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Abstract— Marine diesel engines operate in highly dynamic 

and uncertain environments, hence they require robust and 

accurate speed controllers that can handle the encountered 

uncertainties. Type-2 Fuzzy Logic Controllers (FLCs) can 

handle such uncertainties; however there are a number of 

computational bottlenecks posing as significant barriers, 

preventing widespread deployment of type-2 FLCs in 

commercial embedded control systems. This paper explores the 

use of parallel hardware implementations of interval type-2 

FLC as a means to eradicate these barriers producing bespoke 

co-processors for a soft core implementation of a FPGA based 

32 bit RISC micro-processor. These co-processors will perform 

functions such as fuzzification and type reduction and are 

currently utilised as part of a larger embedded Interval Type-2 

Fuzzy Engine Management System (T2FEMS). Numerous 

timing comparisons were undertaken between the co-

processors and hard coded type reducers were the type-2 co-

processors reduced the required computational cycles by 99.88 

percent. Thus the co-processors enable us to fully explore the 

potential of interval and potentially general type-2 systems in 

applied commercial embedded applications. 

I. INTRODUCTION 

Marine diesel engines operate in highly dynamic and 

uncertain environments subject to significant transient 

disturbances [1]. Also inherent in such an application is high 

levels of uncertainty associated with the sensors and 

actuators, both affected by diverse environmental conditions 

and calibration issues, whilst the former is mainly affected 

by high noise levels the latter is additionally influenced by 

wear and tear.  

 
Fig.1. Viking 25 

Current commercial engine management systems attempt 

to address these uncertainties through the use of averaging of 

sensor inputs and gain scheduled control algorithms such as 

the gain scheduled PID controller with numerous non-linear 

gain functions embedded in the Viking 25 industrial 

controller illustrated in figure 1. Despite the additional 

complexity of applying these supplementary functionalities, 
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the Viking 25 is still computationally efficient requiring 

several hundred micro-seconds to perform all of its speed 

control functions, and using the remaining clock cycles to 

perform other engine management features such as signal 

conditioning, communications, alarm and monitoring etc. On 

the other hand, a type-2 FLC requires the equivalent number 

of clock cycles to perform type-reduction alone [1]. Thus 

despite any performance improvements type-2 FLC may 

offer, these computational bottlenecks remain as a barrier to 

the type-2 FLC deployment in commercial embedded 

control systems. As a result, an alternative solution which 

exploits the high level of parallelism offered by type-2 FLC 

was required with the constraint that the solution must also 

be backwards compatible with the existing Viking 25 core 

software written in C/C++. Such compatibility allows the 

portability amongst applications  

Currently there are only two other hardware 

implementations of type-2 FLC available. The first 

implementation was presented in [2] and they produced a 

VLSI implementation were the type-2 FLC was designed at 

the transistor level on a single chip for a dual input single 

output type-2 FLC supporting up to 64 rules. This approach 

whilst offering a tailored solution does not offer the 

flexibility nor re-programmability of a micro-processor 

based solution. Alternatively Melgarejo et al [3] designed a 

type-2 FLC for an adaptive filter with a rule base of nine 

rules using the Wu-Mendel approximation to height type 

reduction. This implementation was embedded on a Field 

Programmable Gate Array (FPGA) which is a single chip 

programmable logic device. This approach is a highly 

optimised and pipelined solution offering a type reduced set 

in 9 clock cycles at the expense of being highly memory 

intensive; making use of memory base fuzzification, 

reciprocal division and distributed arithmetic each of which 

require a large amount of on chip memory. Although his 

approach is applicable to the higher end FPGAs, it is 

unsuitable for larger rule bases on lower cost FPGAs with 

less on chip memory. 

This paper presents parallel hardware implementations of 

interval type-2 FLC for the purpose of control which can 

accommodate much larger rule bases than the previous 

hardware implementations mentioned above. This will create 

bespoke co-processors that can perform functions such as 

fuzzification and type reduction. The proposed system is 

currently utilised as part of a larger embedded Interval Type-

2 Fuzzy Engine Management System (T2FEMS).  

Numerous timing comparisons were undertaken between the 

co-processors and equivalent sequential floating 

implementations were the type-2 co-processors reduced the 
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required computational cycles by 99.88 percent. 

This paper begins by introducing our hardware and the 

engine testing platform in section II. Section III discusses 

the hardware co-processor design. Section IV presents the 

experiments and results followed by the conclusions in 

Section V.  

II. THE USED HARDWARE AND ENGINE TESTING PLATFORMS  

A. The Hardware Platform  

The T2FEMS is embedded on a FPGA and exploits a soft 

core implementation of a 32-bit RISC Harvard architecture 

(the MicroBlaze) with 32 general purpose registers, 

Arithmetic and Logic Unit (ALU), and a rich instruction set 

optimised for embedded applications.  

The MicroBlaze is a soft core developed by Xilinx (a 

manufacturer of FPGAs) implemented using the logic 

primitives of the FPGA with the key benefits of easy 

integration with the FPGA fabric while avoiding 

obsolescence [4]. The soft core based solution has several 

advantages over a pure hard core based design. Firstly, it 

supports a purely software based application development, 

allowing portability between FPGAs. Secondly, the soft core 

features do not require any silicon area when it is not 

needed, while the hard processor based approach always 

consumes the same area [4]. Of particular interest is the 

prospect of identifying bottlenecks in the embedded 

algorithms and replacing them with a customised soft core 

co-processor thus accelerating the performance of certain 

functional blocks [4]. These customised soft core co-

processors communicate with the Micro-Blaze via a number 

of bus interfaces; two of which are widely exploited in the 

T2FEMS design which are the On-chip Peripheral Bus 

(OPB) and the Fast Simplex Link (FSL). The OPB is a Core-

Connect IBM standard bus used for less time critical 

communications. Alternatively the FSL is a dedicated point-

to-point data streaming interface providing a low latency 

interface to the processor pipeline. The OPB and the FSL 

allow for extending the processor’s execution unit with 

custom hardware accelerators (co-processor) [4]. 

The MicroBlaze also supports development in C code 

using the Xilinx Embedded Development Kit (EDK) whilst 

the co-processors are developed using Xilinx ISE 

Foundation in VHDL (Very High Speed Hardware 

Description Language). The functional/timing simulations 

were performed in Mentor Graphics ModelSim.  

All of the aforementioned co-processors and Micro-Blaze 

will be embedded in a Spartan 3E FPGA (shown in figure 

2(a)) which is one of the lower cost per gate devices Xilinx 

produce and it is also targeted and rated for automotive 

applications with respect to temperature, packaging etc. 

Currently the functionally of both the co-processors and 

MicroBlaze is verified in both simulation with ModelSim 

and additionally through the use of a hardware development 

platform with an embedded Spartan 3E (XCS500E) with 64 

MByte DDR SDRAM and 16 Mbit SPI Flash. Numerous 

communications interfaces exist including RS232, Ethernet 

and JTAG. The platform also has numerous digital inputs 

and outputs (I/O) and analogue I/O. Currently the T2FEMS 

is programmed into external flash before being boot-loaded 

into the FPGA and executed from external DDR SDRAM or 

alternatively internal block RAM. 

 

                             (a)                                                       (b) 

Fig. 2. (a) Spartan 3E FPGA [4]. (b) The testing platform. 

B. The Engine Testing Platform  

The embedded control algorithms are tested and verified 

on the engine testing platform shown in figure 2(b) which is 

designed to realistically reflect the characteristics and 

operating conditions of the marine diesel engines; with the 

ability to alter speed, load, inertia and torque. The platform 

uses the same noisy sensors and actuators used on the engine 

with the ability to introduce the same uncertainty levels 

encountered on the real engines. 

The core functionality of the MicroBlaze is defined in c 

code whilst the co-processors are developed in VHDL and 

communicate with the MicroBlaze via the FSL or OPB 

interface bus. Unfortunately the restrictive page limit of this 

paper only allows for the type reduction co-processors to be 

discussed in detail. 

III. HARDWARE CO-PROCESSORS 

A. Fuzzification 

Numerous fuzzification strategies have been exploited in 

the design of FPGA and VLSI based fuzzy controllers. The 

most common method is memory based fuzzification [3], 

were any arbitrary shaped Membership Function (MF) can 

be represented in memory by discretising its universe of 

discourse and storing the resultant degree of membership in 

memory, providing very fast fuzzification. The disadvantage 

of this method relates to the required resolution and level of 

discretisation possibly resulting in very large MF tables. 

Mathematical approximations of membership functions 

[5], [6] are also widely used but any errors produced by 

crude approximations can be problematic for adaptive 

systems as a continuous function approximation may not 

prove to be continuous in all segments.  

Analogue fuzzifiers have been developed by [7], [8], 

despite being very fast and power efficient analogue 

implementations are prone to temperature related drift and 

inaccuracies related to component tolerances.  

Linear interpolation is applicable for both trapezoidal and 
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triangular MF fuzzification offering fast fuzzification with 

minimal resources.  

We have implemented type-2 fuzzifiers employing 

trapezoidal and triangular MFs. The type-2 fuzzifiers were 

implemented as single FSL co-processor. In this 

implementation, the triangular MFs were considered a 

special case of the trapezoidal MFs. This co-processor 

makes use of linear interpolation producing both upper and 

lower fuzzified values in 12 clock cycles. Also developed 

are type-2 Gaussian fuzzifiers in c code for the MicroBlaze. 

B. Rule Base 

FPGA based rules bases are typically a binary pattern 

used to reference antecedents, consequents and the 

connective operator of each rule. The hardware realisation of 

the rules involves a number of multiplexers and memory 

elements as in [3]. The T2FEMS rule base will be defined in 

C code within the Micro-Blaze processor. Hard-coded 

VHDL implementation’s were previously designed but 

prove a less flexible and maintainable solution. Also the rule 

base will form part of an adaptive type-2 FLC planned for 

future development making further use of the Micro-Blaze 

processor core. 

C. Inference 

A number of t-norm and t-conorm inference operators 

exist. One of the most common t-norms for embedded 

systems is the minimum t-norm due to its ease of 

implementation and lesser resources required compared to 

the product t-norm. Were the product t-norm is defined as a 

multiplier while the minimum t-norm needs only a simple 

magnitude comparator. 

In retrospect, application of the minimum operator is not 

necessarily the correct choice for embedded control systems 

with more than two inputs [9], [10], as it creates non-

linearities in the control surface. Additionally the 

MicroBlaze ALU is already defined in the FPGA resources 

and can perform a product operation in a single clock cycle 

thus product t-norm will be used throughout this paper.  

D. Type-Reduction 

The approach taken in this paper is to minimise the logic 

used by the co-processor sacrificing speed in favour of a 

reduced gate count and lower cost FPGA’s. As with the 

fuzzifiers the type-reduction co-processor will interface 

directly to the Micro-Blaze via the FSL bus. The co-

processor will support up to 32 fired rules with a resolution 

of 16 bits for both the firing intervals [ ] and 

consequent centroids [ ]. Were possible single adders 

will be used for large summations (i.e. were  s a 

single adder) thus requiring M clock cycles for the 

summation but utilising less FPGA resources than a 

completely parallel implementation requiring M adders and a 

single clock cycle. 

Currently both the iterative Karnick-Mendel (KM) 

procedure for type-reduction [11] (employing the centre of 

sets type-reduction) and Wu-Mendel (WM) Uncertainty 

Bounds [12] method (approximating type-reduction) are 

supported and designed using VHDL as co-processors to the 

Micro-Blaze, denoted KM-CP and WM-CP respectively. 

Both approaches will now be defined in a manner more 

applicable to a FPGA based implementation. 

 

1) KM Co-Processor 

The KM procedure is typically defined as a four step 

iterative procedure [11]. This procedure will now be 

redefined with the removal of step 2 thus not requiring the L 

and R index variables used in [11].  The modified procedure 

is shown below for .  

Without loss of generality assume the  are arranged in 

ascending order:  

1. Compute  in Equation (1) by initially setting 

 for i=1…M and set  

2. Compute  in Equation (1) with  for 

 and  for  and set  

3. If  then set  and stop, otherwise let 

equal to  and return to step 2 

      (1) 

The procedure for  can also modified in a similar 

manner. This 3 step procedure for both  and was 

analysed and segmented into a number of parallel processes 

and memory elements. Figure 3 depicts a graphical 

representation of the final VHDL implementation of KM-CP 

in the FPGA. 

Figure 3 embeds a number of parallel processes ‘P’ and a 

number of memory elements ‘MEM’ (32 bits wide each).  

Memory element MEM1 stores the consequents 

and  of the fired rules, 

whilst MEM2 stores the firing interval and .  The 

firing interval and consequents of the fired rules will be 

passed to the type-reducer from the Micro-Blaze processor 

via the FSL bus as fixed point integers. Each firing strength 

is represented as a 16 bit unsigned value and similarly the 

consequent centroids are each 16 bits signed. As each FSL 

bus transfer is 32 bit it was deemed more efficient to reduce 

the number of FSL bus transfers by combining the centroid 

interval into a single 32 bit value, likewise with the firing 

interval. Therefore reducing the number of writes via the 

FSL bus to M (number of fired rules) writes for each 

memory element, thus it requires 2M FSL writes to transfer 

all the required data for type-reduction. An additional FSL 

write is also required to initiate the co-processor and define 

status information such as the number of fired rules etc. As 
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each FSL bus transfer requires two clock cycles it will take a 

total of (2M+1)*2 clock cycles to complete all FSL writes to 

the KM-CP. 

 

 
Fig.3. Graphical representation of KM-CP 

The processes of figure 3 are represented as a number of 

summations (P3 and P4), multiply and summations (P1, P2, 

P5 and P6), additions P7, P8, P9 and P10, divisions P11 and 

finally comparisons P12 and P13. 

Each column of processes operates in parallel i.e. P1 to 

P6 (requires M clock cycles) function in parallel and their 

outputs are used as inputs to another column of parallel 

processes P7 to P10 (requires a single clock cycle). 

The process P11 (division) is included twice and 

represents a shared process i.e. the same hardware is used 

for both divisions. P11 is a VHDL implementation of a 

pipelined radix-2 non-restoring signed integer divider 

requiring an initial 20 clock cycles for the first division and 

1 additional clock cycle thereafter thus both P11 processes 

will require a combined total of 21 clock cycles to complete.   

The final column contains comparative processes P12 and 

P13 representing step three of the modified KM procedure, 

comparing  or   respectively, if either 

comparison is false then is set equal to and is fed back 

to the inputs of P1-P6, requiring only a single clock cycle to 

perform. However when both P12 and P13 are true then type 

reduction is complete and ,  are passed back to the 

Micro-Blaze processor via the FSL bus. 

The additional signal “initialise” relates to the first 

iteration through the modified KM procedure. Therefore 

when the initialise signal is set, processes P2, P3 and P5 are 

disabled (thus outputting 0), additionally all  are set 

equal to , also  is initially set to a predefined 

maximum value whilst  is set to a predefined minimal 

value. Finally the comparative processes P12 and P13 are 

also disabled simply setting  equal to and returning 

the value to the inputs of P1-P6. After this first iteration the 

“initialise” signal changes state and the processes operate as 

normal. Finally when both comparisons are true the type 

reduced set is combined into a single 32 bit value and 

returned via the FSL bus to the Micro-Blaze requiring a 

further two clock cycles (FSL Read).  

Table 1 defines the complete number of clock cycles 

required for each parallel column of figure 3. 

TABLE I 

KM-CP TYPE REDUCTION CLOCK CYCLES 

 M1, M2 P1 to 

P6 

P7 to 

P10 

P11 P12 to 

P13 

FSL 

Read 

Clock Cycles 4M+2 M 1 21 1 2 

 

The total number of clock cycles required by the KM-CP 

is greatly influenced by the number of fired rules and the 

number of iterations required to complete type-reduction and 

can be represented by the following formula: 

 

                                             (2) 

Were N is the number of iterations required by the KM 

iterative procedure (not including the initialisation iteration). 

In the following section a similar analysis and is carried out 

for the WM-CP. 

 

2) WM Co-Processor 

The Wu Mendel Boundary equations provide mathematical 

formulas for the inner and outer bound sets which can be 

found in [12]. Analysis of these equations will reveal the 

WM approach makes use of a larger number of arithmetic 

operators than the KM-CP thus requiring more FPGA 

resources, but has the added advantage of not being an 

iterative process thus does not require any large local 

memory elements as in the KM-CP. 

Figure 4 depicts a graphical representation of the final 

VHDL implementation of WM-CP in the FPGA. Again each 

column of processes operates in parallel, were P1 to P4 are 

multiply and summation, P5 and P6 summations, P7 

summation and a subtraction, finally P8 to P11 are multiply 

and summation with a subtraction.  

Processes P1 to P11 operate during the FSL writes to the 

co-processor requiring 2M FSL bus transfers to complete. 

As with the KM-CP there is additional FSL transfer 

containing status information, thus P1 to P11 require a total 

of 4M+2 clock cycles. Also the first few FSL writes are 

reserved for the centroid values , ,  and 

required by processes P8 to P11  and thus stored as 

registered values.  

The remaining processes are clearly marked as divisions, 

product, summation or the min and max comparators 

required by the WM equations. Were each parallel column 

of processes P12-P16, P18 to P21 and P22 to P23 require a 

single clock cycle each to complete.  

As in the KM implementation the divider (P17) is shared 

amongst all the processes, making used of the same radix-2 

non-restoring signed integer divider that the KM-CP used 

requiring a combined total of 26 clock cycles to complete all 
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divisions. Table 2 defines the complete number of clock 

cycles required for each parallel column of figure 4. 

 

Fig.4. Graphical representation of WM-CP   

TABLE II 

WM-CP TYPE REDUCTION CLOCK CYCLES 

 P1 to 

P11 

P12 to 

P16  

P17 P18 to 

P21 

P22, 

P23 

FSL 

Read 

Clock Cycles 4M+2 1 26 1 1 2 

 

The total number of clock cycles required by the WM 

type-reduction block is only influenced by the number of 

fired rules, thus a basic formula representing the total 

number of clock cycles required for the WM-CP is: 

                                                        (3) 

Thus if 20 rules fired the WM method of type reduction 

would require 113 clock cycles to compute the values 

required by the MicroBlaze for defuzzification whilst the 

KM-CP would require , thus if the KM 

procedure required one iteration (not including the first 

iteration) it would be 37 clock cycles slower than the WM 

implementation, otherwise for two iterations it would be 80 

clock cycles slower and for 3 iterations it would be 123 

clock cycles slower.  

E. Defuzzification 

Whilst defuzzification could also be performed in the type 

reduction co-processors this function is currently performed 

in the MicroBlaze processor were defuzzification for both 

the KM and WM methods is easily achieved by multiple 

logical shift operations in the MicroBlaze requiring a 

minimal computational effort. 

IV. EXPERIMENTS AND RESULTS 

A. Computational Comparison 

In this subsection, we will introduce a comparison 

between the computational times of the KM-CP and WM-

CP. A type-2 FLC was coded in the MicroBlaze processor in 

C, including Gaussian type-2 fuzzification and the rule base 

previously used in a similar timing analysis in [1]. The firing 

strengths and centroids of the rule consequents were 

calculated in the MicroBlaze before being passed to the co-

processors via the FSL bus. 

 
(a) 

 
(b) 

Fig. 5. (a) KM-CP and WM-CP (b) MicroBlaze KM and WM 

 

Figure 5(a) illustrates the final results of this timing 

analysis and shows the linear relationship between the WM-

CP to the number of fired rules, a very advantageous trait as 

its consistency and predictability allow the MicoBlaze to 

transfer all data to the WM-CP and then continue executing 

other code, rather than waiting for the WM-CP to return the 

type reduced. Conversely the KM-CP is dominated by the 

number of fired rules and the number of iterations required 

to complete type reduction, such that it is difficult to predict 

in advance the total clock cycles the KM-CP will require, as 

the number of required iterations is unknown. Although the 

minimum number of clock cycles (at least 1 iteration) can be 

known allowing the MicroBlaze a minimal window within 
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which to perform other functions. Figure 5(a) also reveals 

that the WM-CP required 44.72 percent less clock cycles 

relative to the KM-CP in the instance of 14 fired rules, a trait 

clearly reflected across the range of fired rules. 

Figure 5(b) illustrates a sequential floating point 

implementation of the KM and WM type reducers 

implemented in C on the MicroBlaze (executed from 

external memory), subjected to the same tests data as the co-

processors. 

In the instance of 14 fired rules the KM-CP achieved a 

99.88 percent reduction in the number of clock cycles 

required for type reduction compared to the equivalent 

floating point implementation. Whilst the WM-CP for the 

same number of fired rules achieved a 99.91 percent 

decrease compared to its equivalent floating point 

implementation. Thus the hardware acceleration offered by 

the co-processors removes any significant bottlenecks from 

type-2 FLC and consequently identifies a future platform for 

general type-2 FLC to achieve similar performance 

advantages.  
 

B. Co-Processors Comparison 

TABLE III 

FPGA RESOURCES AND COMPUTATIONAL DEMANDS OF CO-PROCESSORS 

 MICROBLAZE FSL KM  FSL WM DIVIDER 

SLICES 1728 562 600 559 

FREQUENCY 52MHZ 76MHZ 65MHZ 122MHZ 

 

Table 1. defines the number of FPGA resources expressed 

in slices (an FPGA is defined by an array of configurable 

logic blocks each having a predefined number of logic 

slices) that each component uses and also the maximum 

frequency of operation expressed in Hertz. The number of 

slices required by the type reduction co-processors has been 

defined without the divider as this is currently a highly 

resource intensive component. Alternative methods of 

division such as a reciprocal divider or a slower 

implementation of the current solution may prove more 

efficient. Both the KM-CP and WM-CP achieve similar 

maximum frequencies and total slices used with the WM-CP 

having a slightly lesser maximum frequency due to slower 

combinational paths e.g. P8 is a multiplication and a 

subtraction. Overall the co-processors and MicroBlaze use 

little of the 4,656 slices available in the Spartan 3E 

(XCS500E). 

V. CONCLUSIONS 

In this paper, we presented a parallel implementation of 

both Wu-Mendel and Karnick Mendel approaches to the 

centre of sets type reduction. Both implementations were 

defined in VHDL and operate as co-processors to a 32 bit 

soft core micro-processor. The co-processors communicated 

over the FSL bus to the MicroBlaze performing type-

reduction in parallel realising reductions in clock cycles of 

99.88 and 99.91 percent for the KM-CP and WM-CP 

respectively (compared to an equivalent sequential floating 

point implementation).   

Timing analysis also compared the WM-CP and KM-CP 

for the same number of fired rules, were the WM-CP 

required 44.72 percent less clock cycles than the KM-CP. 

Also the WM-CP offers predictable timing enabling the 

MicroBlaze to predict a fixed window within which it can 

execute other tasks.  

The complete T2FEMS implementation of the Type-2 

FLC with FSL fuzzification and type reduction co-

processors would certainly now be comparable to a 

sequential implementation of a type-1 FLC. The 

performance advantages of this type of implementation also 

reveal new prospects for the commercial application of 

general type-2 FLC and present an exciting future for 

applied embedded type-2 systems. We are currently working 

towards increasing the maximum operational frequency and 

reducing the number of required slices for all co-processors. 

REFERENCES 

[1] C. Lynch, H. Hagras and V. Callaghan, “Using Uncertainty Bounds in 

the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed 

Controller for Marine Diesel Engines” in Proc.  of the WCCI 2006, 

Vancouver, Canada, 2006 

[2] Shih-Hsu Huang and Yi-Rung Chen, “VLSI implementation of type-2 

fuzzy inference processor”, Proceedings of tthe IEEE International 

Symposium on Circuits and Systems, 2005, pp. 3307- 3310, Vol. 4, 

23-26 May 2005 

[3] M.Melgarejo, A. Garcia, C.A. Pena-Reyes, “Pro-Two: A hardware 

based platform for real time type-2 fuzzy inference”, Proceedings 

IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 977- 

982, 25-29 July 2004 

[4] Xilinx (2006, June 01). “MicroBlaze Processor Reference Guide” 

[Online]. Available: http://www.xilinx.com 

[5] J.J. Blake, L.P. Maguire, T.M. McGinnity, B. Roche, L.J. McDaid,  

“The implementation of fuzzy systems, neural networks and fuzzy 

neural networks using FPGAs”, Information Sciences, Volume 

112, Number 1, December 1998, pp. 151-168 

[6] D.J. Myers, and G. Storti-Gajani, "Efficient Implementation of 

Piecewise Linear Activation Function for Digital VLSI Neural 

Networks," Electronics Letter, vol. 25, no. 24, pp. 1,662-1,663, Nov., 

1989. 

[7] McDaid L.J.; McGinnity T.M.; Maguire L.P “Hardware 

Implementation of a Membership Function Generator for Fuzzy 

Reasoning”, Information Sciences, Volume 96, Number 1, January 

1997, pp. 93-105(13) 

[8] Djuro G.Zrilic, Jaime Ramirez-Angulo, Bo Yuan, “Hardware 

implementations of fuzzy membership functions, operations and 

inference”, Computers and Electrical Engineering, March 1998 

[9] R. Jager, Fuzzy Logic in Control, PhD thesis, Technische Universiteit 

Delft,June 1995. 

[10] Pauli Viljamaa, “Fuzzy Gain Scheduling and Tuning of Multivariable 

Fuzzy Control—Methods of Fuzzy Computing in Control Systems”, 

PhD thesis, Tampere Univ. of Technology, Publications 293, 2002 

[11] J.Mendel, "Uncertain Rule-Based Fuzzy Logic Systems: Introduction 

and New directions," Upper Saddle River, NJ: Prentice-Hall, 2001. 

[12]  H. Wu and J. Mendel, “Uncertainty bounds and their use in the design 

of interval type-2 fuzzy logic systems,” IEEE Trans. on Fuzzy 

Systems, vol.10, pp. 622-639, October 2002.  


