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Abstract— The Semantic Web can be viewed as largely about
“Knowledge meets the Web”. Thus its vision includes ontologies
and rules. A key requirement for the architecture of the
Semantic Web is to be able to layer “rules on top of ontologies”
and “ontologies on top of rules”. This has as a counterpart the
definition of a mapping between Description Logics and Logic
Programming, which is known as Description Logic Programs.
In this paper we extend the Description Logic Programs with
fuzzy sets and fuzzy logic in order to be able to represent the
imprecision and vagueness of real-life applications. We provide
the common semantics of the mapping, and the conditions that
must be met for this semantic equivalence, based on the model-
theoretic semantics.

I. INTRODUCTION

The Semantic Web [1] is a mesh of information where data
is organized in a machine understandable way and where
Semantic Web agents are able to (semi)automatically carry
out complex tasks assigned by humans in a meaningful
(semantic) way. The vision of the Semantic Web includes
ontologies as well as rules.

An ontology is a controlled vocabulary that describes
objects and relations between them in a formal way and
has a grammar for using the vocabulary terms to express
something meaningful, within a specified domain of interest.
Ontologies are extremely useful for the explicit definition
of terms commonly used by different web sources. On-
tologies are mostly expressed through OWL (Web ontology
Language) [2], [3], which has been recently standardized
by W3C. It consists of three increasingly expressive sub-
languages, namely OWL Lite, OWL DL and OWL Full. OWL
Lite and OWL DL are, basically very expressive description
logics; they are almost equivalent to the SHIF(D+) and
SHOIN (D+) Description Logics [4]. However, despite
its expressive power regarding other languages, such as
RDF [5], OWL has some expressive limitations. Rules, that
are more expressive, allow for the modelling of knowledge
by implication rules, a feature missing in OWL. Def-Horn
rules, used in this paper, are the fragment of Horn rules
that are definite, negated predicates and negation-as-failure-
literals are not allowed in the rules, and equality free, Horn
rules that do not include the equality predicate.

In order to combine the advantages of ontologies and rules
a mapping between Description Logics and Horn rules has
been proposed, known as Description Logic Programs [6].
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This approach concerns the study of the fragment of OWL
that is semantically equivalent to def-Horn rules and is
different from the approach proposed by [7] which concerns
dl-programs, that consist of a description logic knowledge
base and a finite set of description logic rules that is the
union of Description Logics and Logic Programming.

Description Logic Programs (DLPs) are the intersection of
First Order Logic (FOL) and Logic Programming and to be
more precise DLPs are the intersection of OWL and def-Horn
rules. They are ontological knowledge bases which lie within
the intersection of OWL and Logic Programming. They are
created by the DLP-fusion: the bidirectional translation of
premises and inferences from the DLP fragment of Descrip-
tion Logics to Logic Programming, and vise versa from
the DLP fragment of Logic Programming to Description
Logics. Syntactically, DLPs are a fragment of OWL, in the
sense that every DLP knowledge base is a syntactically valid
Description Logics knowledge base. Semantically, they carry
the semantics of OWL DL and each DLP knowledge base
is equivalent (semantically) to a set of Horn clauses of First
Order Logic.

However, DLPs cannot represent imprecise knowledge.
Knowledge is organized or contextualized information which
can be used to produce new meanings and generate new
data. Knowledge is inherently imprecise and vague, like the
concepts of a “tall” person, a “nice” car, a “beautiful” woman
and others, therefore the use of fuzzy concepts and rules
results to more realistic applications. The need of studying
imprecise knowledge for the Semantic Web has been stressed
out many times in the literature over the last years [8]–
[10]. In this paper we extend DLPs to Fuzzy DLPs in order
to represent uncertain, vague or imprecise knowledge. Our
approach is different from [11] which introduces fuzzines
for dl-programs and [12] that introduces the syntax and
semantics of a novel fuzzy version of the nominal construct.
The rest of the paper is organized as follows. Section II pro-
vides brief introductions to fuzzy OWL and fuzzy def-Horn
rules, as well as their model-theoretic semantics. Section III
provides the mapping between fuzzy OWL and fuzzy def-
Horn rules and in Sect. IV we define the languages produced
from this mapping. Finally, Sect. V concludes the paper.

II. PRELIMINARIES

A. Fuzzy Description Logics and OWL

In this section, we provide an introduction to a fuzzy
extension of OWL DL by adding degrees to OWL facts;
we call this extension f-OWL. This extension is based on
Fuzzy Sets and Fuzzy Logic [13] and on previous work on



TABLE I
FUZZY OWL CLASS DESCRIPTIONS AND AXIOMS

Abstract Syntax DL Syntax Semantics

Class(owl:Thing) > >
I
(a) = 1

Class(owl:Nothing) ⊥ ⊥I(a) = 0

intersectionOf(C1, C2, . . . ) C1 u C2 (C uD)I(a) = t(CI(a), DI(a))

unionOf(C1, C2, . . . ) C1 t C2 (C tD)I(a) = u(CI(a), DI(a))

complementOf(C) ¬C (¬C)I(a) = c(CI(a))

OneOf(o1, o2, . . . ) {o1} t {o2} ({o1} t {o2})I(a) = 1 if a ∈{ oI1 , oI2 }
({o1} t {o2})I(a) = 0 otherwise

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b))

restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I(a) = infb∈∆I J (RI(a, b), CI(b))

restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I(a) = supb∈∆I t(RI(a, b), {o}I(b))

restriction(R minCardinality(p)) > pR (> pR)I(a) = sup
b1,...,bp∈∆I

t(
p
t

i=1
RI(a, bi), t

i<j
{bi 6= bj})

restriction(R maxCardinality(p)) 6 pR (6 pR)I(a) = inf
b1,...,bp+1∈∆I

J (
p+1

t
i=1

RI(a, bi), u
i<j

{bi = bj})

Class(A partial C1 . . . Cn) A v C1 u · · · u Cn AI(a) ≤ t(CI1 (a), . . . , CIn (a))

Class(A complete C1 . . . Cn) A ≡ C1 u · · · u Cn AI(a) = t(CI1 (a), . . . , CIn (a))

EnumeratedClass(A o1 . . . on) A ≡ o1 t . . .t on AI(a) = 1 if a ∈ {oI1 , . . . , oIn}, AI(a)=0 otherwise
SubClassOf(C1, C2) C1 v C2 CI1 (a) ≤ CI2 (a)

EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn CI1 (a) = · · · = CIn (a)

DisjointClasses(C1 . . . Cn) Ci u Cj v ⊥ t(CI1 (a), CIj (a)) = 0, 1 ≤ i < j ≤ n

SubPropertyOf(R1, R2) R1 v R2 RI1 (a, b) ≤ RI2 (a, b)

EquivalentProperties(R1 . . . Rn) R1 ≡ · · · ≡ Rn RI1 (a, b) = · · · = RIn(a, b)

ObjectProperty(R super(R1) ... super(Rn)) R v Ri RI(a, b) ≤ RIi (a, b)

domain(C1) ... domain(Ck) ∃R.> v Ci RI(a, b) ≤ CIi (a)

range(C1) ... range(Ch) ∃R−.> v Ci RI(b, a) ≤ CIi (a)

[Symmetric] R ≡ R− RI(a, b) = RI(b, a)

[inverseOf(S)] R ≡ S− RI(a, b) = SI(b, a)

[Functional] > v6 1R infb1,b2∈∆I J (t2i=1RI(a, bi), b1 = b2) ≥ 1

[InverseFunctional] > v6 1R− infb1,b2∈∆I J (t2i=1(R
−)I(a, bi), b1 = b2) ≥ 1

[Transitive]) Trans(R) supb∈∆I t(RI(a, b), RI(b, c)) ≤ RI(a, c)

Individual(o type(C1) [./] [m1] . . . type(Cn) [./] [mn] o : Ci./mi CIi (oI)./mi, mi ∈ [0, 1], 1 ≤ i ≤ n

value(R1, o1) [./] [k1] . . . value(R`, o`) [./] [k`]) 〈o, oi〉 : Ri./ki RIi (oI , oIi )./ki, ki ∈ [0, 1], 1 ≤ i ≤ `

Sameindividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj oIi 6= oIj , 1 ≤ i < j ≤ n

fuzzy Description Logics [14], [15] and fuzzy OWL [16].
However, in this extension there is no use of datatypes, as it
is an ongoing research problem.

As usual fuzzy DLs (fuzzy OWL) are defined by an
alphabet of distinct concept names (class names) C, role
names (property names) R and individuals I. The set of roles
(properties) is defined as R ∪ {R− | R ∈ R}, where R−

represents the inverse of R. By using concept constructors
we can define concept descriptions. More precisely, if o ∈ I,
A ∈ C, R ∈ Roles, S a simple role [2] and p ∈ N, then f-
SHOIN -concepts are defined inductively by the following
abstract syntax:

C,D −→ ⊥ | > | A | C tD | C uD | ¬C | ∀R.C |
∃R.C |≥ pS.C |≤ pS.C | {o}

A fuzzy DL Knowledge Base consists of a TBox, RBox and
ABox. A TBox is a set of concept subsumptions of the form,
C v D and concept equivalences of the form C ≡ D, where
C,D are f-SHOIN -concepts, an RBox is a set of transitive
role axioms of the form Trans(R) and role subsumptions of
the form R v S, where R,S are f-SHOIN -roles, while
an ABox is a set of concept and role assertions of the form
(a : C)./n and (〈a, b〉 : R)./n, or individual equalities and
inequalities of the form a = b or a 6= b, where a, b ∈ I,
./ ∈ {≥, >,≤, <} and n ∈ [0, 1]. As stated above, OWL

and DLs have a strong correspondence. More precisely, all
constructors of OWL can be expressed by DL expressions. In
Table I we can see the abstract syntax and the corresponding
DL syntax for fuzzy OWL class descriptions and axioms,
where R is a property name, C,C1, . . . , Cn are concept
descriptions, o, o1, . . . , on are individuals, p ∈ N, and
mi, kj ∈ [0, 1].

The semantics of f-OWL are based on fuzzy interpreta-
tions. A fuzzy interpretation I is a pair I = (∆I , ·I), where
the domain ∆I is, like the crisp case, a non-empty set of
objects and ·I is a fuzzy interpretation function, which maps

• an individual name o to an object oI ∈ ∆I ,
• a concept name C to a membership function CI :

∆I → [0, 1],1 and
• a property name R to a membership function RI : ∆I×

∆I → [0, 1].

The fuzzy interpretation is extended to give semantics to
fuzzy concepts and property descriptions presented in Ta-
ble I, where sup is the supremum, inf is the infimum, c is a
fuzzy complement, t is a fuzzy conjunction (t-norm), u is a
fuzzy disjunction (t-conorm) and J is a fuzzy implication.

1For instance, given an object a ∈ ∆I and a class name C, CI(a) gives
a degree of confidence (such as 0.8) that the object a belongs to the fuzzy
concept C.



There are some remarks regarding Table I. Firstly, most
of the semantics have been presented elsewhere [14], [16].
In contrast to [14] and [16] we use the revised semantics
for cardinality restrictions (concepts of the form > pR
and 6 pR) presented in [15]. Moreover, the semantics of
the fuzzy axiom ∃R.> v Ci result from the semantics
of the expressions ∃R.> and Ci. ∃R.> is interpreted as
(∃R.>)I(a) = supb∈∆I t(RI(a, b), 1) which is equivalent
to (∃R.>)I(a) = supb∈∆I RI(a, b) and Ci as CI

i (a).
Thus, the semantics of the fuzzy axiom ∃R.> v Ci are
CI

i (a) ≥ supb∈∆I RI(a, b). This is simplified to the expres-
sion CI

i (a) ≥ RI(a, b) which is equivalent to RI(a, b) ≤
CI

i (a).

B. Fuzzy def-Horn rules

In this section we provide a short introduction to a fuzzy
extension of def-Horn rules by adding degrees to facts. This
extension is called fuzzy def-Horn rules.

Let {P,Q, . . .} be a set of predicates, {←,∧} be a set
of operators, {⇀x,

⇀
y , . . .} be a set of tuples of variables or

constants and {r, z, . . .} be a set of unary constant truth
values. A fuzzy def-Horn rule is defined as the expression

Head← Body

where the Body consists of positive predicates, that is pred-
icates without negation connected with the intersection ∧
operation, or a constant truth value. The Head consists of a
single positive predicate or a constant truth value. So, fuzzy
def-Horn rules are of the form P (

⇀
y ) ← Q1(

⇀
x1) ∧ Q2(

⇀
x2)

∧ . . . ∧ Qn(
⇀
xn), P (

⇀
y ) ← r or r ← Q(

⇀
x). An atom t is

either a variable, a constant or an expression of the form
P (t1, . . . , tn), where t1, . . . , tn are terms. A collection of
fuzzy def-Horn rules is a fuzzy def-Horn program.

The semantics of fuzzy def-Horn rules are based on fuzzy
interpretations. A fuzzy interpretation I is a pair I =
(∆I , ·I), where the domain ∆I is, like the crisp case, a
non-empty set of objects called the Herbrand Universe of
the fuzzy def-Horn program and ·I is a fuzzy interpretation
function, which maps
• a variable or constant x to an object xI ∈ ∆I ,
• a constant truth value r to a real number r ∈ [0, 1],
• a predicate P to a membership function P I : ∆In →

[0, 1].

So, the rule P (
⇀
y ) ← Q1(

⇀
x1) ∧ Q2(

⇀
x2) ∧ . . . ∧ Qn(

⇀
xn)

based on the model-theoretic semantics, is interpreted with
the inequality

P I(
⇀
y
I
) ≥ t(QI

1 (
⇀
x1

I
), QI

2 (
⇀
x2

I
), . . . , QI

n(
⇀
xn

I
)), (1)

the rule r ← Q1(
⇀
x1) ∧ Q2(

⇀
x2) ∧ . . . ∧ Qn(

⇀
xn) with the

inequality

r ≥ t(QI
1 (

⇀
x1

I
), QI

2 (
⇀
x2

I
), . . . , QI

n(
⇀
xn

I
)), (2)

and the rule P (
⇀
y )← r with the inequality

P I(
⇀
y
I
) ≥ r, (3)

where t is a t-norm.
The Herbrand Base of a fuzzy def-Horn program is the

set of ground instantiations of all the atoms appearing in the
program, and by ground we mean the instantiations obtained
by replacing all variables with constants from the Herbrand
Universe.

In the following we will only use predicates with a
maximum arity of two, as this is the maximum arity of fuzzy
OWL predicates, that is the arity of fuzzy OWL constants,
concepts and properties.

III. MAPPING F-OWL TO FUZZY DEF-HORN RULES

In this section we provide the mapping, semantic equiv-
alence check, between f-OWL and fuzzy def-Horn rules,
based on the model-theoretic semantics. According to this
mapping in the next section we define fuzzy Description
Horn Logic (DHL) ontologies as the set of fuzzy Description
Logics axioms that can be mapped to fuzzy def-Horn rules
without loss of their semantics. Based on this definition we,
moreover, define fuzzy Description Logic Programs as the
Logic Programming ruleset that are the logic equivalent to a
DHL set.

A. Mapping Axioms

Axioms in Description Logics concern subsumption re-
lationships and definitions, according to the TBox of the
Knowledge Base, as well as assertions, according to the
Abox of the Knowledge Base. For the following mapping
we use C, D to describe fuzzy concepts (predicates with one
variable) and P , Q to describe fuzzy roles (predicates with
two variables). Moreover, the fuzzy interpretation of fuzzy
Description Logics are according to Table I and the fuzzy
interpretation of fuzzy def-Horn rules according to 1-3.

First of all, we check the mapping regarding subsumption
relationships. The fuzzy axiom of the form C v D, which
declares that concept C is subsumed by concept D, is inter-
preted as CI(a) ≤ DI(a). Since this interpretation holds for
every model we can educe the fuzzy def-Horn rule D(x)←
C(x). Thus, there is a semantic equivalence between the
fuzzy DLs axiom C v D and the fuzzy def-Horn rule
D(x)← C(x). The fuzzy axiom of the form Q v P , which
declares that role Q is subsumed by P , is interpreted as
QI(a, b) ≤ P I(a, b). Since this interpretation holds for every
model we can educe the fuzzy def-Horn rule P (x, y) ←
Q(x, y), which is, thus, semantically equivalent to the fuzzy
axiom Q v P . The fuzzy axiom of the form ∃P.> v C,
which declares that the domain of role P is the concept
C, is interpreted as supb∈∆I t(P I(a, b), 1) ≤ CI(a). This
interpretation can be simplified to t(P I(a, b), 1) ≤ CI(a)
which is equivalent to P I(a, b) ≤ CI(a). Since this fuzzy
interpretation holds for every model we can educe the fuzzy
def-Horn rule C(x) ← P (x, y). In the same way the
fuzzy axiom of the form ∃P−.> v C, which declares
that the range of role P is the concept C, is interpreted
as supb∈∆I t((P−1)I)(a, b), 1) ≤ CI(a) that is equivalent
to supb∈∆I t(P I(b, a), 1) ≤ CI(a). This interpretation can
be simplified to t(P I(b, a), 1) ≤ CI(a) which is equivalent



to P I(b, a) ≤ CI(a). Since this fuzzy interpretation holds
for every model we can educe the fuzzy def-Horn rule
C(y)← P (x, y). The transitivity axiom of the form P+ v P
is interpreted as supb∈∆I t(P I(a, b), P I(b, c)) ≤ P I(a, c)
which is equivalent to t(P I(a, b), P I(b, c)) ≤ P I(a, c).
The later results to the fuzzy def-Horn rule P (x, z) ←
P (x, y) ∧ P (y, z). Thus, there exists semantic equivalence
between the fuzzy axiom P+ v P and the fuzzy def-Horn
rule P (x, z)← P (x, y) ∧ P (y, z).

Moreover, we check the mapping regarding fuzzy defi-
nitions of concepts and roles. The fuzzy definition of the
form C ≡ D, which declares that concepts C and D
are equivalent, is interpreted as CI(a) = DI(a). This is
equivalent to CI(a) ≤ DI(a) and DI(a) ≤ CI(a), from
which we can educe the fuzzy def-Horn ruleset D(x) ←
C(x) and C(x) ← D(x). Consequently, there exists a
mapping between C ≡ D and the fuzzy def-Horn ruleset
D(x) ← C(x) and C(x) ← D(x). Following the same
procedure we show the equivalence of the interpretations in
case of fuzzy roles. The fuzzy axiom P ≡ Q is interpreted
as P I(a, b) = QI(a, b), which is equivalent to QI(a, b) ≤
P I(a, b) and P I(a, b) ≤ QI(a, b). These two inequalities
result to the fuzzy def-Horn ruleset P (x, y) ← Q(x, y) and
Q(x, y) ← P (x, y), thus, there exists semantic equivalence
between P ≡ Q and the fuzzy def-Horn ruleset P (x, y) ←
Q(x, y) and Q(x, y) ← P (x, y). The fuzzy axiom of the
form P ≡ Q−1 that declares that role P is the inverse of role
Q is interpreted as P I(a, b) = (Q−1)I(a, b) = QI(b, a).
This interpretation is equivalent to the set of interpretations
QI(b, a) ≤ P I(a, b) and P I(a, b) ≤ QI(b, a). Since these
hold for every model we can educe the fuzzy def-Horn
ruleset P (x, y) ← Q(y, x) and Q(y, x) ← P (x, y), which
is semantically equivalent to the fuzzy axiom P ≡ Q−1.

Finally, asserted class-instance (type) and instance-
property-instance relationships, which correspond to fuzzy
DL axioms o : C./m, m ∈ [0, 1] and (o1, o2) : P./k, k ∈
[0, 1] respectively, are interpreted as CI(oI)./m, m ∈ [0, 1]
and P I(oI1 , oI2 )./k, k ∈ [0, 1]. The corresponding fuzzy def-
Horn rules educed from these semantics are C(x) ← r and
P (x, y) ← r for ./ =≥ and r ← C(x) and r ← P (x, y),
for ./ =≤. For ./ =< or ./ => no def-Horn rules can be
educed.

B. Mapping Class Constructors

In the previous section we have showed how fuzzy
Description Logic axioms correspond with fuzzy def-Horn
rules. However in fuzzy Description Logics classes appearing
in these statements need not be atomic, but can be complex,
compound expressions build up from atomic classes and
properties using a variety of constructors. This is why we
continue by studying the mapping between constructors of
f-OWL and fuzzy def-Horn rules.

1) Conjunction (u): A f-OWL class can be formed by
conjoining existing classes, e.g. C u D. This corresponds
to the conjunction of unary predicates. Conjunction can
be directly expressed in the body of a fuzzy def-Horn
rule. A conjunction that occurs in the left hand side of a

subclass axiom of the form C1 u C2 v D is interpreted as
t(CI

1 (a), CI
2 (a)) ≤ DI(a). As this interpretation holds for

every model we can educe the rule D(x)← C1(x)∧C2(x),
which is also interpreted as t(CI

1 (a), CI
2 (a)) ≤ DI(a).

When the conjunction occurs in the right hand side of
a subclass axiom of the form C v D1 u D2 the fuzzy
interpretation is CI(a) ≤ t(DI

1 (a), DI
2 (a)). As from this

interpretation we cannot educe any def-Horn rule we will
have to simplify CI(a) ≤ t(DI

1 (a), DI
2 (a)), according to

the property of fuzzy t-noms t(a, b) ≤ a, b to the set
of interpretations CI(a) ≤ DI

1 (a) and CI(a) ≤ DI
2 (a).

However, the equivalence of CI(a) ≤ DI
1 (a) and CI(a) ≤

DI
2 (a) to CI(a) ≤ t(DI

1 (a), DI
2 (a)), stands only for the

Gödel t-norm (min) as it is the only idempotent t-norm
(t(a, a) = a). Thus, using only the Gödel’s t-norm, we can
educe, from the fuzzy interpretations CI(a) ≤ DI

1 (a) and
CI(a) ≤ DI

2 (a), the fuzzy def-Horn ruleset D1(x)← C(x)
and D2(x)← C(x). Therefore, we can see that there exists
a semantic equivalence concerning fuzzy intersection only
when the Gödel’s t-norm is used.

2) Union (t): A f-OWL class can be formed from a
disjunction of existing classes, e.g. C tD. This corresponds
to the disjunction of unary predicates. A disjunction that
occurs in the left hand side of a subclass axiom of the form
C1 t C2 v D is interpreted as DI(a) ≥ u(CI

1 (a), CI
2 (a))

which according to the property of fuzzy t-conorms u(a, b) ≥
a, b is equivalent to the set of interpretations DI(a) ≥
CI

1 (a) and DI(a) ≥ CI
2 (a). However, the reciprocal, the

equivalence of DI(a) ≥ CI
1 (a) and DI(a) ≥ CI

2 (a) to
DI(a) ≥ u(CI

1 (a), CI
2 (a)) stands only for the Gödel’s t-

conorm, as it is the only idempotent t-conorm (u(a, a) = a).
Thus, using only the Gödel’s t-conorm, we can educe, from
the fuzzy interpretations CI

1 (a) ≤ DI(a) and CI
2 (a) ≤

DI(a), the fuzzy def-Horn ruleset D(x) ← C1(x) and
D(x) ← C2(x). Therefore, we can see that there exists a
semantic equivalence concerning fuzzy union only when the
Gödel’s t-conorm is used.

When the disjunction occurs in the right hand side of
a subclass axiom of the form D v C1 t C2 the fuzzy
interpretation is DI(a) ≤ u(CI

1 (a), CI
2 (a)). From this

interpretation we educe the fuzzy def-Horn rule of the form
C1(x) ∨ C2(x) ← D(x), which is not regarded as a fuzzy
def-Horn rule. So, in general, the f-OWL axiom D v C1tC2

cannot be mapped to a fuzzy def-Horn rule.
3) Universal restriction (∀): In Description Logics the

universal quantifier can only be used in restrictions-
expressions of the form ∀P.C. This is equivalent to a
First Order Logic clause of the form ∀y.P (x, y) → C(y)
which means that every y for which P (x, y) is valid
is an instance of the concept C. A universal quantifier
that occurs in the right hand side of a subclass axiom
of the form D v ∀P.C is interpreted as DI(a) ≤
infb∈∆I J (P I(a, b), CI(b)). This interpretation can be sim-
plified to DI(a) ≤ J (P I(a, b), CI(b)) Using the property
of R-implications “t(a, b) ≤ d iff JR(a, d) ≥ b” the
fuzzy interpretation DI(a) ≤ J (P I(a, b), CI(b)) can be



TABLE II
MAPPING BETWEEN FUZZY DESCRIPTION LOGIC AXIOMS AND FUZZY DEF-HORN RULES

Fuzzy DL Axioms Fuzzy def-Horn Rules Common Semantics
o : C./r C(x)← r CI(oI) ≥ r, r ∈ [0, 1] (./ =≥)

r ← C(x) CI(oI) ≤ r, r ∈ [0, 1] (./ =≤)
〈o1, o2〉 : P./r P (x, y)← r P I(oI1 , oI2 ) ≥ r, r ∈ [0, 1] (./ =≥)

r ← P (x, y) P I(oI1 , oI2 ) ≤ r, r ∈ [0, 1] (./ =≤)
C v D D(x)← C(x) CI(a) ≤ DI(a)
Q v P P (x, y)← Q(x, y) QI(a, b) ≤ P I(a, b)
∃P.> v C C(x)← P (x, y) P I(a, b) ≤ CI(a)
∃P−.> v C C(y)← P (x, y) P I(b, a) ≤ CI(a)

P+ v P P (x, z)← P (x, y) ∧ P (y, z) t(P I(a, b), P I(b, c)) ≤ P I(a, c)
C ≡ D D(x)← C(x) and C(x)← D(x) CI(a) = DI(a)
P ≡ Q P (x, y)← Q(x, y) and Q(x, y)← P (x, y) P I(a, b) = QI(a, b)

P ≡ Q− P (x, y)← Q(y, x) and Q(y, x)← P (x, y) P I(a, b) = QI(b, a)
C1 u C2 v D D(x)← C1(x) ∧ C2 t(CI

1 (a), CI
2 (a)) ≤ DI(a)

C v D1 uD2 D1(x)← C(x) and D2(x)← C(x) CI(a) ≤ DI
1 (a) and CI(a) ≤ DI

2 (a) (t = min)
C1 t C2 v D D(x)← C1(x) and D(x)← C2(x) DI(a) ≤ CI

1 (a) and DI(a) ≤ CI
2 (a) (u = max)

D v ∀P.C C(y)← D(x) ∧ P (x, y) t(DI(b), P I(a, b)) ≤ CI(a) (R-implications)
∃P.C v D D(x)← P (x, y) ∧ C(x) t(P I(a, b), CI(b)) ≤ DI(a)

further simplified to t(P I(a, b), DI(a)) ≤ CI(b). Since this
fuzzy interpretation holds for every model we can educe the
fuzzy def-Horn rule C(y) ← P (x, y) ∧D(x). Using the S-
implication there can be no further simplification of DI(a) ≤
J (P I(a, b), CI(b)) and thus there can result no def-Horn
rule. Consequently, we have shown that for the fuzzy R-
implication there exists a semantic equivalence between the
fuzzy Description Logics axiom D v ∀P.C and the def-
Horn rule C(y)← P (x, y)∧D(x). In the same way we can
show that the range restriction > v ∀P.C is equivalent to the
def-Horn rule C(y)← P (x, y) only when the R-implication
is used. However in order to express the range restriction we
have previously used the axiom ∃P−.> v C that can be
mapped to def-Horn rules without any restrictions.

When the universal quantifier occurs in the left hand side
of a subclass axiom of the form ∀P.C v D its interpretation
is DI(a) ≥ infb∈∆I J (P I(a, b), CI(b)). This expression
gives us no information and moreover, the corresponding rule
is not a fuzzy def-Horn rule so, we conclude that when the
universal quantifier occurs in the left hand side of a subclass
axiom there exists no mapping between f-OWL and fuzzy
def-Horn rules.

4) Existential Restriction (∃): In Description Logics the
existential quantifier (like the universal quantifier) can only
be used in restrictions of the form ∃P.C. This is equivalent
to a First Order Logic clause of the form ∃y.P (x, y) ∧
C(y), which means that there exists a variable y for which
P (x, y) is valid and that belongs to the concept C. An
existential quantifier that occurs in the left hand side of a
subclass axiom of the form ∃P.C v D is interpreted as
supb∈∆I t(P I(a, b), CI(b)) ≤ DI(a). This is equivalent
to t(P I(a, b), CI(b)) ≤ DI(a), as for every expression
x ≥ sup y and x ≥ y are equivalent. Thus, there exists
semantic equivalence between the fuzzy axiom ∃P.C v D

and the fuzzy def-Horn rule D(x)← P (x, y) ∧ C(x).
When the existential quantifier occurs in the right hand

side of a subclass axiom of the form D v ∃P.C its
interpretation is supb∈∆I t(P I(a, b), CI(b)) ≥ DI(a). This
interpretation gives us no information and therefore we
cannot educe any def-Horn rule. This means that when the
existential quantifier occurs in the left hand side of a subclass
axiom there exists no mapping between f-OWL and fuzzy
def-Horn rules.

5) Negation and Cardinality Restrictions (¬, 6 and >):
These constructors cannot, in general, be mapped into fuzzy
def-Horn. In case of negation this is obvious as fuzzy
def-Horn rules do not allow negation in either the Head
nor the Body of the rule. Moreover, cardinality restrictions
correspond to assertions of variable equality and inequality
in First Order Logic that is not supported by fuzzy def-Horn
rules.

All the mappings that have been presented above are sum-
marized in Table II, where P , Q are roles, C, C1, . . . , Cn, D
and D1, . . . , Dn are concept descriptors, o and o1, . . . , on are
names of individuals, a, b ∈ ∆I are objects and t is a t-norm
for fuzzy intersection (conjunction) and u is a t-conorm for
fuzzy union (disjunction).

IV. DEFINING F-DLP

From the above we can conclude that the Fuzzy De-
scription Logics axioms C v D, A ≡ B, ∃P.> v C,
∃P−.> v C, P v Q, P ≡ Q, P ≡ Q−, P+ v P ,
D v ∀P.C, ∃P.C v D, o : C ≥ r, o : C ≤ r,
〈o1, o2〉 : P ≥ r and 〈o1, o2〉 : P ≤ r can, in general,
be mapped to fuzzy def-Horn rules without losing their
semantics. However, the fact that the axiom C v D1 u D2

can be mapped without loss of its semantics only when the
Gödel’s t-norm (min) is used, the axiom C1tC2 v D can be



TABLE III
FUZZY DESCRIPTION LOGIC LANGUAGES AND FUZZY DESCRIPTION

LOGICS AXIOMS

C v D1 uD2 C1 t C2 v D D v ∀P.C
fR-DHL

√

fRmin-DHL
√ √

fRmax-DHL
√ √

fRminmax-DHL
√ √ √

fS -DHL
fSmin-DHL

√

fSmax-DHL
√

fSminmax-DHL
√ √

mapped without loss of its semantics only when the Gödel’s
t-conorm (max) is used and that the axiom D v ∀P.C
can be mapped without loss of its semantics only when we
use R-implication, results to the definition of eight differ-
ent languages, fuzzy fR-DHL, fRmin-DHL,fRmax-DHL,
fRminmax-DHL, fS-DHL, fSmin-DHL, fSmax-DHL,
fSminmax-DHL. These languages are defined according to
what implication (R or S), what t-norm (min or other) and
t-conorm (max or other) is used.

In Table III we present the fuzzy axioms that cannot be
mapped without loss of their semantics for all the DLP
languages. For each of the above languages we define a
Description Logic Program based on this language, via the
definition of a Description Horn Logic ontology, as follows.

An f − DHL ontology is the set of fuzzy Description
Horn Logic axioms that can be mapped to fuzzy def-Horn
rules without loss of their semantics.

The mapping between fuzzy Description Logics and fuzzy
def-Horn rules preserves the semantic equivalence. Let K
be a fuzzy f − DHL ontology and H be the fuzzy def-
Horn ruleset that results from applying the mapping to all
the axioms of K. Then the H set is logically equivalent to
K with respect to the semantics of First Order Logic, which
means that H has the same models as K.

A fuzzy Description Logic Program f−DLP is the fuzzy
Logic Programming ruleset that are the logic equivalent of a
fuzzy f −DHL set.

V. CONCLUSION

In this paper we studied the mapping between fuzzy De-
scription Logics and fuzzy def-Horn rules, based on the work
done by Grosof, Horrocks, Volz and Decker [6] on mapping
crisp Description Logic to def-Horn rules. Our contribution
concerns the investigation of the mapping between fuzzy
Description Logics and fuzzy LPs, and thus the definition
of the various fragments of fuzzy Description Logic Pro-
grams. This is extremely important as the representation of
vague and imprecise information in the Semantic Web gains
more and more attention by the research community. Hence,
following the current trend of research we have to find ways
to combine fuzzy DLs with fuzzy LP systems in order to
provide a complete framework for representing fuzziness in
the Semantic Web. As far as we know there exists no such

investigation of the fuzzy DLP fragment of fuzzy Description
Logics.
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