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Abstract— Algorithms for preprocessing databases with in-
complete and imprecise data are seldom studied, partly be-
cause we lack numerical tools to quantify the interdependency
between fuzzy random variables. In particular, many filter-
type feature selection algorithms rely on crisp discretizations
for estimating the mutual information between continuous
variables, effectively preventing the use of vague data.

Fuzzy rule based systems pass continuous input variables, in
turn, through their own fuzzification interface. In the context
of feature selection, should we rank the relevance of the inputs
by means of their mutual information, it might happen that
an apparently informative variable is useless after having been
codified as a fuzzy subset of our catalog of linguistic terms.

In this paper we propose to address both problems by
estimating the mutual information with the same set of fuzzy
partitions that will be used to codify the antecedents of the
fuzzy rules. That is to say, we introduce a numerical algorithm
for estimating the mutual information between two fuzzified
continuous variables. This algorithm can be included in certain
feature selection algorithms, and can also be used to obtain the
most informative fuzzy partition for the data. The use of our
definition will be exemplified with the help of some benchmark
problems.

I. INTRODUCTION

Although fuzzy rule-based systems are intended for using
vague data, most learning algorithms can only use precise
information. Those learning algorithms that can extract rules
from imprecise examples are a current research area and, in
particular, since recently we can use genetic algorithms to
extract fuzzy rules from interval and fuzzy valued data in
classification [13], [14] and regression problems [15].

On the contrary, the preprocessing of imprecise databases
is seldom studied. For instance, there are many recent works
dealing with feature selection procedures that use fuzzy
techniques [7], [17], [16], [18] or are designed to be used
in combination with fuzzy systems [20], [5], [19], but we
are not aware of any feature selection algorithms that can
be applied to interval-valued or fuzzy data. In particular, up
to our knowledge, the definition of the mutual information
between fuzzy random variables has not been studied.

That definition would also solve a secondary problem,
common to the use of both precise and vague data in fuzzy
rule-based systems. Currently, the mutual information is
being estimated with the help of of an intermediate crisp
partition or approximated by a smooth estimator of the
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density function of the inputs [1]. None of these approaches
takes into account the shape of the membership functions
in the fuzzification interface. But, it might happen that an
apparently informative variable is rendered useless when it
is rewritten in linguistical terms. We want to measure the
amount of information that a variable carries after it passes
through the fuzzification interface.

In particular, we will address a rather common situation
in Genetic Fuzzy Systems (GFS,) that of numerical variables
that are transformed into fuzzy subsets of the set of linguistic
labels by means of a Ruspini’s fuzzy partition [11]. For
example, the fuzzification stage can convert a numerical
value of 45 degrees into a fuzzy subset like {0.0/COLD +
0.2/WARM + 0.8/HOT}. Rule based-systems could also
manage subsets like {0.1/COLD+0.3/WARM+0.9/HOT}
or {0.5/COLD + 0.5/WARM + 0.5/HOT}, that do not
match any numerical value. Those subsets represent a vague
measure and the absence of knowledge about the tempera-
ture, respectively, which are cases of practical interest, but
again seldom studied in GFS.

In this work, we will propose a new definition of the
mutual information between fuzzy random variables, that can
be used for measuring the dependence between the variables
in either case. In addition, we will show that

« this information measure can be optimized by means

of a multiobjective genetic algorithm, and be used to
find the fuzzy partition that carries the most information
about the class of the object, and

e it can be included in a filter type feature selection

procedure that takes into account the shapes of the
membership functions in the fuzzification interface.

This paper is organized as follows: in the second section,
we introduce our definition of mutual information [12] and
detail how to estimate it from vague data. In the third section
we will give some details about the genetic optimization of
the mutual information, and the fourth section introduces
a preliminary MIFS-like algorithm [1] that uses the new
measure to select the most relevant features. The fifth section
contains numerical results of both approaches. The paper
finishes with the concluding remarks and the future work.

II. MUTUAL INFORMATION BETWEEN A RANDOM
VARIABLE AND A FUZZY RANDOM VARIABLE

A fuzzy random variable can be regarded (see [3]) as a
nested family of random sets, (Aw)ae(0,1). €ach one of them
associated to a confidence level 1 — a. A random set is a
mapping where the images of the outcomes of the random
experiment are crisp sets. A random variable X is a selection
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of a random set I' when the image of any outcome by X
is contained in the image of the same outcome by I'. This
is to say, for a random variable X : 2 — R and a random
set T': Q@ — P(R), X is a selection of I (and we write
X € S(T')) when

X(w) € T'(w)

In turn, a random set can be viewed as a family of random
variables (its selections.)

for all w € €. (D

III. MUTUAL INFORMATION BETWEEN A RANDOM
VARIABLE AND A FUZZY RANDOM VARIABLE

In previous works [12] we have defined the mutual infor-
mation between a random variable X and a random set I" as
the set of all the values of mutual information between the
variable X and each one of the selections of I':

MI(X,T) = {MI(X,T) | T € S(I)}. )

Generalizing this concept to fuzzy random variables is im-
mediate, according to a general procedure proposed in [9].
We define the mutual information between a random variable
X and a fuzzy random variable A as the fuzzy set defined
by the membership function

MI(X, A)(t) = sup{a | t € MI(X, Ay)}. 3)

A. Computer algorithm

In this section we show, by means of an example, how
to estimate the mutual information between a fuzzy random
variable and a crisp random variable.

Let us first suppose that we are given two paired samples
(X1,Xs,...,Xn)and (Y1,Ys, ..., Yy) from two (standard)
random variables X and Y. We will assume that both
universes of discourse are finite. Let py,ps,...,p, and
q1,92,---,qm are the relative frequencies of the values of
the samples of X and Y, respectively, and let r1,7q. ..., 75
be the frequencies of the values of the joint sample X x Y.
The mutual information between the variables X and Y is
estimated as follows:

MI((Xy,...,XnN), (Y1,...,YN)) =
— i pilogp; — 3000 qiloggi + 30— rilogTy.
Let us now suppose that we are given two paired samples
(X1,Xso,...,XN) and (A1, Az, ..., AN) of a crisp random
variable X and a fuzzy random variable A.

We will estimate the mutual information between X and
A by the fuzzy set

4)

MI((Xy,. Xn), (Ar,-o, A))() =
sup{a | t € {MI((X1,..., Xn),(Y1,...,YN)) | )

(Y1,...,Yn) € S((A1,.. ., AN)ay )}
Example: Consider the following samples of size 3 of

the variables A and X:

A | X
10.0/COLD + 0.2/WARM + 0.9/HOT} | A
B
A

{0.4/COLD + 0.6/WARM + 0.0/HOT}
{1.0/COLD + 0.0/WARM + 0.0/HOT}

We want to estimate the mutual information between X
and A. In the first place, we generate the set of samples
Y1,..., Y, with non-null membership, which is computed as
follows:

Y.
WARM
COLD
COLD
Membership=min{0.2,0.4,1} = 0.2

Y2
WARM
WARM
COLD
Membership=min{0.2,0.6,1} = 0.2

Y3
HOT
COLD
COLD
Membership=min{0.9,0.4,1} = 0.4

Yy
HOT
WARM
COLD
Membership=min{0.9,0.6,1} = 0.6

> W

> W > X

> W X

> X

Now, we compute the estimates MI(Y7, X), ...,

MI | Membership
MI(Yl, X) = 0.5441 0.2
MI(Yz, X) = 0.5441 0.2
MI(Y3, X) = 0.5441 0.4
MI(Y3, X) = 1.2108 0.6

MI(Yy, X):

Lastly, we estimate the mutual information between A and
X as the fuzzy set

MI = 0.4/0.5441 + 0.6/1.2108

defined by assigning to each value of MI its maximum
membership.

It is remarked that the number of samples Y with non-null
membership grows with the number of labels raised to the
volume of the sample. Enumerating all of them is not feasible
but in very small problems, therefore this definition has only
theoretical interest. In the following sections we propose an
alternative definition that is better suited for an approximate
algorithm, that will be introduced later (see Section III-D.)

B. Alternative interpretation of a fuzzy membership

The fuzzy representation we mentioned in the introduction
can also be interpreted as a set of bounds for the probability
of the result of the experiment [4]. For example, the fuzzy
set {0.0/COLD + 0.2/WARM + 0.9/HOT} means that
the probability of the temperature is ’COLD’ is 0, the
probability of "WARM’ is not greater than 0.2 and the
probability of "HOT’ is not greater than 0.9. The correspond-
ing lower bounds are implicit. For instance, p(WARM) >

— (p*(COLD) + p*(HOT)) = 0.1. Observe that, with this
interpretation, the set {1/COLD + 1/WARM + 1/HOT}
represents the total absence of knowledge about the input
value but the set {0.5/COLD + 0.5/WARM + 0.5/HOT}
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mentioned in the introduction, while does not signal a
preference to neither of the linguistic values, states that
the probability of any of them is not higher than 0.5,
which is more restrictive. Observe also that the fuzzy set
{0.0/COLD + 0.2/WARM + 0.8/HOT} provides us with
a precise information about the probability distribution, be-
cause 0.0+0.2+0.8 = 1. This kind of fuzzy sets arise when
a precise numerical value is passed though a fuzzification
interface based on a Ruspini’s partition. Lastly, observe that
a set like {0.0/COLD + 0.2/WARM + 0.4/HOT} (where
0.04-0.240.4 < 1) can not be used with this interpretation.

C. Alternative definition of Mutual Information

Let us interpret the acceptability of a fuzzy random
variable [9] as an upper bound of an otherwise unknown
probability distribution pa defined on the class of the random
variables from € to R:

prA(Y) =sup{a|Y € A,}. (6)

pa induces a probability distribution on the values of the
mutual information:

pMI(X,A) =t) = )

YIMI(X,Y)=t

pa(Y). @)

We can estimate upper and lower bounds of p(MI(X,A))
from estimations of the bounds p}(Y) and pa.(Y), and
estimate in turn the expected value of MI, as we show in
the next subsection.

D. Computer algorithm for the alternative definition

Let us suppose that we are given two paired samples of
X and A, as we did in the first algorithm in this section.

The probability of a sample of any crisp random variable
Y is the product of all the probabilities of the asserts “Y; is
the true image of the experiment,” under the model given by
Ail

N
pA((YhY?a"'vYN)) :HpAi(Yi)' (8)
=1

and the estimation of the mutual information is defined by
the probability distribution

pMI((X,. ., Xn), (Ar,. o Ay)) =t ) =
ZMI((Xl,...,XN),(Yl,.4.,YN)):t pa((¥1, Y2, 7YN))}'(9)
We can compute approximate bounds for this probability and
for the expectation of MI, as shown in the next example.
Example: Suppose we are given samples of size 3 of the
variables A and X:
A | X
{0.0/COLD + 0.2/WARM + 0.9/HOT} | A
{0.4/COLD + 0.6/WARM + 0.0/HOT} | B
{1.0/COLD + 0.0/WARM + 0.0/HOT} | A

We wish to estimate the mutual information between X
and A. In the first place, we enumerate the set of samples
whose probability is not null, and compute bounds of these
probabilities. Let Y7, ..., Y, be these samples:

Y:
WARM
COLD
COLD
Probability=[0.1,0.2] © 0.4 ® 1 = [0.04, 0.08]

Yo
WARM
WARM
COLD
Probability=[0.1,0.2] © 0.6 ® 1 = [0.06,0.12]

Y3
HOT
COLD
COLD
Probability=[0.8,0.9] © 0.4 ® 1 = [0.32, 0.30]

Ya
HOT
WARM
COLD
Probability=[0.8,0.9] ® 0.6 ® 1 = [0.48, 0.54]

> W | X

> W | X

> W > X<

> W | X

In the second step, we compute the mutual information
MI(X,Y7),...,MI(X,Y,) of these samples:

MI | probability
MI(X,Y:) = 0.5441 | [0.04,0.08]
MI(X, Y2) = 0.5441 | [0.06,0.12]
MI(X,Y3) = 0.5441 | [0.32,0.36]
MI(X,Ys) = 1.2108 | [0.48,0.54].

In the last step, we estimate the mean value of the MI
between A and X, which is the range of values of the
expression

E(MI) = py % 0.5441 + py % 1.2108

subject to the constrains p; + ps = 1, 0.42 < p; < 0.56,
0.48 < po < 0.54, therefore

E(MI) = [0.87,0.89).

Since the number of samples with non-null probability is
the same as the number of samples of non-null membership
in Section III-A, this algorithm still can not be applied to
practical problems, but now we can select a small subsample
and obtain an approximate solution. Let us suppose that our
subsample comprises two elements:

MI | probability
MI(X,Y>2) = 0.5441 | [0.32,0.36]
MI(X, Y1) = 1.2108 | [0.48,0.54].
The expectation of MI is the range of

—~ 0.5441 1.2108
q1 +q2

constrained by 0.32 < ¢; < 0.36, 0.48 < g2 < 0.54. This
problem of nonlinear optimization can be, in turn, too hard
to be solved in a short time, thus we propose the following
approximate solution:

1) In the first place, we approximate the unknown mean
with the centers of the probability intervals:
— 0.5441 % 0.34 + 1.2108 % 0.51
E, (M) = #0080+ *
0.34 +0.51

= 0.9441

1960



2) The upper bound of the probability is computed by
assigning the upper probability to each sample whose
MI is greater than the approximate mean, and the lower
probability to the remaining ones:

—.  0.5441 % 0.32 + 1.2108 x 0.54

E*(MI = 0.9627
(M) 0.32 + 0.54
3) The lower bound is computed with the reciprocal
values:
— 0.5441 % 0.36 + 1.2108 * 0.48
E.(MI) = = 0.9251
(M) 0.36 + 0.48

Therefore, the approximated value is
E(MI) = [0.9251,0.9627].

Interesting enough to mention, following the interpretation
described in section III-B, when all the fuzzified inputs
originate from crisp numerical values, the algorithm in this
section produces a crisp value. On the contrary, if there
are some imprecise examples, this algorithm produces an
interval.

IV. APPLICATION I: ESTIMATION OF THE MOST
INFORMATIVE FUZZY PARTITION

The best fuzzy discretization of an input variable in a
fuzzy rule-based system, from the point of view of the mu-
tual information, is the one that maximizes the dependence
between the fuzzified input and the output variable, i.e., the
partition that loses the less information in the discretization.
It is assumed that a rule learning that uses such a partition
will produce the most accurate knowledge bases, as we
experimentally show in the next section.

In case the input data is vague or there are missing values
in the dataset, the MI is an interval, as we have mentioned.
Seeking the minimum of an interval-valued function is a
problem that can be solved with certain multicriteria genetic
algorithms [13]. We have used a generational approach with
the multiobjective NSGA-II replacement strategy, binary
tournament selection based on rank and crowding distance,
and a precedence operator that assumes an uniform prior
[14]. The nondominated sorting depends on the product of
the probabilities of precedence and the crowding is based on
the Hausdorff distance.

In this paper we are interested in fuzzification interfaces
defined by Ruspini’s partitions, as mentioned. We will restrict
ourselves to triangular membership functions. In this particu-
lar case, a fuzzy partition comprising N linguistic terms can
be codified with an array of /N numbers: the minimum value
of the variable and the distances between all the points of
membership 1 and their predecessors. Arithmetic crossover
and mutation, and real coding were used.

V. APPLICATION II: A MIFS-LIKE FEATURE SELECTION
ALGORITHM FOR FUZZY RULE LEARNING ALGORITHMS

As we have mentioned in the introduction, the use of
fuzzified data has theoretical advantages when selecting
features to be used in fuzzy rule-based systems. An example
is shown in Figure 1: in this case an estimation of the

Y
T
<] °
T o °
° L4 . o
° o ©
4 o
o O o
o
o ©
o o
=
5]
-
X
Low HIGH

Fig. 1. Example of the theoretical advantages of the proposed estimator in
the design of fuzzy rule-based systems. The mutual information between the
variable X and the class (white or black) is higher than that of Y. However,
choosing the variable X is the worst decision when designing a fuzzy rule-
based classification system depending on the fuzzy variables X and Y,
which take the linguistic values “LOW” and “HIGH,” whose memberships
are shown in the figure. The estimator of the mutual information defined in
this paper assigns a higher value to the variable Y, as desired.

F=initial set of n features; S={0}
For each feature f € F' compute MI(f,C)
Perform a nondominated sorting of the values of MI
Select the first element and set ' = F'\ {f}, S=SU{f}
Repeat until |S| =k
For all couples of values (f,s) with f € F and
s € S, compute MI(f, s)
Perform a nondominated sorting of the values
MI(f, C) © B MI(/, 5)
Select the first element and set F' = F'\ {f},
S =Su{f}
Output the set S

Fig. 2. Pseudocode of the MIFS algorithm adapted for its use with an
interval-valued estimation of the Mutual Information. The nondominated
sorting of the interval-valued estimation of the Mutual Information is
performed as explained in reference [14].

mutual information that does not take the memberships of
the linguistic terms into account might conclude that certain
variable is informative, when it is not.

In case the data is crisp, our estimator of the mutual
information can be used in combination with any filter-type
feature selection algorithm which is based on the mutual
information. Otherwise (vague data or missing values) our
estimation produces an interval and some modifications are
needed. As an example, in Figure 2 the MIFS algorithm
[1] is adapted so that it can use the interval-valued mutual
information.

VI. NUMERICAL ANALYSIS

The algorithms described in sections IV and V are evalu-
ated and the results are discussed in this section. Thirteen
different fuzzy rule learning algorithms have been con-
sidered, both heuristic and genetic algorithms-based. The
heuristic classifiers are described in [6]: no weights (HEU1),
same weight as the confidence (HEU?2), differences between
the confidences (HEU3, HEU4, HEUS), weights tuned by
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HEU1 HEU2 HEU3 HEU4 HEU5 REWP ANAL GENS MICH PITT HYBR ADAB LOGI
Iris Uniform 0.027  0.033 0.060 0.067  0.067 0.047 0.033 0.067 0.047  0.060  0.047 0.047 0.040
Iris MI 0.040  0.040  0.040  0.040  0.040 0.040 0.040 0.060 0.040  0.047  0.060 0.040  0.047
Pima Uniform 0.28 0.27 0.25 0.25 0.25 0.26 0.28 0.26 0.35 0.28 0.27 0.25 0.23
Pima MI 0.26 0.25 0.25 0.25 0.25 0.27 0.27 0.26 0.35 0.28 0.28 0.26 0.24
Gauss Uniform 0.45 0.43 0.27 0.27 0.27 0.30 0.20 0.21 0.31 0.31 0.27 0.21 0.20
Gauss MI 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.22 0.22 0.22 0.23 0.22
Gauss-5 Uniform 0.55 0.52 0.49 0.45 0.39 0.44 0.31 0.41 0.57 0.54 0.52 0.32 0.32
Gauss-5 MI 0.33 0.33 0.33 0.33 0.32 0.33 0.31 0.32 0.32 0.32 0.32 0.32 0.32
Glass Uniform 0.38 0.37 0.37 0.36 0.35 0.37 0.37 0.36 0.49 0.37 0.43 0.34 0.32
Glass MI 0.36 0.33 0.34 0.34 0.33 0.33 0.34 0.34 0.42 0.34 0.39 0.33 0.36
Cancer Uniform 0.040  0.039  0.037 0.037  0.037 0.087 0.081 0.046 0.043  0.077  0.036 0.205 0.033
Cancer MI 0.030  0.031 0.031 0.031  0.031 0.039 0.040 0.029 0.062  0.037  0.039 0.102  0.027
Skulls Uniform 0.85 0.86 0.84 0.83 0.81 0.86 0.81 0.81 0.83 0.81 0.81 0.75 0.75
Skulls MI 0.79 0.79 0.79 0.78 0.73 0.79 0.75 0.71 0.84 0.77 0.84 0.74 0.71
TABLE 1

TEST ERROR OF DIFFERENT FUZZY RULE-BASED CLASSIFIERS OVER UNIFORM PARTITIONS AND MI-OPTIMIZED PARTITIONS. CRISP DATA.

HEUl HEU2 HEU3 HEU4 HEU5 REWP ANAL GENS MICH PITT HYBR ADAB LOGI
Weight-c Uniform 0.47 0.45 0.36 0.36 0.36 0.31 0.29 0.29 0.48 0.43 0.43 0.12 0.20
Weight-c MI 0.30 0.30 0.30 0.30 0.30 0.29 0.29 0.32 0.30 0.30 0.30 0.35 0.28
Weight-uc Uniform 0.45 0.45 0.39 0.39 0.39 0.38 0.33 0.29 0.46 0.41 0.42 0.24 0.23
Weight-uc MI 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.39 0.29
Weight-2uc Uniform 0.47 0.47 0.36 0.36 0.36 0.31 0.34 0.26 0.46 0.42 0.43 0.21 0.20
Weight-2uc MI 0.34 0.34 0.34 0.34 0.34 0.35 0.34 0.37 0.36 0.37 0.37 0.38 0.31
Weight-mv Uniform 0.45 0.43 0.34 0.34 0.34 0.36 0.27 0.32 0.48 0.43 0.44 0.31 0.23
Weight-mv MI 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.30 0.25 0.25 0.26 0.31 0.20
TABLE II

TEST ERROR OF DIFFERENT FUZZY RULE-BASED CLASSIFIERS OVER UNIFORM PARTITIONS AND MI-OPTIMIZED PARTITIONS. INTERVAL DATA.

reward-punishment (REWP) and analytical learning (ANAL).
The genetic classifiers are: Selection of rules (GENS), Michi-
gan learning (MICH) —with population size 25 and 1000
generations,— Pittsburgh learning (PITT) —with population
size 50, 25 rules each individual and 50 generations,—
and Hybrid learning (HYBR) —same parameters than PITT,
macromutation with probability 0.8— [6]. Lastly, two itera-
tive rule learning algorithms are studied: Fuzzy Ababoost
(ADAB) -25 rules of type I, fuzzy inference by sum of
votes— [8] and Fuzzy Logitboost (LOGI) —10 rules of type III,
fuzzy inference by sum of votes— [10]. All the experiments
have been repeated ten times for different permutations of
the datasets (10cv experimental setup).

A. Design of the most informative partition

Eight crisp datasets and four imprecise datasets have been
used to assess the definition of the estimator and its use in the
design of fuzzy partitions (see Tables I and II.) The imprecise
datasets were designed for this paper, since we have not
found similar problems in the literature. We built synthetical
realistic problems, simulating the use of a digital scale that
rounds the decimal part, in different conditions that include
a well calibrated scale (dataset “weight-c”: values between
x — 0.5 and x + 0.5 are mapped to the integer value x,) an
uncalibrated scale (“weight-uc”: values between x — 0.1 and
x+0.9 are mapped to the integer value x,) a random selection
between the preceding two scales (“weight-2uc”) and 5%
of missing values at either coordinate are missing (“weight-
mv.”) The improvement of the results is almost universal, as

expected, proving that our definition of mutual information
produces coherent results in both crisp and vague datasets.

B. Feature selection

The results of the feature selection algorithm are prelim-
inary. Our first experiments show relevant gains in some
datasets, and in those cases that the gain is not significant,
the set of features produced by the modified MIFS algorithm
is similar to that produced by the classical estimation of
the mutual information. In Table III we have compared the
results of the new algorithm for some crisp datasets to those
of the original MIFS algorithm. In one case the gain is not
clear (PIMA), but significant improvements were obtained
in the SONAR and WINE datasets. A boxplot with the
dispersion of the test error for the WINE problem is shown
in Figure 3.

VII. CONCLUDING REMARKS AND FUTURE WORK

The preprocessing of databases with imprecise data is
hardly found in the literature. In this paper we have proposed
a numerical algorithm to compute the degree of dependence
between two fuzzy variables, and have shown how to apply
it to the design the fuzzification interface of a rule-based
system and also to select the most relevant features when
the input data is vague.

The results shown in the field of feature selection are
preliminary, but promising. We have shown that there exist
problems where we obtain a consistent improvement for
the whole catalog of fuzzy systems that were tested, but
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HEUl HEU2 HEU3 HEU4 HEU5 REWP ANAL GENS MICH PITT HYBR ADAB LOGI

PIMA - 4 - Shannon MI 0.269 0.263 0.263 0.263 0.263 0.256 0.276 0.256 0355 0276  0.263 0.276 0.230

PIMA - 4 - Interval MI 0.263 0.256  0.269 0.269 0.269 0.269 0.256 0.236 0355 0.236  0.236 0.236 0.243

SONAR - 5 - Shannon MI  0.300 0.325 0.300 0.300 0.300 0.275 0.300 0.250 0350 0275  0.325 0.300 0.275
SONAR - 5 - Interval MI 0.275 0.300  0.300 0.300 0.300 0.300 0.300 0.275 0.250 0.250  0.300 0.300 0.225
WINE - 5 - Shannon MI 0.323 0.323 0.264 0.205 0.176 0.117 0.235 0.205 0.617 0205  0.176 0.058 0.058
WINE - 5 - Interval MI 0.176 0.117  0.147 0.176 0.176 0.088 0.117 0.088 0.176  0.088  0.205 0.029 0.088

TABLE III

TEST ERROR OF DIFFERENT FUZZY RULE-BASED CLASSIFIERS AFTER PERFORMING A FEATURE SELECTION, WITH THE ORIGINAL MIFS ALGORITHM

AND WITH THE MODIFIED VERSION PROPOSED IN THIS PAPER. THE NUMBER OF FEATURES SELECTED IS SHOWN IN THE FIRST COLUMN.

1.0

0.8

0.6

ig H DQ DH

HEUR2 HEUR3 HEUR4 HEURS REW/PUN

Fig. 3.
paper, WINE dataset.

we have also found problems for which the new algorithm
produces similar results to the crisp version. Intuitively, the
method proposed here should be applied in those situations
exemplified in the Figure 1, but further work is needed
to characterize this family of problems. Lastly, much work
remains to be done to perform feature selection with vague
data. A set of benchmark problems that include vague data
is needed, and also some criteria to to compare the efficiency
of the new algorithms with that of the crisp ones over the
new set of problems.
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