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Towards Fuzzy Compositional Modelling

Xin Fu, Qiang Shen and Ruiqing Zhao

Abstract- Compositional Modelling (CM) has been applied
to synthesize automatically plausible scenarios in many problem
domains with promising results. However, it is assumed that the
generic and reusable model fragments within the knowledge
base can all be expressed by precise and crisp information.
This paper presents an initial attempt to extend the existing
CM work to allow the generation of scenario spaces which
are capable of representing, storing and supporting inference
about imprecise or ill-defined data, by the use of fuzzy sets. A
knowledge representation formalism for both fuzzy parameters
and fuzzy constraints is incorporated into the representation of
conventional model fragments. The applicability of the proposed
method is illustrated by means of a simple worked example for
supporting crime investigation.

I. INTRODUCTION

Compositional Modelling (CM) [3] [7] has been employed
to synthesize and store plausible scenario spaces effectively
and efficiently in many problem domains (e.g. physical [6]
and criminological [8]). One of the most significant advan-
tages of using CM is its ability to construct automatically
many variations of an underlying scenario from a relatively
small knowledge base. This is rooted in the observation that
the constituent parts of different scenarios are not normally
unique to any one specific scenario, there are potentially
many scenarios that possess common or similar properties
locally or globally. The scenario elements and their rela-
tionships can therefore be modelled as generic and reusable
fragments and they only need to be recorded once in the
knowledge base.

While existing work has the capability of automatically
generating plausible scenarios from available evidence, it is
assumed that the model fragments within the knowledge base
can all be expressed by precise and crisp information. How-
ever, for applications like crime detection and prevention,
the degree of precision of available evidence and intelligent
data can vary greatly. In particular, different people may hold
different conceptual models of the world.

Furthermore, in the existing work, each scenario fragment
employs a set of probability distributions to represent the
likelihood of its associated outcomes, and these are described
in numerical forms. However, such assessment of likelihood
typically reflects the expertise and knowledge of experienced
investigators and is normally available in linguistic terms
instead [4]. The use of seemingly accurate numeric prob-
abilities suffers from an inadequate degree of precision.

Fuzzy set theory offers a useful means of capturing and
reasoning with uncertain information at varying degrees of
precision. Although fuzzy set has been applied to addressing
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various problems, it has not been integrated with the CM
techniques. This paper presents an initial attempt to extend
the existing CM work to allow for representing and use
of vague knowledge and linguistic probability [2], [5]. It
follows the existing literature in applying CM to support
crime investigation, which is well suited to illustrating the
underlying ideas of integrating fuzzy set in CM, as the
scenario fragments are highly subjective and often related
to inexact and vague information.
The development of fuzzy CM mechanism involves two

conceptually distinct aspects: (i) fuzzification of parameters
in the model fragments, including the identification and
definition of fuzzy variables in a generic sense; and (ii) fuzzy
probabilistic assessment of the constraints between the states
and events.

After presenting a brief overview of the basic concepts
of CM in Section II, the knowledge presentation of both
fuzzy parameters and fuzzy constraints in defining fuzzfied
scenario fragments is given in Section III. This is followed
by an illustration of applying fuzzy model fragments to a
small crime investigation problem in Section IV, showing
the composition process of a plausible scenario space from
given evidence and facts. Section V concludes this paper and
points out future work.

II. BASIC CM CONCEPTS

In CM, the knowledge base of the model-building sys-
tem consists of a number of generic scenario fragments,
interchangeably termed model fragments as above, which
represent generic relationships between domain objects and
their states for certain types of partial scenario. A scenario
fragment has two parts that encode domain knowledge: 1)
the relations between domain elements which are often rep-
resented in a form that is similar to conventional production
rules but in a much more general format where predicates
are used to describe the properties of these domain elements;
and 2) a set of probability distributions that represent how
likely it is that the corresponding relationships are related.
More formally, a scenario fragment ,u is a tuple

(VSs ,OS,¢ t, A) and is represented as below:
If {q55}
Assuming {A}
Then {q$t}
Distribution ¢t

{Vl Vn I qlt t qm}where
vs is a set of variables named source-participants, refer-
ring to already identified objects of interest in the partial
scenario, which can be real, artificial or conceptual
objects.
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* v' is a set of variables named target-participants, rep-
resenting new objects that will be added to the partial
scenario description if the model fragment is instanti-
ated (i.e. when both the conditions and assumptions are
presumed to be true).

* y' is a set of relations called structural conditions,
whose free variables are elements of v5. Normally, the
structural conditions appear in the antecedent part and
describe how the source-participants are related to one
another, often encoded in the form of predicates.

* ¢' is a set of relations called post-conditions, whose free
variables are elements of v5 U vt. Normally, ¢' appears
in the consequent part and define new relations between
source-participants and/or target-participants, also often
encoded in the form of predicates.

. A is a set of assumptions, referring to those pieces of
information which are unknown or cannot be inferred
from other scenario fragments, but they may be pre-
sumed to be true for the sake of performing hypothetical
reasoning.

The If statement describes the required conditions for a
partial scenario to become applicable. These conditions must
be factually true or logical consequences of other instantiated
fragments. The Assuming statement indicates the reasoning
environment. With the purpose of performing hypothetical
reasoning, this environment specifies the uncertain events and
states which are presumed in a partial scenario description.
The Then statement describes the consequent when the con-
ditions and presumed assumptions hold. They may represent
a piece of new knowledge or relations which are derived
from the hypothetical reasoning. The Distribution statement
indicates the probability distributions of the consequent vari-
ables or those of their relations. The left hand side of the
"implication" sign in each instance of such a statement is
a combination of variable-value pairs, involving antecedent
and assumption variables, and the right hand side indicates
the likelihood of each alternative outcome if the fragment is
instantiated.

For example, the following scenario fragment shows a
piece of generic forensic knowledge that, assuming that
suspect S overpowers victim V, there is a 75% chance that
fibres will be transferred from S to V:

If {suspect (S), victimr(V)}

Assuming {overpowers (S, V)}

Then {transfer (fibers,S,V)}

Distribution t ra (fibers, S, V) {

rue, true, true-

rue: 75%, false: }

Given a collection of such local model fragments and some

observations, CM applies an inference procedure to create
a space of scenario descriptions at a global level. As the
details of this procedure are very similar to what is to be
employed in fuzzy CM to be reported later, they are omitted
here. Interested readers can refer to [8] for further details.

III. FOUNDATIONS OF FuzzY CM

This section focuses on the creation of a structured knowl-
edge representation scheme which is capable of storing and
managing vague or ill-defined data. The research developed
here is loosely based on adapting the crisp knowledge
representation given in [8] and its related work.

A. Fuzzy parameters

For many problems, there may be many variables that
share similar properties while most of these properties only
involve minor variations from one another if encoded com-
putationally, in terms of knowledge representation. This is
independent of whether the variables are fuzzy or not. For
example, variables such as quantity, volume and proportion
all reflect the concept of capacity. This group of variables
may all be expressed by linguistic terms such as large,
average or small (which can be conveniently represented
by fuzzy sets). Therefore, when defining a fuzzy variable,
rather than redefining a new quantity space for it completely
from scratch each time, it has a natural appeal to group
fuzzy variables which share something in common into the
same class. In each class, the common features shared by the
variables are extracted and represented by an abstract variable
with its quantity space specified over a normalized universe
of discourse. The quantity space of a variable belonging to
a given class is created by inheriting the common features
from the abstract variable and by embellishing it with new
or modified properties.
To enable this development, fuzzy taxonomies that de-

scribe vague states and events are introduced here. A taxon-
omy is considered to be a hierarchy, where those variables
at a lower level are more specific than their ancestors and
represent a more specialized group of fuzzy variables. In so
doing, fuzzy variables in a CM knowledge base are organized
in a structured manner. This does not only improve the
efficiency of storing knowledge via reusing abstract fuzzy
variables, but also helps reveal both the commonality and
speciality of different variables. More importantly, the use
of fuzzy taxonomies supports the construction of scenario
spaces in a systematic and concise manner due to the
inheritance property of the hierarchies.
As shown in Fig. 1, the first taxonomy organises a set of

fuzzy variables relating to an abstract fuzzy variable named
Measurement. Hence, fuzzy variables height, distance, width,
depth and length share certain properties in defining their
quantity spaces as they inherit such common features from
Measurement; all of them can be measured with respect to a
certain measurable unit and can be described as long, average
or short. Similarly, the variables in the second taxonomy are
all used to describe levels of different concepts. Although
they may denote rather distinct or even seemingly irrelevant
properties (e.g. temperature and difficulty), they all take on
values from the same underlying abstract quantity space in
terms of various levels such as high, average or low.

Note that, in these taxonomies, even the fuzzy variables
which are classified into different classes may still have



some more generic common features shared between them.
For instance, temperature in the second taxonomy is also a
measurable variable. Hence, from a more generic aspect, they
may still be allocated to a superclass which is more abstract.
In order to maintain the clarity of representation and the
comprehensibility of inference drawn from such representa-
tions, fuzzy taxonomies are not built in the most generic way
possible, but are classified with easy interpretability in mind.

MeasurXement

L::evel

Temperature Ablt EfiinyQaiy Dfiut

Fig. 1. Example taxonomies of fuzzy variables
From above, it is clear that in defining scenario fragments

fuzzy variables can be divided into two types: abstract or
non-abstract. Abstract fuzzy variables are actually variable
classes that cannot be instantiated themselves in an effort to
describe any actual scenario and non-abstract fuzzy variables
are those that can be instantiated. Clearly, in Fig.1 Mea-
surement and Level are abstract fuzzy variables, and depth,
distance, efficiency, etc. are non-abstract variables.

In implementation, abstract fuzzy variables are indicated
by means of the keyword abstract. Defining such a variable
involves specifying the following fields:

* Name: A constant that uniquely identifies the abstract
fuzzy variable.

* Universe of discourse: The domain of the abstract
variable. Default definition is [0,1]. Any descendant of
an abstract fuzzy variable can modify the universe of
discourse according to their physical dimension.

* Cardinality of partition: The number of fuzzy sets
which jointly partition the universe of discourse. It is
represented by a symbol n which will be substituted by
a positive integer in a lower level non-abstract variable.

* Quantity Space: The membership functions of each
fuzzy set that jointly cover the partitioned domain.

For example, the aforementioned abstract fuzzy variable
Level can be defined as follows (adhering to the conventional
representation style of model fragments):

Define abstract fuzzyvariable {
Name: Level
Universe of discourse: [0,1]
Cardinality of partition: n
Quantity space:

fSi [= 7 °n1]

fi i=[n n1 n 1

fsn
[ n-2 1 ]

It would be inefficient and practically unnecessary to store
and manipulate fuzzy sets with arbitrarily complex member-
ship functions. Only the triangular membership functions are

considered in this initial work. Thus, a quantity space spec-

ification consists of an ordered list of triples comprising the

start, top and end points of each membership function. For
both computational and presentational simplicity, triangular
membership functions in which the edge of a fuzzy set's
membership function is exactly intersected to the centroid
of the neighboring one are used in this paper. For example,
assume n = 5, then the defined quantity space of Level is
shown in Fig. 2.

0 0.25 0.5 0.75 1
Fig. 2. A quantity space

Non-abstract fuzzy variables are identified by means of the
absence of the keyword abstract. Such definition involves
"is-a" relationships in which a non-abstract fuzzy variable is
said to inherit from an abstract fuzzy variable. It requires
addition of fields that are specific to the variable under
definition, with shared commonalities already defined in the
corresponding superior abstract fuzzy variable. In fuzzy CM,
such new fields are defined as follows:

* Is-a: The name of an abstract fuzzy variable which
refers to the immediate parent of the current fuzzy
variable in a given taxonomy.

* Scalar: A constant which is used to scale up or down
the normalized universe of discourse of the correspond-
ing abstract variable.

* Unit: The variable's physical dimension. If a fuzzy
variable has no unit, a default value of none is set.

* Name of fuzzy sets: The name of each fuzzy set in the
defined quantity space.

* Unifiability: The declaration of a unifiable property of
the variable, specified by a predicate.

The following example defines a non-abstract fuzzy vari-
able named Chance that inherits from Level.

Define fuzzyvariable {
Name: Chance
Is-a: Level
Cardinality of partition: 5
Scalar: 1
Unit: none
Name offuzzy sets: {extremely unlikely,
slim chance, likely, very likely, good chance}
Unifiability: Chance(X)

}
Obviously, this non-abstract fuzzy variable Chance is a

kind of Level. Due to property inheritance, its universe of
discourse equals to the normalized universe of discourse
multiplied by the scalar over the corresponding physical di-
mension. Its quantity space is evenly partitioned by five fuzzy
sets which are described respectively by the five linguistic
terms given. Also, the membership functions of those fuzzy
sets are inheritably obtained once again by multiplying the
corresponding key points in each fuzzy set by the scalar.

B. Fuzzy constraints

In CM, knowledge is normally expressed as constraints or
relations which must be obeyed by certain variables involved



in a given problem domain. For instance, velocity and
duration relations often appear in physical reasoning systems;
population growth and competition relations often appear in
ecological reasoning system; length and angle relations often
appear in spatial reasoning systems. Such constraints as used
in the existing work require numerical values to quantify
the probability of a consequence's occurrence (illustrated in
Section II).

Since such subjective probability assessments are often
the product of barely articulate intuitions, the seemingly
numerically precise expressions may cause loss of efficiency,
accuracy and transparency [2], [5], [4]. Under many circum-
stances, an expert may be unwilling or simply unable to
suggest a numerical probability. The initial work developed
here models the vagueness of the probability distribution
in terms of subjective linguistic probabilities. Rather than
using numerical representation as in the literature, a fuzzy
variable called Chance which inherits the properties of the
abstract fuzzy variable Level (as defined in Section III-A) is
introduced to capture subjective probabilistic assessments.

Similar to the existing approach, a scenario fragment
includes a set of probability distributions over the possi-
ble assignments of the consequent ¢//, for those interested
combinations of assignments to the variables within the
structural conditions and assumptions. This can be generally
represented by:

P(al: vi, ...., am: vm > c: vcp) fsp (1)

where ai : vi, iE{l,2, ... m} denotes the assignment
obtained by assigning vi to variable ai, c: vcp has a similar
interpretation, and fsp is a member of the quantity space
that specifies the fuzzy variable Chance.

The following sample fragment illustrates the concepts and
applicability of fuzzy constraints:

If height (S), height(V)}

Assuming {attemptedrto_kill (S, V) }

Then {difficult_le

Distribution difficul

tall, short,

Dwer(S,V))}

verpower(S,V)) {

-ue -+

easy: gooddchance, difficult: slim-chance }

It describes a casual relation holding among structural
condition a, and a2, assumption a3 and post-condition c.

Here, a, = height(S) indicates the height of a suspect
S, which is a fuzzy variable that takes values from a

predefined quantity space of {very short, short, average, tall,
very tall}; a2= height(V) indicates the height of a victim
V, whose possible value assignment is the same as S;
a3 = attempted to kill(S, V) describes that S attempted
to kill V, representing a conventional boolean predicate;
and c = difficulty level(overpower(S, V)) describes
the difficulty level for S to overpower V, with possible
assignments being easy, average and difficult.

Note that, when defining probability distributions in sce-

nario fragments, the names of those variables within the
structural conditions, assumptions and post-conditions (e.g.
al,a2, a3 and c) are omitted when such omissions do not
affect the interpretation of the meaning of the associated

values, for the sake of presentational simplicity. Thus, the
probability distributions can be rewritten as follows:

V1 V2,,V* mV -cl:-fSl, *, vcp: fSp
The above fragment reveals a general relation between the

heights of two people involved in a fight and the difficulty
level for one to overpower the other, and it can be applied
to modelling various scenarios. For example, this fragment
covers a fuzzy production rule which indicates that if suspect
S is tall, while victim V is short, and S indeed attempted
to kill V, then S stands a good chance of overpowering
V easily. Conversely, if S is shorter than V and he indeed
attempted to kill V, then there is only a slim chance for S
to overpower V easily.

IV. APPLICATION TO CRIME INVESTIGATION: OUTLINE
OF SCENARIO COMPOSITION

This section covers how the proposed knowledge rep-
resentation formulism is used to support CM along with
a sample application. Relevant evidence and the key sce-
nario fragments are presented in Appendix A. From the
given facts, collected evidence and this knowledge base,
a structural scenario space can be generated by joint use
of two conventional inference techniques named abduction
and deduction. Note that since the degree of precision of
the information (including both predefined knowledge and
available evidence/facts) can vary greatly, the collected evi-
dence and the knowledge base cannot in general be matched
precisely. Thus, a fuzzy matching method is applied for
scenario fragment instantiation.

A. Initialization
Collected evidence and facts are firstly entered to the

emerging scenario space. The present example shows a piece
of evidence in which a number of fibers collected from
Dave's body have been identified as matching the fibers
of Bob's clothes, and two available facts in which Dave is
known to be the victim and Bob is under suspicion.

Report of the amoun oi Collected
fibers on Dave matching Bob Evidence

Dave =Victim
Know Facts

Bob Suolspect

Fig. 3. Result of initialization
B. Backward chaining phase

This involves the abduction of all domain objects and
their states which lead to the available evidence. These
plausible causes are created by instantiating the conditions
and assumptions of the scenario fragments in the knowledge
base, whose consequences match the collected evidence.
After that, the newly created instances of all plausible causes
are recursively used in the same manner as the original piece
of evidence, instantiating all relevant fragments and adding
new nodes that correspond to the instantiated conditions and
assumptions to the emerging scenario space. This phase leads
to what is shown in Fig. 4.
A brief explanation of how such abduction phase works

with respect to the following sample fragment and collected
evidence/facts is given below:



If {degree of_fight(S,V)}
Assuming {transfer(X,S,V),find-match(X,V,S)}

Then { evidence(amount(transferred(X,V,S)))}

Distribution evidence(amount(transferred(X,V,S)))
intensive,true,true-many:goodchance, few:slimchance

weak, true, true-many:slimchance, few:goodchance}

Since the collected evidence matches the consequent vari-
able of the above scenario fragment, the variables within
the structural conditions and assumptions X, S and V are
firstly instantiated with fibers, Bob and Dave, respectively.
The resulting instantiated nodes (e.g. Transfer fibers from
Bob to Dave, Degree of flight between Bob and Dave and
Find fibers on Dave matching Bob) are then added to the
emerging scenario space.

lRpott ofthe~w4amvnt
f fibers on av.

~~~~~ p[)D/

d fig.4e. Rsl o

Degree offight
betwee Bob and l[)av Trmnsf Fibers.

/ = \ / ~~~~Bob-Vci

Filg. Reutof backwar chainingX

1) Fuzzy matching. To allow instantiation of a fuzzy
scenario fragment when given a piece of evidence, the
extended compositional modeller requires matching specific
data items with broader and relatively subjective information
in the knowledge base. As aforementioned, the evidence and
the knowledge base cannot always be matched precisely.
Under many circumstances, the values of the involved fuzzy
variables do not have to be identical, partial matching suf-
fices. Such matching is done by the following process.

First, find those scenario fragments that involve the same
variables as the underlying fuzzy variables that describe
the collected evidence. For example, the consequence and
collected evidence in the above example both contain the
amount of the transferred substance X (with the amount
being a fuzzy variable). Second, identify the degree of
the match between the evidence and the found scenario
fragments. Third, return a matched scenario fragment for
instantiation if the match degree is larger than a predefined
threshold, otherwise, no match between them is found.
A match degree is obtained by calculating the maximum

membership value over the overlapping area between the
relevant fuzzy sets. Note that more complex calculi for
matching degree may be developed; however, for computa-
tional simplicity and thanks to the employment of triangular
fuzzy sets only, this straightforward matching method is
adopted here. Clearly, much remains to be done in order
to have a more general approach regarding the set-up of
the important threshold used in the third step. Yet, this
does not affect the understanding of the underlying inference

C. Forward chaining phase

While all plausible causes of the collected evidence and
some pieces of additional evidence may be introduced to the
emerging scenario space during the backward chaining phase,
the forward chaining phase is responsible for extending
the scenario space by adding all plausible consequences of
the fragments whose conditions and assumptions match the
instances created in the last phase. This produces potential
pieces of evidence that have not yet been identified, but may
be used to improve the plausible scenario description.

This procedure applies logical deduction to all the sce-
nario fragments in the knowledge base, whose conditions
and assumptions match the existing nodes in the emerging
scenario space. The actual matching method used is basically
the same as that used previously (except step 1 obviously).
For the running example, based on those newly introduced
nodes, their deduced corresponding consequences are then
created and added to the emerging scenario space. Fig. 5
depicts the resulting scenario space that may be the outcome
of this phase (depending on the actual knowledge base used).

0lRepgrtoftheampunt nt ff th
offib-r .9Dae mupotf rfib n

Hgthif B Bgb qbakfig Dave

fth Bib-, D.\ Figd fb-r .l B.iF9h ig 5. R f ch ainn ggve

DeRmoa of siuFibsn sf gre

Inthebackwad chinngphse some6 spuiou oe

may havebeen added to the emerging~v senriwod sae.Sc

factsee oIr ia ns nobthAejsfyingomde tatB

ve~~~~~~B Va itm

recur l e s t Id-entry the n desid the e s
n nightofde in hete g s a space

Fig. 5. Result of forward chaining
D. Removal of spurious nodes

In the backward chaining phase, some spurious nodes
may have been added to the emerging scenario space. Such
nodes are root nodes in the space graph which are neither
facts or instantiated assumptions nor the justifying nodes that
support the instantiated assumptions. The removal procedure
recursively examines the root nodes in the emerging scenario
space and removes those nodes that do not correspond to a

fact/assumption and the justifications they occur in. It termi-
nates when each root node in the emerging scenario space
corresponds to either a fact or an assumption, guaranteeing
all the spurious nodes are removed. In this example, the
emergingogenatedsce contains the following information
that Dave is both the suspect and victim at the same time,
and the same for Bob. As Dave is known to be the victim
whereas Bob is known as the suspect, hence, the nodes "Dave
= suspect" and "Bob = Victim" as well as their directly
supported nodes can be removed from this emerging space.
The remaining scenario space is shown in Fig. 6.
E. Use of generated scenario space

Once the plausible scenario space is generated, it provides
techniques introduced herein. effective assistance for crime investigators by allowing them
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Fig. 6. Result of spurious node removal

to seek potential answers to a range of possible queries. For
instance, an investigator may query the system for scenar-
ios by inputing his/her interested evidence or hypotheses.
Also, the investigator might discover that a tall person was
observed entering the iescene on a CCTV camera, and
wonders whether this would rule out homicidal death. The
system can answer this type of question by adding this
new evidence to the set of collected pieces of evidence and
modifying the generated scenario description to establish
whether the new evidence indeed supports the hypothesis.
Note that compared with previous work, the present approach
provides more flexible query support, as it has the capability
to deal with fuzzy queries.

V. CONCLUSIONS

This paper has extended the existing CM work to allow for
representing, storing and supporting inference about vague
and imprecise data, by the use of fuzzy sets. A knowledge
representation formalism for both fuzzy parameters and fuzzy
constraints is incorporated into the representation of conven-
tional model fragments. The applicability of the proposed
method is illustrated by means of a simple worked example
for providing crime investigation support.
However, the ideas presented here require considerable

further development. In particular, the proposed method is
not yet able to provide evidence collection strategies for
decision support. If the generated plausible scenarios can be
evaluated by means of calculating the most likely scenario,
the effectiveness of evidence collection may be greatly im-
proved. Also, the fuzzy constraints within a single scenario
fragment are defined by employing a fuzzy variable named
Chance. However, when dynamically composing these po-
tential relevant scenario fragments into plausible scenario
descriptions, the fuzzy constraints will be propagated from
individual fragments to their related ones. How to combine
and propagate fuzzy probabilities in an emerging model
space is a tough problem that needs to be taken into account
in further research. Original work as represented in [5], [4]
may serve as a starting point for this.

APPENDIX

Key Sample Data and Scenario Fragments
Define actiont

action{
evidentify
ption = i
bility =

evidenceI

= {ve:
t (P) I
I

names of fuzzy sets = {none, f

unifiability = amount (X) }

If{ suspect (S),victim(V)
Assuming I overpower S, V) I
Then { transfer(X,S,V)}
Distribution transfer (X, S,V) I
true true true-true: good_chan(

If{ suspect (S),victim(V)
Assuming I overpower (S, V) I
Then I transfer (X,V,S)
Distribution transfer (X,V, S) I
true true true-true: good_chan(

If {person(P)}
Assuming { Identify(height (P))
Then I height (P)
Distribution height (P)
true, truetrue:1, false:O}

If {degree_of_fight(S,V) I
Assuming {transfer (X,S,V),find_
Then { evidence(amount(transfe
Distribution evidence (amount (tran
fintensive, true, true-many:goc
weak, true, true-many: slim_chan(

If{ height(V), height (S)
Assuming I overpower (S, V) I
Then {degree_of_fight(S,V) I
Distribution degree_of_fight (S,V)
{tall,short,trueintensive:sl
short, tall, true-intensive: sli

If{ height(V), height (S)
Assuming I overpower (S, V) I
Then { degree_of_fight(V,S)
Distribution degree_of_fight (V, S)
{tall,short,trueintensive:s

short, short,true intensive:good_chance,weak:slim-chance}
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