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Abstract— Description Logics (DLs) are modern knowledge (label) each segment of the image with a semantic label and
representation formalisms which are used today in many ap- thus characterize the content of the segments. Unfortlynate
plications for reasoning with structured knowledge. Moreover, the above axiom cannot be represented with the aid of the

they are used in the Semantic Web (an extension of the T .
current web) through the ontology language OWL. On the OWL language and th§ HOZN (D) DL, but requires the

other hand fuzzy Description Logics (fuzzy-DLs) have been constructor of qualified cardinality restrictio®y, which is
proposed as expressive logical formalisms capable of captng  not included in the OWL specification.

and reasoning with vague and imprecise knowledge in the  On the other hand many of the aforementioned applica-
Semantic Web. In the current paper we investigate on the yi5ns have special knowledge representational needs, like

problem of reasoning with qualified cardinality restrictions . . .
(QCRs) in fuzzy DLs, extending previous results on simple the requirement to represent and reason about imprecise

number restrictions, thus we present a tableaux algorithm 6r ~ and vague knowledge. For example, in the image analysis
the the fuzzy-DL fxp-ALCIQ. scenario, a segmentation algorithm cannot decide about the

membership or non-membership of a segment to a specific
concept. Hence, it provides degrees saying for example that
The Semantic Welpl] has been proposed as an extensioBegmenb; is Green to a degree at least 0.8 or thatisNear
of the current web, where information and knowledge would, to a degree at least 0.75. For that purpose, fuzzy extensions
be structured in a machine understandable and processabl®escription Logics [9], [10], [11], [12] have been propds
way. The Semantic Web would be able to automatically carrys formalisms capable of representing and reasoning with
out complex tasks in a meaningful (semantic) way. In ordefague knowledge in Semantic Web enabled applications [13].
to represent and reason about structured knowledge in tilfaus, many reasoning algorithm have been presented [9],
Semantic Web, W3C has developed and recommended fi&], [15], [16], [12]. On the other hand tableaux based
OWL Web Ontology Language [2]. The logical underpinteasoning with qualified cardinality restrictions (QCRS) i
nings of OWL are mainly very expressive Description Logicsnissing.
(DLs) [3], and more precisely, th6 HOZN (D*) DL. De- In the current paper we build on the results presented in
scription Logics are modern logical formalisms that conebin[12] for simple number restrictions\(), thus presenting an
both expressive power as well as decidable and empiricaliijgorithm for reasoning with the fuzzy-DLgfp-ALCZQ.
efficient reasoning procedures. In order for applicatiams tf ;- A£CZQ extends the well known fuzzy DLfp-ALC
publish information on the Semantic Web they have to us@] with inverse roles and qualified cardinality restrict®
OWL and DLs to represent knowledge. Today, DLs angQCRs). A proposal to deal withxfp-ALCQ was first
OWL have been used in many applications, like medicgresented in [17], but the procedure was based on a reduction
[4], image analysis [5], [6], databases [7] and more. Thig crisp ALCQ. To the contrary, following [9], [12] we
extensive use has highlighted many deficiencies of OWlgresent a direct tableaux algorithm to handle the reasoning
which led to requirements for language extensions [4]. Ongroblems of f; p-ALCZQ (fx p-ALCQ with inverse roles).
such requirement is the extension wihalified cardinality The paper is organized as follows. In section Il we present
restrictions[3], [8]. Using such expressive means one is abléhe syntax, semantics and the inference services of thgfuzz
to create concepts like the visual description of a human asL f ;- ALCZ Q. Subsequently, in section Il we investigate
on QCRs, in order to be able to provide a sound reasoning
procedure. As it is well known in the DL community sound
whereHuman, Arm andLeg areconceptgunary predicates), reasoning with QCRs requires some extra care compared to
while hasPart is a role (binary predicates). Such axiom other DL constructors [8]. Then, in section IV we present a
(together with other ones) can be used in a knowledgeasoning algorithm that decides the key inference prablem
based image analysis application [5], [6]. In such applicasf the fxp-ALCZQ language. Finally, section V concludes
tions firstly, an image segmentation algorithm is applied, ithe paper.
order to segments an image in various parts (segments) and
secondly background knowledge is used in order to annotate

I. INTRODUCTION

Human == 2hasPart.Armr = 2hasPart.Leg

Il. THE Fuzzy DL Fgp-ALCIQ

In this section we introduce the fuzzy DIl H-ALCZ Q.
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TABLE |
SEMANTICS OF Fg p-ALCZQ-CONCEPTS AND Rs p-ALCZ Q-ROLES

Constructor Syntax Semantics
top T TZ(a) =1
bottom 1 1%(a) =0

(~C)E (@) = 1 - CZ(a)

conjunction cnD  (CnD)%(a) = min(C%(a), D*(a))

disjunction CuD (CuD)(a) = max(C*(a), DZ(a))

exists restriction  IR.C  (IR.C)Z(a) = sup,c oz {min(RZ (a, b), CT (b))}
(VR.C)%(a) = infyc pz {max(1 — RZ(a,b), CT (b))}

general negation -C

value restriction VR.C

at-most QCR <pR.C inf max(l%gic{max(l — R%(a,b;),1 — CT(b;))}, max{b; = b;})
by ...,bp+1EAI i=1 1<j

at-least QCR >pR.C sup min(n’lpin{min(RI(a7 b;), CT(b;))}, min{b; # b;})
by,...,bpeAT i=1 1<j
inverse roles R~ (R7)Z(b,a) = R (a,b)
complement ¢(a) = 1 — a), the Gddel t-norm#(a,b) = inference problems of fuzzy DLs can be constructed. This is
min(a, b)), the Godel t-conormu(a, b) = max(a, b)) and the in contrast to [11] where fuzzy quantification was proposed.
Kleene-Dienes fuzzy implicationf(a, b) = max(1 — a, b)). A fuzzy TBoxis a finite set of fuzzy concept axioms. Let

As usual [3] we have an alphabet of distinct concept name$ € C be a concept name ar@d a fx p-ALCZ Q-concept.
(C), role namesR) and individual names (or simply indi- Fuzzy concept axioms of the formd C C' are calledfuzzy
viduals) (). fx p-ALCZQO-roles and k p-ALCZ Q-concepts concept specializatignwhile fuzzy concept axioms of the

are defined by the following abstract syntax: form A = C are calledfuzzy concept definitionas we see,
C,D = T|L|CN|=C|CND|CUD | in order not to complicate our presentation, in th_e present
3R.C | YR.C | > pR.C | < pR.C paper we do not adt_jress General Concept Inclusion axioms
R = RN|S™ - - (C C D). TBoxes without GCIs and where concept names

on the left-hand side are uniquely defined are cadlieaple
whereCN € C, RN € R andp € N. Note that the syntax-  therwise are calledjeneral Moreover, we also assume
pR.C can be used as a shorthand fopR.CT1 < pR.C. TO  that TBoxes areacyclic A TBox 7 is called acyclic if
avoid considering rolez~~ we introduce the functiotnv  inere is no cyclic dependency among axiom<ofA fuzzy
§UCh thaﬂnV(R) := RN if R = RN, while |nV(R) = RN interpretatior? satisfiesd C C'if Va € AI, AI(a) < CI(a)
if R=RN". . and it satisfiesA = C if Va € AT, AZ(a) = C%(a). A
The semantics of fuzzy DLs are provided byfazzy {77y interpretation satisfies a fuzzy TBGX if it satisfies
interpretation[9]. A fuzzy interpretation consists of a pair 5| axioms inZ. In this case, we say is amodelof 7.

T = (A%, T) where the domaim\” is a non-empty set of 5 fuzzy ABoxis a finite set of fuzzy assertions. Feyb €
objects and” is a fuzzy interpretation function, which maps, a fuzzy assertiorf9] is of the form (a : C)sn, ((a,b) :

« an individuala to an element ofi* € A7, R)i<in, wheres< € {>,>, <, <} ora # b. We call assertions
« aconcept namA to a membership functioA” : A —  defined by>, > positiveassertions, while those defined by
[0,1], and <, < negativeassertions. A fuzzy interpretatidh satisfies
« a role nameR to a membership functio®” : A x  (q:C) > n ((a,b) : R > n) if CZ(aZ) > n (RZ(aZ,b%) >

At —[0,1]. n) and it satisfies: # b if oZ # b%; similarly with the other

Using the fuzzy set theoretic operations, fuzzy intergi@ta  inequalities. A fuzzy interpretation satisfies a fuzzy ABdx
can be extended to interpreif-ALCZQ-concepts and if it satisfies all fuzzy assertions . In this case, we say
roles. The complete set of semantics are depicted in Tabifeis a modelof A. If A has a model then we say that it is
I. Most of these semantics have been presented elsewhemmsistent otherwise it isinconsistent A fuzzy knowledge
[9], [10], [11]. Some remarks are in place for fuzzy QCRsbaseX is a pair(7,.A), whereT is a fuzzy TBox and4 is
The semantics of fuzzy QCRs follow the semantics of fuzzq fuzzy ABox.

number restrictions first presented in [19] and furthergedi In the past tableaux reasoning algorithms for fuzzy DLs
in [20] to include equalities £) and inequalities £) of dealt with both positive and negative fuzzy assertions [9],
objects of AZ (as depicted in Table 1). Although a number[10], [12], [18], thus making the algorithms difficult to
of different approaches to qualified number restrictiongeha present and comprehend. In the current paper we will only
been presented in [11], we choose to follow the semantics @eal with positive fuzzy assertions. Negative fuzzy agsest
[19] since at it was shown in [12], [16] under these semantiasf the form (¢ : C) < n and (a : C) < n can be
and by considering the equalities and inequalities of dbjeceasily transformed into theRositive Inequality Normal Form
of A” to be crisp, an efficient procedure to decide the kegPINF), by applying the fuzzy complement in both sides



of the inequations giving(a : =C) > 1 —n and (a :

D w.r.t. 3] can also be reduced to ABox consistency Wx.t.

-C) > 1 —n (similarly with role assertions), respectively.More formally,> = C C D iff (7, AU {(a:C) > n,(a:
Please note that the syntax of the language has to be slightlyp) > 1 — n}), for bothn € {ni,n2}, n1 € (0,0.5] and

extended in order to allowimple role negatiorof the form

((a,0)

ny € (0.5,1], is unsatisfiable [9], where again the negative

: =R) > 1 — n. Note also that this negation doesassertions in [9] have been transformed into their PINF. In

not effect decidability [9]. In the following, we considerthe presence of only simple and acyclic TBoxes, the above

all assertions that exist in a fuzzy ABaA to be in their

problems can be further reduced to ABox consistency w.r.t.

PINF. This idea first appeared in [14] but it was not usedn empty TBox [3]. Thus, without loss of generality, in the

for tableaux algorithms, thus many definitions [9], [10]6]1
will be revised here.

following we will assume that TBoxes are empty.
When reasoning withg£ p-DLs a very important notion is

In the following we use the symbot as a placeholder for that of awitnessed modgR1]. As one can depict from Table

the inequalities>, >. Finally, we use the symbat to denote

| the semantics of existential restrictions are defined im$e

the strengtheningr weakeningf an inequality. For example of the supremum. In a witnessed mode(#R.C )% (a) = n
applying + to > gives >, i.e. strengthens the inequality, then there is somé € AZ such that eitheiR” (a,b;) = n
while applying it to> gives >, i.e. weakens the inequality. or CZ(b;) = n, i.e. there is somé € AZ that witnesses

Following [9], we introduce the concept afonjugated

the membership degree of to 3R.C, and sup is really

pairs of fuzzy assertions, to represent pairs of assertions thatax. Hence, from a fuzzy assertiqa : 3R.C') > n we can
form a contradiction. In the presence of only PINF assestiorconclude that there exists someuch tha{a, b) : R > n and
and inverse roles the definition of conjugated pairs has to lf¢: C) > n. In the following and without loss of generality
changed from the ones in [9], [10], [18] in order to covemwe assume that all models are witnessed.

these new features. Leétbe a crispALCZQ assertion. Then

—¢ represents the same assertion but for the negative concdpt: QUALIFIED CARDINALITY RESTRICTIONS INF-DLs

or role. For example i» = (a,b) : R, then—¢ = (a,b) : = R.

Stoilos et. al. [12] proved that reasoning w.r.t. the seman-

The possible conjugated pairs are defined in In the presenges o number restrictions, first proposed in [19] (see also

TABLE Il
CONJUGATED PAIRS OF FUZZY ASSERTIONS

—¢ >m —¢>m
¢>n | n+m>1 | n+m>1
¢>n | n+m>1 | n+m>1

Table 1), can be reduced to a simple counting problem of
R instance relations between individuals. More precisely,
an inequality of the form(> pR)Z(a) > n intuitively
means that there are at-leastobjectsb; € AZ such that
R%(a,b;) > n, with 1 < i < p. On the other hand
(< pR)*(a) > n means that there are at-mgstobjects

b; € AT such thatR%(a,b;) > 1 — n. One can then
translate these propositions to tableaux reasoning ra@&s [

of inverse roles one should also take under consideratiéior example, if one ha&: :< pR) > n and there are + 1
possible inverse roles when checking for conjugation twindividualsb; such that(a,b;) : R > k; with k; > 1—n, then

fuzzy role assertions. For example, the asserfignb) :
R) > 0.9, conjugates with((b,a) : = Inv(R)) > 0.1.

An fx p-ALCZ Q-conceptC' is n-satisfiablaff there exists
some fuzzy interpretatiod for which there is soma € A%
such thatCZ(a) = n, andn € (0,1]. A fuzzy knowledge
baseX. is satisfiable iff there exists a fuzzy interpretatién
which satisfies all axioms i&x. Furthermore, a concept is
subsumedy a conceptD w.r.t. 7 if for all modelsZ of 7,
Va € AT, C%(a) < D*(a). Finally, for ¢ a fuzzy assertion
or a concept subsumptiolt; entails ¥, written ¥ = ¥ iff
any model ofY also satisfiesb.

the algorithm should non-deterministically merge pair$,of
These results can be trivially extended to the case of qedlifi
cardinality restrictions. More precisely< pR.C)%(a) > n
means that there are at-mgstobjectsb; € AZ such that
R%(a,b;) >1—n andC%(b;) > 1 — n. Thus, the tableaux
expansion rules from [12] need to be extended accordingly
to provide reasoning for QCRs.

But additionally, in order to provide sound reasoning for
QCRs, classical DL reasoning procedures use a special rule,
called chooserule [22]. This rule inserts implied semantic
information during the reasoning process, which is vital

The problems of concepi-satisfiability, subsumption and for the application of the rules that are relative to the
entailment w.r.t. a knowledge badecan be reduced to the qualified cardinality restrictions. Consider for exampie t

problem of fuzzy ABox consistency w.r.t. a TBdk [9].
More precisely, a concejdt is n-satisfiable w.r.t7 iff {(a :
C) > n} is consistent, w.r.t7. Moreover, for: = (7, A),
and a PINF assertiopi>n, 3 | ¢>n iff = (T, AU{-¢+
>1—n}) is unsatisfiable. In [9] it was shown that= ¢ > n

if and only if ¥ = (7, AU {¢ < n}) is unsatisfiable. Since
we are only considering PINF fuzzy assertions we transform

¢ < n, into its PINF form,~¢ > 1—n, and similarly with>.
Furthermore, the subsumption of two fuzzy conceptand

fuzzy ABox, A. = {(a : (> 3R.T)) > 0.7,(a : (<
1R.B)) > 0.7,(a : (< 1R.-B)) > 0.7} taken from crisp
DLs [8] and adapted to the fuzzy case. The above ABox is
inconsistent because the following conditions must hold:

3
sup  min{min(R%(a,b;), TZ(b;))} > 0.7,
bi,..,bseAT =1

2
inf 1 - R*(a®,b;),1 — B%(b;))} > 0.7,
i i {max( (a%,by), (b))} >



\ ganI m2a1)<{max(1 — RT(a%,b;), BX(b;))} > 0.7. IV. THE TABLEAUX ALGORITHM
1,02€ 1=

From the first equation we get that there must exist threﬁ
b; € AT such thatvb;, R*(a®,b;) > 0.7, with 1 < i < 3,

In section Il we show that all inference problems of fuzzy
Ls can be reduced to the problem of consistency checking
. : for ABoxes. Consistency is usually checked with tableaux
\;V:('jkz ,fric;rﬂotgi It?]satttwo we get that for each two objetts algorithms that try to constructfazzy tableador A. Given
7 the notion of a fuzzy tableau, it is quite straightforward
max(1 — R (a%,b;),1 — B%(b;)) > 0.7 to prove the algorithm is a decision procedure for ABox
consistency. Our definition of a fuzzy tableau follows those

and
- ; o presented for the fuzzy DLsdp-SZ and fx p-SHIN [12],
max(1 — R (a”,b;), B*(b;)) > 0.7, for 1 <i < j <3. but on the one hand is reduced in the sense that we do not
Since from the first restriction we know thab,, 1 — handle transitive roles and role hierarchies, while on theio

RZ(aZ,b;) < 0.3 < 0.7, then for every two objects; hand some properties from [12] are extended in order to
and b; for one of the two, sayb;, it should hold that, handle QCRs.

1— BZ(b;) > 0.7 while for b; it should hold thatBZ (b;) > Without loss of generality, we assume all concepts
0.7 = 1 — BZ(b;) < 0.3 < 0.7. Obviously, this cannot Occurring in assertionga : C) > n € A to be in their
happen for every pair of objects;, b;),1 <i < j < 3. negation normal form(NNF) [23]; i.e., negations occur in

However, applying a naive algorithm could lead to incorfront of concept names only. Arkfp-ALCZQ-concept can
rect results. More precisely, suppose that first, in order € transformed into an equivalent one in NNF by pushing
satisfy the assertiof : (> 3R.T)) > 0.7 we create three Nhegations inwards making use of the De Morgan laws, which
individuals b; for which R(a,b;) > 0.7, 1 < i < 3. Then, in our case are satisfied, as well as the following concept
it would appear as we have satisfied all assertions of ti§uivalences:

ABox since there is no obviousontradiction(clash) within

the ABox. This means that the algorithm is unsound. As —-3R.C = VR.(=C), —-VR.C = 3FR.(-(),
noted in [8], the reason for this mistake is that there exists < , R = > (p,; + 1)R.C,

implied information that is not taken under consideratign b < (p —1)R.C c N*

the above algorithm. In the crisp case the implied infororati - > p; R.C = { 1 ! o ]]ji —0

is that any individuab; either belongs ta3 or to —=B. Such
an analysis is often referred to asasoning by casedn Definition 4.1: For a concepD we inductively define the
the case of fuzzy DLs, as it was noted in [18], we havéet ofsub-conceptgsub(D)) as,

that for alln € [0,1], for all individualsb; € I and for all

fx p-ALCIQ-conceptsB either B(b;) > n or B(b;) < n.! sub(A) - 1A} for every atomic concepd € C,
Hence, in our case we should have that eitBé¥;) > 0.3 or sub(C'M D) _ {CM D} U{sub(C)} U {sub(D)},
B(b) < 0.3 (=B(b) > 0.7in PINF), forall1 < i < 3. lfwe ~ Sub(CUD) = {CUD}U {sub(C)} U {sub(D)},
chooseB(b;) > 0.3 for two out of the three individuals;, sub(3R.C) : {3R.CHU{sub(C)},

then thIe first at-most restriction is violated, since it rieegi sulféb(zgg; - }iRﬁ%}(;J}{;gg(C)},

that B*(b;) < 0.3, while if we choose—-B(b;) > 0.7, sub(< nRC) = {<nR.C}U {sub(C)}

then 1 — B(b;) > 0.7 > 0.3 and thus, the second at- &

most restriction is violated. We conclude that in both cases

the assertions cannot be satisfied simultaneously, herce th Definition 4.2: For a fuzzy concepD and an RBoxR

ABoOX is inconsistent. we defineclos(D, R) as the smallest set offH-SHOZ Q-
In order to construct a correct algorithm we should pereoncepts which satisfies the following:

form such reasoning by cases to add any implied information, D ¢ clos(D,R),

during the construction of the model. This analysis is per- « clos(D,R) is closed under subconceptsfand~ D,

formed by the special rule callechoose-rule which adds and

information that is relevant to the application (or not) of . if VR.C' € clos(D,R) and Trans(R), thenVR.C' €

at-most QCRs. Based on the analysis we presented in the clos(D,R)

beginning of this section, we can see that for a fuzzy asserti Finelly we defineclos(A, R) = U clos(D,R). ¢
(a :< pR.C) > n, the relevant information is the inequality ’ (a:D)>neA ’
+ >=> and the degree—n; similarly for a fuzzy assertion \whenR is clear from the context we simply writ€os(.A).
(a :< pR.C) > n. For example, in the previous case we used Definition 4.3: If A is an fx p-ALCTQ ABox, R 4 is the
the degreed — 0.7 = 0.3 and1 — 0.3 = 0.7 (due to PINF), set of roles occurring ind together with their inverses and
as well as the inequality>>". In other words these values I, is the set of individuals in4, a fuzzy tablead” for A is
are the threshold for either satisfying or not a fuzzy agsert gefined to be a quadrupl&,(£, &, V) such that:S is a set
that involves QCRs. of elements,C : S x clos(A) — [0,1] maps each element
INote that in [18] the authors actually use the case analysither and concept, that is a SUbsetaN)S(A)* to the memberSh'p
B(b;) > n or B(b;) < n”. Obviously, both these forms are equivalent. degree of that element to the conceft; Ry x Sx S —



[0,1] maps each role oR4 and pair of elements to the It is easy to show thal is a fuzzy tableau for4. ]
membership degree of the pair to the role, ahdl 4, — S The above lemma suggests that in order to decide the
maps individuals occurring itd to elements ofS. For all key inference problems offp-ALCZQ we can develop an
s,t €S C,E € clos(A),n € [0,1] andR € R4, T satisfies: algorithm that constructs a fuzzy tableau ferf-ALCZ Q.
1) L(s,L)=0andL(s,T)=1foralls€S, f Deﬂnﬁig%ng 4-218 A jompletionl-lforest f; for an
KD- 0X is a collection of trees whose
2) If L(s,mA) =n, thenL(s,A) =1—n, distinguished roots are arbitrarily connected by edgeshEa
3) If £(-R, (s,t)) =n, then&(R, (s,1)) =1 —mn, node z is labelled with a sef{(C,>,n)} C L(z), where
4) If L(s,CNE)>n,thenl(s,C)>nandL(s,E)>n, C € clos(A) andn € [0,1]. Each edgelz,y) is labelled
5) If £(s,CUE)>n, thenl(s,C)>n or L(s, E)>n, With a set{(R,>,n)} C L((z,y)), where R € Ry are
6) If £(s,YR.C) > n, then either€(=R, (s, )) & n or (possmly inverse) roles occurring . Intumve]y, egch
L(t,C)>n triple (C,>,n) ((R, l>,n>.), called membership triple _
’ ' . represents the membership degree and the type of assertion
7) If L(s,3R.C) > n, then there exists € S such that ¢ o5ch node (pair of nodes) to a concéplrole R).
E(R, (s,t)) >n and L(t, C) > n, If nodesx andy are connected by an edde,y) with
8) E(R, (s,t)) > n iff E(Inv(R),(t,s)) > n, (R,>,n) € L({x,y)), theny is called anR,,-successor
9) If L(s,> pR.C) > n, theniR” (s,>,n,C) > p, of z and z is called anR..,-predecessonf y. If y is an
T B R.,-successor or amv(R),-predecessoof z, theny is
10) 1f L(s, < pR.C) > n, theniR™ (s, +>,1 = n,C) < p, called anR.,-neighbour ofz. Let y be anR-.,,-neighbour

11) If_ ﬁ(s’ S pRO)>nandE(R, (s,t) +>1 —n, then z, the edge(z, y) is conjugatedwith triples (=R, >, m)
either L(t, ~C) > n or L(t,C) + >1 —n, if n+m > 1. Similarly, we can extend it to the case of

12) If (a: C)>n € A, thenL(V(a),C) > n, R>,-neighbours. As usuasncestoris the transitive closure

13) If ((a,b) : R)>n € A, then&(R, (V(a),V(b))) >n,  of predecessor

14) If a # b € A, thenV(a) # V(b). For a roleR, a concept”, a nodezx in F, an inequality

type > and a membership degree € [0,1] we define:
R”(z,>,n,C) = {y | y is an Ry.,-neighbour of z,
(z,y) is conjugated with—R, >, n) andL(y)U{(-C, >, n) }
contains a clash

For a noder, £(z) is said to contain a clash if it contains
one of the following:

Lemma 4.4:An fxp-ALCZTQ ABox A is consistent iff « two conjugated pairs of triples,

wheret denotes the cardinality of a set afd (s, >, n, C') =

{t € S| E(R, (s,t)) >n and L(s, C) > n} returns the set of
elementst € S that participate inR with the elements and
at the same time to the conceptwith a degree, greater or
equal or greater than.

there exists a fuzzy tableau fot. « one of (L, > n), withn >0, (L,>,n)or(C,>,1), or
Proof: [Sketch] For theif direction if T'= (S, £, &,V) « some triple(< pR.C,>,n) andz hasp + 1 Ry, -
is a fuzzy tableau ford, we can construct a fuzzy interpre- neighboursyo, .. ., y Ll (z,y;) are conjugated %th
S0y =+ Ips y I

tationZ =(AZ,.7) that is a model of4 as follows:
AI
aZ V(a), a occurs inA Moreover, for an edgéz,y), L£({z,y)) is said to contain

(-R,>,n), L(y;) U{(-C,>,n)} contains a clash and
yi vy, ni,ne(0,1],forall0<i<j<p

wn

( _ _ . S
TI(s) = L(s,T) forallsesS a clash if there exist two_ conjugated triples 4{{z,y)),
L E( roral e it (R,>,1) € L({z,y)) or if L((z,y)) U {(Inv(R),>n) |
(s) = Lis, L) forallse (R,>,n) € L({y,z))}, wherez,y are root nodes, contains
At(s) = L(s,A)forallses two conjugated triples.
R%(s,t) E(R, (s,t)) for all (s,t) € Sx S For an fx p-ALCZQ ABoOX A, the algorithm initializes a

forestF to contain

To prove thafZ is a model of4, we can show by induction on i a root nodez,., for each individualy; € I4 occur-

the structure of concepts théts, C') >n impliesCZ (s) > n fing in the ABox A, labelled with £(z,,) such that

for all s € S. Together with properties 12, 13, 14 and the (C.>,n) € L(za,) for each assertion of the form
interpretation of individuals and roles, this implies that (a_’_ é) > in A’”

satisfies each fuzzy assertion.ih

For the converse, iff =(AZ,-Z) is a model ofA, then
a fuzzy tableaul’ = (S, £,&,V) for A can be defined as
follows:

i an edge(z,,, x4, ), for each assertiof{a;, a;) : R)>n

in A, labelled WithL((x,, , z4,)) such that R, >, n) €

L((xq,;,%q,)), and
S - AT iii the relation# asx,, # zq; if a; # a; € A and the

- relation= to be empty.

E(R, (s.1)) R*(s,t) F is then expanded by repeatedly applying the completion
L(s,C) = C*(s) rules from Table IIl. The completion forest is complete when
V() = dF for some noder, £(x) contains a clash, or none of the



TABLE Il
TABLEAUX EXPANSION RULES FOR Fx p-ALCZQ

Rule Description
(M) if 1. (CinCa,>,n) € L(z)and
2. {{C1,>,n),(Ca,>,n)}  L(z)
then  L(z) — L(z) U{(Cy,>,n), (Ca,1>,n)}
(Us) if1. (C1uUC2,>,n) € L(x), x and
2. {(Cl,|>,n>,<02,>,n>}ﬂ£(m) =0
then L(z) — L(z)U{C} for someC € {(C1,>,n), (Ca,>,n)}
3>) if 1. (EJR.C,>,n) € L(z),
2.z has noRy,-neighboury with (C, >, n) € L(y)
then create a new nodewith £L({z,vy)) = {(R,>,n)}, L(y) = {(C,>,n)},
(V) if 1. (VR.C,>,n) € L(z),
2.z has anRy/,, -neighboury with (C,>,n) ¢ L(y) and
3.  (—R,>,n) is conjugated with the edger, v)
then  L(y) — L(y) U{{C, > n)},
(choose) if 1. (<pR.C,>,n) € L(x),
2. there is anR-neighboury of z, with {(~ C, >, n), (C,+>,1 —n)} N L(z) = 0, and
3. (z,y) conjugates with(—R, >, n)
then L(y) — L(y) U{E}, for someE € {(~ C,>,n),(C,+>,1—n)}
=) L (> pR.C,>,n) € L(2),
2. there are np Ry n-neighboursyi,...,yp of x with (C,>,n) € L(y;)
andy; #yjfor1<i<j<p
then  createp new nodesys, ..., yp, With L((z,y;)) = {(R, >, n)},
L(y;) ={(C,>,n)} andy; #y; for 1 <i<j<p
<) T1  (<pRC,>n) € L(z)
#R7 (x,1>,n,C) > p, there are two of theny, z, with noy # = and
2.y is neither a root node nor an ancestorzof
then 1.L(z) — L(z) U L(y) and
2. if z is an ancestor of
then L((z,z)) —  L((z.2)) Ulnv(L((z,1)))
else  L((z,2) — Lz 2)UL((z,y))
3. L({z,y)) — 0 and setu # z for all u with u # y
) if 1. (< pR.C,>,n) € L(x),
#R7 (x,1>,n,C) > p, there are two of theny, z, both root nodes, with ng # = and
then 1.L(z) — L(z) U L(y) and
2. For all edgegy, w):
i. if the edge(z, w) does not exist, create it with ((z, w)) =0
i £((z,w) — L((z,w)) UL((y, w))
3. For all edgegw, y):
i. if the edge(w, z) does not exist, create it with ((w, z)) =0
i £((w, 2)) — L((w, 2)) U L((w, ))
4. SetL(y) = 0 and remove all edges to/from setu # z for all u with u # y and sety = z

completion rules is applicable. The algorithm stops when @quired [24], [12]. In brief letF be a complete and clash-
clash occurs; it answersd' is consistent’ iff the completion free completion-forest constructed by the tableaux aflyori
rules can be applied in such a way that they yield a completer A. A fuzzy tableaul’ = (S, £,£,V) can be defined as
and clash-free completion forest, andl ‘is inconsistent’ follows:
otherwise.

Lemma 4.6:Let A be an §p-ALCZQ ABox. Then, {z | z is a node inF, andz},
0, forall x € S
1, forall z € S,
glb{[>, n,]}, for all z in F,
1—L(x,A), for all z in F,

with (A, >,n) € L(x),

{glb{[>,ni]} | y an R>,,,-successor of}
x}, wherez! is a root node

wn
I

NN NN
I nnu

1) when started ford the tableaux algorithm terminates. L(z, L
2) A has a fuzzy tableau if and only if the expansion rules L(z, T
can be applied to4 such that they yield a complete L(z,
and clash-free completion forest. L(x,~A
Proof: [sketch] The proof of this lemma follows the
same principles as those shown for other more expressivé(Rv (z,y))
fuzzy DLs like fx p-SHIN [12]. V(ai)
Termination (first claim in Lemma 4.6) is a result of thewhereglb is defined in [9] and returns the maximum degree
properties of the expansion rules as in the classical cae [2: out of the set of membership triples of the fofm, >, n;),
and the case for fuzzy DLs shown in [12]. or n + ¢, wheree is a small real number converging to 0, if
For the “if” case of the second claim, we can obtain dhe maximum degree appears in a membership triple of the
fuzzy tableaul’ = (S, £,£,V) from a complete and clash form (A, >, n;), or finally 0 if no such triple exists. It can
free completion-foresfE quite trivially since in the absence be shown thaf’ is a fuzzy tableau fok.
of GCls the algorithm terminates and thus no blocking is For the “only-if’ direction, following [12], if we have a



fuzzy tableadl” for .4 we can use it to trigger the applicationthe algorithm for QCRs presented here and moreover the
of the expansion rules such that they yield a completioraddition of nominals ). Thus, we plan to provide full
forest F that is both complete and clash-free. B reasoning for the DL languageH-SHOZ Q. Additionally,
Example 4.7:Lets see how our procedure can be used tave also plan to provide a tableaux reasoning algorithm for
identify the inconsistency of the ABoX. we introduced in fuzzy nominals Q) which have been proposed in [26]
section lll. Firstly, the algorithm initializes one root @@ and for which no tableaux algorithm exists, thus providing
x4, labelled withL(z,) = {(> 3R.T,>,0.7),(< 1R.B,> reasoning for kp-SHO;ZQ.
,0.7), (< 1R.—B,>,0.7)}. Then, we repeatedly apply the
rules of Table Ill. First, the>x-rule creates threg;, such
that L({(xq,b;)) = {(R,>,0.7)}, L(b;) = {(T,>,0.7)} and
b1 # ba # bs. Then, for the triple(< 1R.B,>,0.7) the
choose-rule has to non-deterministically add eitherB, >
,0.7), or (B,>,0.3) in the labelsL(b;). For either of the
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choices we will get a clash:

1) If we choose the tripleB, >,0.3) for two of them
then: (< 1R.B,>,0.7) € L(z,), and for two b;,

(xq,b;) is conjugated with(—=R,>,0.7), L(b;) U

{(=B,>,0.7)} contains a clash and dl| are different
with each other.

If we choose(—B, >,0.7) for two of them then:(<

1R.B,>,0.7) € L(z,), and for twob;, (x,,b;) is

conjugated with—R, >,0.7), L(b;)U{(—-—B, >,0.7)}

contains a clash (the added trigleB, >,0.7) clashes
with (B,>,0.7) = (-—B,>,0.7)) and all b; are
different with each other.

Thus, all possible expansions result to a clash ahdis

inconsistent.

Theorem 4.8:The tableaux algorithm is a decision pro- 4]
cedure for the consistency ofxH-ALCZQO ABoxes and
the satisfiability and subsumption of f,- ALCZ Q-concepts
with respect to simple and acyclic terminologies.
Theorem 4.8 is an immediate consequence of lemmas 4.3 and
4.6. Moreover, as we discussed in section I, subsumption ca
be reduced to consistency checking for ABoxes. [6]

2)
[1]
[2]

(3]

(5]

V. CONCLUSIONS 7]

Today more and more applications are using Semantic
Web technologies, in order to be able to publish their canten
on the Web. Unfortunately, many of these application have®l
special knowledge representational needs, hence theiadopt
of Semantic Web languages, like OWL and DLs, in such
domains and applications is difficult. More precisely, many[®l
applications need the ability to represent and reason abq%]
uncertain and fuzzy knowledge. To this extent we have
presented an extension of the description lodgieCZ Q with
fuzzy set theory. The fuzzy DLip-ALCZQ extends the
fuzzy DL fxp-ALC [9] with inverse roles and QCRs. Al-
though QCRs are not part of OWL they will be added in thél2]
future since they are very important for practical applmag
[4]. Additionally, we have presented a detailed reasonings]
algorithm for deciding & p-ALCZQ ABox consistency. In
order to achieve this goal we have provided an investigatiq514]
of the properties of fuzzy QCRs, in order to provide sound
rules for such types of concept constructors.

As far as future directions are concerned, these will im—:luolls]
the extension of the algorithm ofxfr-SHZN [12] with

[11]

expenditure through Ministry of Development - General
Secretariat of Research and Technology and through pri-
vate sector, under measure 8.3 of OPERATIONAL PRO-
GRAMME “COMPETITIVENESS” in the 3rd Community
Support Programme.
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