally P8 to P11 are multiply

and summation with a subtraction.

Processes P1 to P11 operate during the FSL writes to the

co-processor requiring 2M FSL bus transfers to complete.

As with the KM-CP there is additional FSL transfer

containing status information, thus P1 to P11 require a total

of 4M+2 clock cycles. Also the first few FSL writes are

reserved for the centroid values , , and

required by processes P8 to P11 and thus stored as

registered values.

The remaining processes are clearly marked as divisions,

product, summation or the min and max comparators

required by the WM equations. Were each parallel column

of processes P12-P16, P18 to P21 and P22 to P23 require a

single clock cycle each to complete.

As in the KM implementation the divider (P17) is shared

amongst all the processes, making used of the same radix-2

non-restoring signed integer divider that the KM-CP used

requiring a combined total of 26 clock cycles to complete all

In the proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), Imperial College,

London, UK 23-26 July, 2007

© Essex University 2007 5

divisions. Table 2 defines the complete number of clock

cycles required for each parallel column of figure 4.

Fig.4. Graphical representation of WM-CP

TABLE II

WM-CP TYPE REDUCTION CLOCK CYCLES

 P1 to

P11

P12 to

P16

P17 P18 to

P21

P22,

P23

FSL

Read

Clock Cycles 4M+2 1 26 1 1 2

The total number of clock cycles required by the WM

type-reduction block is only influenced by the number of

fired rules, thus a basic formula representing the total

number of clock cycles required for the WM-CP is:

 (3)

Thus if 20 rules fired the WM method of type reduction

would require 113 clock cycles to compute the values

required by the MicroBlaze for defuzzification whilst the

KM-CP would require , thus if the KM

procedure required one iteration (not including the first

iteration) it would be 37 clock cycles slower than the WM

implementation, otherwise for two iterations it would be 80

clock cycles slower and for 3 iterations it would be 123

clock cycles slower.

E. Defuzzification

Whilst defuzzification could also be performed in the type

reduction co-processors this function is currently performed

in the MicroBlaze processor were defuzzification for both

the KM and WM methods is easily achieved by multiple

logical shift operations in the MicroBlaze requiring a

minimal computational effort.

IV. EXPERIMENTS AND RESULTS

A. Computational Comparison

In this subsection, we will introduce a comparison

between the computational times of the KM-CP and WM-

CP. A type-2 FLC was coded in the MicroBlaze processor in

C, including Gaussian type-2 fuzzification and the rule base

previously used in a similar timing analysis in [1]. The firing

strengths and centroids of the rule consequents were

calculated in the MicroBlaze before being passed to the co-

processors via the FSL bus.

(a)

(b)

Fig. 5. (a) KM-CP and WM-CP (b) MicroBlaze KM and WM

Figure 5(a) illustrates the final results of this timing

analysis and shows the linear relationship between the WM-

CP to the number of fired rules, a very advantageous trait as

its consistency and predictability allow the MicoBlaze to

transfer all data to the WM-CP and then continue executing

other code, rather than waiting for the WM-CP to return the

type reduced. Conversely the KM-CP is dominated by the

number of fired rules and the number of iterations required

to complete type reduction, such that it is difficult to predict

in advance the total clock cycles the KM-CP will require, as

the number of required iterations is unknown. Although the

minimum number of clock cycles (at least 1 iteration) can be

known allowing the MicroBlaze a minimal window within

In the proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), Imperial College,

London, UK 23-26 July, 2007

© Essex University 2007 6

which to perform other functions. Figure 5(a) also reveals

that the WM-CP required 44.72 percent less clock cycles

relative to the KM-CP in the instance of 14 fired rules, a trait

clearly reflected across the range of fired rules.

Figure 5(b) illustrates a sequential floating point

implementation of the KM and WM type reducers

implemented in C on the MicroBlaze (executed from

external memory), subjected to the same tests data as the co-

processors.

In the instance of 14 fired rules the KM-CP achieved a

99.88 percent reduction in the number of clock cycles

required for type reduction compared to the equivalent

floating point implementation. Whilst the WM-CP for the

same number of fired rules achieved a 99.91 percent

decrease compared to its equivalent floating point

implementation. Thus the hardware acceleration offered by

the co-processors removes any significant bottlenecks from

type-2 FLC and consequently identifies a future platform for

general type-2 FLC to achieve similar performance

advantages.

B. Co-Processors Comparison

TABLE III

FPGA RESOURCES AND COMPUTATIONAL DEMANDS OF CO-PROCESSORS

 MICROBLAZE FSL KM FSL WM DIVIDER

SLICES 1728 562 600 559

FREQUENCY 52MHZ 76MHZ 65MHZ 122MHZ

Table 1. defines the number of FPGA resources expressed

in slices (an FPGA is defined by an array of configurable

logic blocks each having a predefined number of logic

slices) that each component uses and also the maximum

frequency of operation expressed in Hertz. The number of

slices required by the type reduction co-processors has been

defined without the divider as this is currently a highly

resource intensive component. Alternative methods of

division such as a reciprocal divider or a slower

implementation of the current solution may prove more

efficient. Both the KM-CP and WM-CP achieve similar

maximum frequencies and total slices used with the WM-CP

having a slightly lesser maximum frequency due to slower

combinational paths e.g. P8 is a multiplication and a

subtraction. Overall the co-processors and MicroBlaze use

little of the 4,656 slices available in the Spartan 3E

(XCS500E).

V. CONCLUSIONS

In this paper, we presented a parallel implementation of

both Wu-Mendel and Karnick Mendel approaches to the

centre of sets type reduction. Both implementations were

defined in VHDL and operate as co-processors to a 32 bit

soft core micro-processor. The co-processors communicated

over the FSL bus to the MicroBlaze performing type-

reduction in parallel realising reductions in clock cycles of

99.88 and 99.91 percent for the KM-CP and WM-CP

respectively (compared to an equivalent sequential floating

point implementation).

Timing analysis also compared the WM-CP and KM-CP

for the same number of fired rules, were the WM-CP

required 44.72 percent less clock cycles than the KM-CP.

Also the WM-CP offers predictable timing enabling the

MicroBlaze to predict a fixed window within which it can

execute other tasks.

The complete T2FEMS implementation of the Type-2

FLC with FSL fuzzification and type reduction co-

processors would certainly now be comparable to a

sequential implementation of a type-1 FLC. The

performance advantages of this type of implementation also

reveal new prospects for the commercial application of

general type-2 FLC and present an exciting future for

applied embedded type-2 systems. We are currently working

towards increasing the maximum operational frequency and

reducing the number of required slices for all co-processors.

REFERENCES

[1] C. Lynch, H. Hagras and V. Callaghan, “Using Uncertainty Bounds in

the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed

Controller for Marine Diesel Engines” in Proc. of the WCCI 2006,

Vancouver, Canada, 2006

[2] Shih-Hsu Huang and Yi-Rung Chen, “VLSI implementation of type-2

fuzzy inference processor”, Proceedings of tthe IEEE International

Symposium on Circuits and Systems, 2005, pp. 3307- 3310, Vol. 4,

23-26 May 2005

[3] M.Melgarejo, A. Garcia, C.A. Pena-Reyes, “Pro-Two: A hardware

based platform for real time type-2 fuzzy inference”, Proceedings

IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 977-

982, 25-29 July 2004

[4] Xilinx (2006, June 01). “MicroBlaze Processor Reference Guide”

[Online]. Available: http://www.xilinx.com

[5] J.J. Blake, L.P. Maguire, T.M. McGinnity, B. Roche, L.J. McDaid,

“The implementation of fuzzy systems, neural networks and fuzzy

neural networks using FPGAs”, Information Sciences, Volume

112, Number 1, December 1998, pp. 151-168

[6] D.J. Myers, and G. Storti-Gajani, "Efficient Implementation of

Piecewise Linear Activation Function for Digital VLSI Neural

Networks," Electronics Letter, vol. 25, no. 24, pp. 1,662-1,663, Nov.,

1989.

[7] McDaid L.J.; McGinnity T.M.; Maguire L.P “Hardware

Implementation of a Membership Function Generator for Fuzzy

Reasoning”, Information Sciences, Volume 96, Number 1, January

1997, pp. 93-105(13)

[8] Djuro G.Zrilic, Jaime Ramirez-Angulo, Bo Yuan, “Hardware

implementations of fuzzy membership functions, operations and

inference”, Computers and Electrical Engineering, March 1998

[9] R. Jager, Fuzzy Logic in Control, PhD thesis, Technische Universiteit

Delft,June 1995.

[10] Pauli Viljamaa, “Fuzzy Gain Scheduling and Tuning of Multivariable

Fuzzy Control—Methods of Fuzzy Computing in Control Systems”,

PhD thesis, Tampere Univ. of Technology, Publications 293, 2002

[11] J.Mendel, "Uncertain Rule-Based Fuzzy Logic Systems: Introduction

and New directions," Upper Saddle River, NJ: Prentice-Hall, 2001.

[12] H. Wu and J. Mendel, “Uncertainty bounds and their use in the design

of interval type-2 fuzzy logic systems,” IEEE Trans. on Fuzzy

Systems, vol.10, pp. 622-639, October 2002.

