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Abstract— Description Logics (DLs) are modern knowledge
representation formalisms which are used today in many ap-
plications for reasoning with structured knowledge. Moreover,
they are used in the Semantic Web (an extension of the
current web) through the ontology language OWL. On the
other hand fuzzy Description Logics (fuzzy-DLs) have been
proposed as expressive logical formalisms capable of capturing
and reasoning with vague and imprecise knowledge in the
Semantic Web. In the current paper we investigate on the
problem of reasoning with qualified cardinality restrictio ns
(QCRs) in fuzzy DLs, extending previous results on simple
number restrictions, thus we present a tableaux algorithm for
the the fuzzy-DL fKD-ALCIQ.

I. I NTRODUCTION

The Semantic Web[1] has been proposed as an extension
of the current web, where information and knowledge would
be structured in a machine understandable and processable
way. The Semantic Web would be able to automatically carry
out complex tasks in a meaningful (semantic) way. In order
to represent and reason about structured knowledge in the
Semantic Web, W3C has developed and recommended the
OWL Web Ontology Language [2]. The logical underpin-
nings of OWL are mainly very expressive Description Logics
(DLs) [3], and more precisely, theSHOIN (D+) DL. De-
scription Logics are modern logical formalisms that combine
both expressive power as well as decidable and empirically
efficient reasoning procedures. In order for applications to
publish information on the Semantic Web they have to use
OWL and DLs to represent knowledge. Today, DLs and
OWL have been used in many applications, like medical
[4], image analysis [5], [6], databases [7] and more. This
extensive use has highlighted many deficiencies of OWL,
which led to requirements for language extensions [4]. One
such requirement is the extension withqualified cardinality
restrictions[3], [8]. Using such expressive means one is able
to create concepts like the visual description of a human as,

Human ≡= 2hasPart.Arm⊓ = 2hasPart.Leg

whereHuman, Arm andLeg areconcepts(unary predicates),
while hasPart is a role (binary predicates). Such axiom
(together with other ones) can be used in a knowledge
based image analysis application [5], [6]. In such applica-
tions firstly, an image segmentation algorithm is applied, in
order to segments an image in various parts (segments) and
secondly background knowledge is used in order to annotate
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(label) each segment of the image with a semantic label and
thus characterize the content of the segments. Unfortunately,
the above axiom cannot be represented with the aid of the
OWL language and theSHOIN (D+) DL, but requires the
constructor of qualified cardinality restriction (Q), which is
not included in the OWL specification.

On the other hand many of the aforementioned applica-
tions have special knowledge representational needs, like
the requirement to represent and reason about imprecise
and vague knowledge. For example, in the image analysis
scenario, a segmentation algorithm cannot decide about the
membership or non-membership of a segment to a specific
concept. Hence, it provides degrees saying for example that
segmento2 is Green to a degree at least 0.8 or thato2 isNear

o1 to a degree at least 0.75. For that purpose, fuzzy extensions
to Description Logics [9], [10], [11], [12] have been proposed
as formalisms capable of representing and reasoning with
vague knowledge in Semantic Web enabled applications [13].
Thus, many reasoning algorithm have been presented [9],
[14], [15], [16], [12]. On the other hand tableaux based
reasoning with qualified cardinality restrictions (QCRs) is
missing.

In the current paper we build on the results presented in
[12] for simple number restrictions (N ), thus presenting an
algorithm for reasoning with the fuzzy-DL fKD-ALCIQ.
fKD-ALCIQ extends the well known fuzzy DL fKD-ALC
[9] with inverse roles and qualified cardinality restrictions
(QCRs). A proposal to deal with fKD-ALCQ was first
presented in [17], but the procedure was based on a reduction
to crisp ALCQ. To the contrary, following [9], [12] we
present a direct tableaux algorithm to handle the reasoning
problems of fKD-ALCIQ (fKD-ALCQ with inverse roles).

The paper is organized as follows. In section II we present
the syntax, semantics and the inference services of the fuzzy-
DL fKD-ALCIQ. Subsequently, in section III we investigate
on QCRs, in order to be able to provide a sound reasoning
procedure. As it is well known in the DL community sound
reasoning with QCRs requires some extra care compared to
other DL constructors [8]. Then, in section IV we present a
reasoning algorithm that decides the key inference problems
of the fKD-ALCIQ language. Finally, section V concludes
the paper.

II. T HE FUZZY DL FKD-ALCIQ

In this section we introduce the fuzzy DL fKD-ALCIQ.
Following [12] we give such a name to our language in order
to indicate the specific fuzzy operators that we are using to
provide semantics to it, and more precisely, the Lukasiewicz



TABLE I

SEMANTICS OF FKD -ALCIQ-CONCEPTS AND FKD -ALCIQ-ROLES

Constructor Syntax Semantics
top ⊤ ⊤I(a) = 1

bottom ⊥ ⊥I(a) = 0

general negation ¬C (¬C)I (a) = 1 − CI(a)

conjunction C ⊓ D (C ⊓ D)I(a) = min(CI(a), DI(a))

disjunction C ⊔ D (C ⊔ D)I(a) = max(CI(a), DI(a))

exists restriction ∃R.C (∃R.C)I (a) = supb∈∆I{min(RI(a, b), CI(b))}

value restriction ∀R.C (∀R.C)I (a) = infb∈∆I{max(1 − RI(a, b), CI(b))}

at-most QCR ≤ pR.C inf
b1,...,bp+1∈∆I

max(
p+1
max
i=1

{max(1 − RI(a, bi), 1 − CI(bi))}, max
i<j

{bi = bj})

at-least QCR ≥ pR.C sup
b1,...,bp∈∆I

min(
p

min
i=1

{min(RI(a, bi), CI(bi))}, min
i<j

{bi 6= bj})

inverse roles R− (R−)I(b, a) = RI(a, b)

complement (c(a) = 1 − a), the Gödel t-norm (t(a, b) =
min(a, b)), the Gödel t-conorm (u(a, b) = max(a, b)) and the
Kleene-Dienes fuzzy implication (J (a, b) = max(1− a, b)).

As usual [3] we have an alphabet of distinct concept names
(C), role names (R) and individual names (or simply indi-
viduals) (I). fKD-ALCIQ-roles and fKD-ALCIQ-concepts
are defined by the following abstract syntax:

C, D ::= ⊤ | ⊥ | CN | ¬C | C ⊓ D | C ⊔ D |
∃R.C | ∀R.C | ≥ pR.C | ≤ pR.C

R ::= RN | S−

whereCN ∈ C, RN ∈ R andp ∈ N. Note that the syntax=
pR.C can be used as a shorthand for≥ pR.C⊓ ≤ pR.C. To
avoid considering rolesR−− we introduce the functionInv

such thatInv(R) := RN if R = RN , while Inv(R) := RN

if R = RN−.
The semantics of fuzzy DLs are provided by afuzzy

interpretation [9]. A fuzzy interpretation consists of a pair
I = (∆I , ·I) where the domain∆I is a non-empty set of
objects and·I is a fuzzy interpretation function, which maps,

• an individuala to an element ofaI ∈ ∆I ,
• a concept nameA to a membership functionAI : ∆I →

[0, 1], and
• a role nameR to a membership functionRI : ∆I ×

∆I → [0, 1].

Using the fuzzy set theoretic operations, fuzzy interpretations
can be extended to interpret fKD-ALCIQ-concepts and
roles. The complete set of semantics are depicted in Table
I. Most of these semantics have been presented elsewhere
[9], [10], [11]. Some remarks are in place for fuzzy QCRs.
The semantics of fuzzy QCRs follow the semantics of fuzzy
number restrictions first presented in [19] and further revised
in [20] to include equalities (=) and inequalities (6=) of
objects of∆I (as depicted in Table I). Although a number
of different approaches to qualified number restrictions have
been presented in [11], we choose to follow the semantics in
[19] since at it was shown in [12], [16] under these semantics
and by considering the equalities and inequalities of objects
of ∆I to be crisp, an efficient procedure to decide the key

inference problems of fuzzy DLs can be constructed. This is
in contrast to [11] where fuzzy quantification was proposed.

A fuzzy TBox is a finite set of fuzzy concept axioms. Let
A ∈ C be a concept name andC a fKD-ALCIQ-concept.
Fuzzy concept axioms of the formA ⊑ C are calledfuzzy
concept specialization, while fuzzy concept axioms of the
form A ≡ C are calledfuzzy concept definitions. As we see,
in order not to complicate our presentation, in the present
paper we do not address General Concept Inclusion axioms
(C ⊑ D). TBoxes without GCIs and where concept names
on the left-hand side are uniquely defined are calledsimple,
otherwise are calledgeneral. Moreover, we also assume
that TBoxes areacyclic. A TBox T is called acyclic if
there is no cyclic dependency among axioms ofT . A fuzzy
interpretationI satisfiesA ⊑ C if ∀a ∈ ∆I , AI(a) ≤ CI(a)
and it satisfiesA ≡ C if ∀a ∈ ∆I , AI(a) = CI(a). A
fuzzy interpretation satisfies a fuzzy TBoxT if it satisfies
all axioms inT . In this case, we sayI is a modelof T .

A fuzzy ABoxis a finite set of fuzzy assertions. Fora, b ∈
I, a fuzzy assertion[9] is of the form (a : C)⊲⊳n, ((a, b) :
R)⊲⊳n, where⊲⊳ ∈ {≥, >,≤, <} or a 6

.
= b. We call assertions

defined by≥, > positiveassertions, while those defined by
≤, < negativeassertions. A fuzzy interpretationI satisfies
(a : C) ≥ n ((a, b) : R ≥ n) if CI(aI) ≥ n (RI(aI , bI) ≥
n) and it satisfiesa 6

.
= b if aI 6= bI ; similarly with the other

inequalities. A fuzzy interpretation satisfies a fuzzy ABoxA
if it satisfies all fuzzy assertions inA. In this case, we say
I is a modelof A. If A has a model then we say that it is
consistent, otherwise it isinconsistent. A fuzzy knowledge
baseΣ is a pair〈T ,A〉, whereT is a fuzzy TBox andA is
a fuzzy ABox.

In the past tableaux reasoning algorithms for fuzzy DLs
dealt with both positive and negative fuzzy assertions [9],
[10], [12], [18], thus making the algorithms difficult to
present and comprehend. In the current paper we will only
deal with positive fuzzy assertions. Negative fuzzy assertions
of the form (a : C) ≤ n and (a : C) < n can be
easily transformed into theirPositive Inequality Normal Form
(PINF), by applying the fuzzy complement in both sides



of the inequations giving,(a : ¬C) ≥ 1 − n and (a :
¬C) > 1 − n (similarly with role assertions), respectively.
Please note that the syntax of the language has to be slightly
extended in order to allowsimple role negationof the form
((a, b) : ¬R) ≥ 1 − n. Note also that this negation does
not effect decidability [9]. In the following, we consider
all assertions that exist in a fuzzy ABoxA to be in their
PINF. This idea first appeared in [14] but it was not used
for tableaux algorithms, thus many definitions [9], [10], [16]
will be revised here.

In the following we use the symbol⊲ as a placeholder for
the inequalities≥, >. Finally, we use the symbol+ to denote
thestrengtheningor weakeningof an inequality. For example
applying + to ≥ gives >, i.e. strengthens the inequality,
while applying it to> gives≥, i.e. weakens the inequality.

Following [9], we introduce the concept ofconjugated
pairs of fuzzy assertions, to represent pairs of assertions that
form a contradiction. In the presence of only PINF assertions
and inverse roles the definition of conjugated pairs has to be
changed from the ones in [9], [10], [18] in order to cover
these new features. Letφ be a crispALCIQ assertion. Then
¬φ represents the same assertion but for the negative concept
or role. For example ifφ = (a, b) : R, then¬φ = (a, b) : ¬R.
The possible conjugated pairs are defined in In the presence

TABLE II

CONJUGATED PAIRS OF FUZZY ASSERTIONS

¬φ > m ¬φ ≥ m

φ ≥ n n + m ≥ 1 n + m > 1
φ > n n + m ≥ 1 n + m ≥ 1

of inverse roles one should also take under consideration
possible inverse roles when checking for conjugation two
fuzzy role assertions. For example, the assertion((a, b) :
R) > 0.9, conjugates with((b, a) : ¬ Inv(R)) ≥ 0.1.

An fKD-ALCIQ-conceptC is n-satisfiableiff there exists
some fuzzy interpretationI for which there is somea ∈ ∆I

such thatCI(a) = n, and n ∈ (0, 1]. A fuzzy knowledge
baseΣ is satisfiable iff there exists a fuzzy interpretationI
which satisfies all axioms inΣ. Furthermore, a conceptC is
subsumedby a conceptD w.r.t. T if for all modelsI of T ,
∀a ∈ ∆I , CI(a) ≤ DI(a). Finally, for φ a fuzzy assertion
or a concept subsumption,Σ entails Ψ, written Σ |= Ψ iff
any model ofΣ also satisfiesΨ.

The problems of conceptn-satisfiability, subsumption and
entailment w.r.t. a knowledge baseΣ can be reduced to the
problem of fuzzy ABox consistency w.r.t. a TBoxT [9].
More precisely, a conceptC is n-satisfiable w.r.t.T iff {(a :
C) ≥ n} is consistent, w.r.t.T . Moreover, forΣ = 〈T ,A〉,
and a PINF assertionφ⊲n, Σ |= φ⊲n iff Σ = 〈T ,A∪{¬φ+
⊲1−n}〉 is unsatisfiable. In [9] it was shown thatΣ |= φ ≥ n

if and only if Σ = 〈T ,A ∪ {φ < n}〉 is unsatisfiable. Since
we are only considering PINF fuzzy assertions we transform
φ < n, into its PINF form,¬φ > 1−n, and similarly with>.
Furthermore, the subsumption of two fuzzy conceptsC and

D w.r.t. Σ can also be reduced to ABox consistency w.r.t.T .
More formally,Σ |= C ⊑ D iff 〈T ,A ∪ {(a : C) ≥ n, (a :
¬D) > 1 − n}〉, for both n ∈ {n1, n2}, n1 ∈ (0, 0.5] and
n2 ∈ (0.5, 1], is unsatisfiable [9], where again the negative
assertions in [9] have been transformed into their PINF. In
the presence of only simple and acyclic TBoxes, the above
problems can be further reduced to ABox consistency w.r.t.
an empty TBox [3]. Thus, without loss of generality, in the
following we will assume that TBoxes are empty.

When reasoning with fKD-DLs a very important notion is
that of awitnessed model[21]. As one can depict from Table
I the semantics of existential restrictions are defined in terms
of the supremum. In a witnessed model if(∃R.C)I(a) = n

then there is someb ∈ ∆I such that eitherRI(a, bi) = n

or CI(bi) = n, i.e. there is someb ∈ ∆I that witnesses
the membership degree ofa to ∃R.C, and sup is really
max. Hence, from a fuzzy assertion(a : ∃R.C) ≥ n we can
conclude that there exists someb such that(a, b) : R ≥ n and
(b : C) ≥ n. In the following and without loss of generality
we assume that all models are witnessed.

III. QUALIFIED CARDINALITY RESTRICTIONS INF-DLS

Stoilos et. al. [12] proved that reasoning w.r.t. the seman-
tics of number restrictions, first proposed in [19] (see also
Table I), can be reduced to a simple counting problem of
R instance relations between individuals. More precisely,
an inequality of the form(≥ pR)I(a) ≥ n intuitively
means that there are at-leastp objectsbi ∈ ∆I such that
RI(a, bi) ≥ n, with 1 ≤ i ≤ p. On the other hand
(≤ pR)I(a) ≥ n means that there are at-mostp objects
bi ∈ ∆I such thatRI(a, bi) > 1 − n. One can then
translate these propositions to tableaux reasoning rules [12].
For example, if one has(a :≤ pR) ≥ n and there arep + 1
individualsbi such that(a, bi) : R ≥ ki with ki > 1−n, then
the algorithm should non-deterministically merge pairs ofbi.
These results can be trivially extended to the case of qualified
cardinality restrictions. More precisely,(≤ pR.C)I(a) ≥ n

means that there are at-mostp objectsbi ∈ ∆I such that
RI(a, bi) > 1 − n andCI(bi) ≥ 1 − n. Thus, the tableaux
expansion rules from [12] need to be extended accordingly
to provide reasoning for QCRs.

But additionally, in order to provide sound reasoning for
QCRs, classical DL reasoning procedures use a special rule,
called choose-rule [22]. This rule inserts implied semantic
information during the reasoning process, which is vital
for the application of the rules that are relative to the
qualified cardinality restrictions. Consider for example the
fuzzy ABox, Ac = {(a : (≥ 3R.⊤)) ≥ 0.7, (a : (≤
1R.B)) ≥ 0.7, (a : (≤ 1R.¬B)) ≥ 0.7} taken from crisp
DLs [8] and adapted to the fuzzy case. The above ABox is
inconsistent because the following conditions must hold:

sup
b1,...,b3∈∆I

3
min
i=1

{min(RI(a, bi),⊤
I(bi))} ≥ 0.7,

inf
b1,b2∈∆I

2
max
i=1

{max(1 − RI(aI , bi), 1 − BI(bi))} ≥ 0.7,



inf
b1,b2∈∆I

2
max
i=1

{max(1 − RI(aI , bi), B
I(bi))} ≥ 0.7.

From the first equation we get that there must exist three
bi ∈ ∆I such that∀bi, R

I(aI , bi) ≥ 0.7, with 1 ≤ i ≤ 3,
while from the last two we get that for each two objectsbi

andbj, it holds that

max(1 − RI(aI , bi), 1 − BI(bi)) ≥ 0.7

and

max(1 − RI(aI , bj), B
I(bj)) ≥ 0.7, for 1 ≤ i < j ≤ 3.

Since from the first restriction we know that∀bi, 1 −
RI(aI , bi) ≤ 0.3 < 0.7, then for every two objectsbi

and bj for one of the two, saybi, it should hold that,
1−BI(bi) ≥ 0.7 while for bj it should hold thatBI(bj) ≥
0.7 ⇒ 1 − BI(bj) ≤ 0.3 < 0.7. Obviously, this cannot
happen for every pair of objects〈bi, bj〉, 1 ≤ i < j ≤ 3.

However, applying a naive algorithm could lead to incor-
rect results. More precisely, suppose that first, in order to
satisfy the assertion(a : (≥ 3R.⊤)) ≥ 0.7 we create three
individuals bi for which R(a, bi) ≥ 0.7, 1 ≤ i ≤ 3. Then,
it would appear as we have satisfied all assertions of the
ABox since there is no obviouscontradiction(clash) within
the ABox. This means that the algorithm is unsound. As
noted in [8], the reason for this mistake is that there exists
implied information that is not taken under consideration by
the above algorithm. In the crisp case the implied information
is that any individualbi either belongs toB or to ¬B. Such
an analysis is often referred to asreasoning by cases. In
the case of fuzzy DLs, as it was noted in [18], we have
that for all n ∈ [0, 1], for all individualsbi ∈ I and for all
fKD-ALCIQ-conceptsB eitherB(bi) > n or B(bi) ≤ n.1

Hence, in our case we should have that eitherB(bi) > 0.3 or
B(bi) ≤ 0.3 (¬B(bi) ≥ 0.7 in PINF), for all1 ≤ i ≤ 3. If we
chooseB(bi) > 0.3 for two out of the three individualsbi,
then the first at-most restriction is violated, since it requires
that BI(bi) ≤ 0.3, while if we choose¬B(bi) ≥ 0.7,
then 1 − B(bi) ≥ 0.7 > 0.3 and thus, the second at-
most restriction is violated. We conclude that in both cases
the assertions cannot be satisfied simultaneously, hence the
ABox is inconsistent.

In order to construct a correct algorithm we should per-
form such reasoning by cases to add any implied information
during the construction of the model. This analysis is per-
formed by the special rule calledchoose-rule which adds
information that is relevant to the application (or not) of
at-most QCRs. Based on the analysis we presented in the
beginning of this section, we can see that for a fuzzy assertion
(a :≤ pR.C) ≥ n, the relevant information is the inequality
+ ≥=> and the degree1−n; similarly for a fuzzy assertion
(a :≤ pR.C) > n. For example, in the previous case we used
the degrees1 − 0.7 = 0.3 and1 − 0.3 = 0.7 (due to PINF),
as well as the inequality “>”. In other words these values
are the threshold for either satisfying or not a fuzzy assertion
that involves QCRs.

1Note that in [18] the authors actually use the case analysis “either
B(bi) ≥ n or B(bi) < n”. Obviously, both these forms are equivalent.

IV. T HE TABLEAUX ALGORITHM

In section II we show that all inference problems of fuzzy
DLs can be reduced to the problem of consistency checking
for ABoxes. Consistency is usually checked with tableaux
algorithms that try to construct afuzzy tableaufor A. Given
the notion of a fuzzy tableau, it is quite straightforward
to prove the algorithm is a decision procedure for ABox
consistency. Our definition of a fuzzy tableau follows those
presented for the fuzzy DLs fKD-SI and fKD-SHIN [12],
but on the one hand is reduced in the sense that we do not
handle transitive roles and role hierarchies, while on the other
hand some properties from [12] are extended in order to
handle QCRs.

Without loss of generality, we assume all conceptsC

occurring in assertions(a : C) ⊲ n ∈ A to be in their
negation normal form(NNF) [23]; i.e., negations occur in
front of concept names only. An fKD-ALCIQ-concept can
be transformed into an equivalent one in NNF by pushing
negations inwards making use of the De Morgan laws, which
in our case are satisfied, as well as the following concept
equivalences:

¬∃R.C ≡ ∀R.(¬C), ¬∀R.C ≡ ∃R.(¬C),

¬ ≤ p1R.C ≡ ≥ (p1 + 1)R.C,

¬ ≥ p1R.C ≡

{

≤ (p1 − 1)R.C, p1 ∈ N
∗

⊥, p1 = 0

Definition 4.1: For a conceptD we inductively define the
set ofsub-concepts(sub(D)) as,

sub(A) = {A} for every atomic conceptA ∈ C,
sub(C ⊓ D) = {C ⊓ D} ∪ {sub(C)} ∪ {sub(D)},
sub(C ⊔ D) = {C ⊔ D} ∪ {sub(C)} ∪ {sub(D)},
sub(∃R.C) = {∃R.C} ∪ {sub(C)},
sub(∀R.C) = {∀R.C} ∪ {sub(C)},

sub(≥ nR.C) = {≥ nR.C} and
sub(≤ nR.C) = {≤ nR.C} ∪ {sub(C)}

♦

Definition 4.2: For a fuzzy conceptD and an RBoxR
we defineclos(D,R) as the smallest set of fKD-SHOIQ-
concepts which satisfies the following:

• D ∈ clos(D,R),
• clos(D,R) is closed under subconcepts ofD and∼ D,

and
• if ∀R.C ∈ clos(D,R) and Trans(R), then ∀R.C ∈

clos(D,R)

Finelly we defineclos(A,R) = ∪
(a:D)⊲n∈A

clos(D,R). ♦

WhenR is clear from the context we simply writeclos(A).
Definition 4.3: If A is an fKD-ALCIQ ABox, RA is the

set of roles occurring inA together with their inverses and
IA is the set of individuals inA, a fuzzy tableauT for A is
defined to be a quadruple (S, L, E , V) such that:S is a set
of elements,L : S× clos(A) → [0, 1] maps each element
and concept, that is a subset ofclos(A), to the membership
degree of that element to the concept,E : RA × S× S →



[0, 1] maps each role ofRA and pair of elements to the
membership degree of the pair to the role, andV : IA → S
maps individuals occurring inA to elements ofS. For all
s, t ∈ S, C, E ∈ clos(A), n ∈ [0, 1] andR ∈ RA, T satisfies:

1) L(s,⊥) = 0 andL(s,⊤) = 1 for all s ∈ S,

2) If L(s,¬A) = n, thenL(s, A) = 1 − n,

3) If E(¬R, 〈s, t〉) = n, thenE(R, 〈s, t〉) = 1 − n,

4) If L(s, C ⊓E)⊲n, thenL(s, C)⊲n andL(s, E)⊲n,

5) If L(s, C ⊔E) ⊲ n, thenL(s, C) ⊲ n or L(s, E) ⊲ n,

6) If L(s, ∀R.C) ⊲ n, then eitherE(¬R, 〈s, t〉) ⊲ n or
L(t, C) ⊲ n,

7) If L(s, ∃R.C) ⊲ n, then there existst ∈ S such that
E(R, 〈s, t〉) ⊲ n andL(t, C) ⊲ n,

8) E(R, 〈s, t〉) ⊲ n iff E(Inv(R), 〈t, s〉) ⊲ n,

9) If L(s,≥ pR.C) ⊲ n, then♯RT (s, ⊲, n, C) ≥ p,

10) If L(s,≤ pR.C) ⊲ n, then♯RT (s, +⊲, 1−n, C) ≤ p,

11) If L(s,≤ pR.C) ⊲ n andE(R, 〈s, t〉) + ⊲1 − n, then
eitherL(t,¬C) ⊲ n or L(t, C) + ⊲1 − n,

12) If (a : C) ⊲ n ∈ A, thenL(V(a), C) ⊲ n,

13) If ((a, b) : R) ⊲ n ∈ A, thenE(R, 〈V(a),V(b)〉) ⊲ n,

14) If a 6
.
= b ∈ A, thenV(a) 6= V(b).

where♯ denotes the cardinality of a set andRT (s, ⊲, n, C) =
{t ∈ S | E(R, 〈s, t〉) ⊲ n andL(s, C) ⊲ n} returns the set of
elementst ∈ S that participate inR with the elements and
at the same time to the conceptC with a degree, greater or
equal or greater thann. ♦

Lemma 4.4:An fKD-ALCIQ ABox A is consistent iff
there exists a fuzzy tableau forA.

Proof: [Sketch] For theif direction if T = (S,L, E ,V)
is a fuzzy tableau forA, we can construct a fuzzy interpre-
tation I =(∆I , ·I) that is a model ofA as follows:

∆I = S

aI = V(a), a occurs inA

⊤I(s) = L(s,⊤), for all s ∈ S

⊥I(s) = L(s,⊥), for all s ∈ S

AI(s) = L(s, A) for all s ∈ S

RI(s, t) = E(R, 〈s, t〉) for all 〈s, t〉 ∈ S× S

To prove thatI is a model ofA, we can show by induction on
the structure of concepts thatL(s, C)⊲n impliesCI(s)⊲n

for all s ∈ S. Together with properties 12, 13, 14 and the
interpretation of individuals and roles, this implies thatI
satisfies each fuzzy assertion inA.

For the converse, ifI =(∆I , ·I) is a model ofA, then
a fuzzy tableauT = (S,L, E ,V) for A can be defined as
follows:

S = ∆I

E(R, 〈s, t〉) = RI(s, t)

L(s, C) = CI(s)

V(a) = aI

It is easy to show thatT is a fuzzy tableau forA.
The above lemma suggests that in order to decide the

key inference problems of fKD-ALCIQ we can develop an
algorithm that constructs a fuzzy tableau for fKD-ALCIQ.

Definition 4.5: A completion-forest F for an
fKD-ALCIQ ABox A is a collection of trees whose
distinguished roots are arbitrarily connected by edges. Each
node x is labelled with a set{〈C, ⊲, n〉} ⊆ L(x), where
C ∈ clos(A) and n ∈ [0, 1]. Each edge〈x, y〉 is labelled
with a set {〈R, ⊲, n〉} ⊆ L(〈x, y〉), where R ∈ RA are
(possibly inverse) roles occurring inA. Intuitively, each
triple 〈C, ⊲, n〉 (〈R, ⊲, n〉), called membership triple,
represents the membership degree and the type of assertion
of each node (pair of nodes) to a conceptC (role R).

If nodesx and y are connected by an edge〈x, y〉 with
〈R, ⊲, n〉 ∈ L(〈x, y〉), then y is called anR⊲n-successor
of x and x is called anR⊲n-predecessorof y. If y is an
R⊲n-successor or anInv(R)⊲n-predecessorof x, theny is
called anR⊲n-neighbour ofx. Let y be anR>n-neighbour
of x, the edge〈x, y〉 is conjugatedwith triples 〈¬R, ⊲, m〉
if n + m ≥ 1. Similarly, we can extend it to the case of
R≥n-neighbours. As usual,ancestoris the transitive closure
of predecessor.

For a roleR, a conceptC, a nodex in F , an inequality
type ⊲ and a membership degreen ∈ [0, 1] we define:
RF

c (x, ⊲, n, C) = {y | y is an R⊲′n′ -neighbour of x,
〈x, y〉 is conjugated with〈¬R, ⊲, n〉 andL(y)∪{〈¬C, ⊲, n〉}
contains a clash}.

For a nodex, L(x) is said to contain a clash if it contains
one of the following:

• two conjugated pairs of triples,

• one of〈⊥,≥, n〉, with n > 0, 〈⊥, >, n〉 or 〈C, >, 1〉, or

• some triple〈≤ pR.C, ⊲, n〉 and x has p + 1 R⊲′ni
-

neighboursy0, . . . , yp, all 〈x, yi〉 are conjugated with
〈¬R, ⊲, n〉, L(yi) ∪ {〈¬C, ⊲, n〉} contains a clash and
yi 6= yj , ni, n ∈ [0, 1], for all 0 ≤ i < j ≤ p

Moreover, for an edge〈x, y〉, L(〈x, y〉) is said to contain
a clash if there exist two conjugated triples inL(〈x, y〉),
if 〈R, >, 1〉 ∈ L(〈x, y〉) or if L(〈x, y〉) ∪ {〈Inv(R), ⊲, n〉 |
〈R, ⊲, n〉 ∈ L(〈y, x〉)}, wherex, y are root nodes, contains
two conjugated triples.

For an fKD-ALCIQ ABox A, the algorithm initializes a
forestF to contain

i a root nodexai
, for each individualai ∈ IA occur-

ring in the ABox A, labelled withL(xai
) such that

〈C, ⊲, n〉 ∈ L(xai
) for each assertion of the form

(ai : C) ⊲ n in A,

ii an edge〈xai
, xaj

〉, for each assertion(〈ai, aj〉 : R)⊲n

in A, labelled withL(〈xai
, xaj

〉) such that〈R, ⊲, n〉 ∈
L(〈xai

, xaj
〉), and

iii the relation 6
.
= as xai

6
.
= xaj

if ai 6
.
= aj ∈ A and the

relation
.
= to be empty.

F is then expanded by repeatedly applying the completion
rules from Table III. The completion forest is complete when,
for some nodex, L(x) contains a clash, or none of the



TABLE III

TABLEAUX EXPANSION RULES FOR FKD -ALCIQ

Rule Description
(⊓⊲) if 1. 〈C1 ⊓ C2, ⊲, n〉 ∈ L(x) and

2. {〈C1, ⊲, n〉, 〈C2, ⊲, n〉} 6⊆ L(x)
then L(x) → L(x) ∪ {〈C1, ⊲, n〉, 〈C2, ⊲, n〉}

(⊔⊲) if 1. 〈C1 ⊔ C2, ⊲, n〉 ∈ L(x), x and
2. {〈C1, ⊲, n〉, 〈C2, ⊲, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for someC ∈ {〈C1, ⊲, n〉, 〈C2, ⊲, n〉}
(∃⊲) if 1. 〈∃R.C, ⊲, n〉 ∈ L(x),

2. x has noR⊲n-neighboury with 〈C, ⊲, n〉 ∈ L(y)
then create a new nodey with L(〈x, y〉) = {〈R, ⊲, n〉}, L(y) = {〈C, ⊲, n〉},

(∀⊲) if 1. 〈∀R.C, ⊲, n〉 ∈ L(x),
2. x has anR⊲′n1

-neighboury with 〈C, ⊲, n〉 6∈ L(y) and
3. 〈¬R, ⊲, n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈C, ⊲, n〉},
(choose) if 1. 〈≤ pR.C, ⊲, n〉 ∈ L(x),

2. there is anR-neighboury of x, with {〈∼ C, ⊲, n〉, 〈C, +⊲, 1 − n〉} ∩ L(x) = ∅, and
3. 〈x, y〉 conjugates with〈¬R, ⊲, n〉

then L(y) → L(y) ∪ {E}, for someE ∈ {〈∼ C, ⊲, n〉, 〈C, +⊲, 1 − n〉}
(≥⊲) if 1. 〈≥ pR.C, ⊲, n〉 ∈ L(x),

2. there are nop R⊲n-neighboursy1, . . . , yp of x with 〈C, ⊲, n〉 ∈ L(yi)
andyi 6= yj for 1 ≤ i < j ≤ p

then createp new nodesy1, . . . , yp, with L(〈x, yi〉) = {〈R, ⊲, n〉},
L(yi) = {〈C, ⊲, n〉} andyi 6= yj for 1 ≤ i < j ≤ p

(≤⊲) if 1. 〈≤ pR.C, ⊲, n〉 ∈ L(x)
♯RF

c (x, ⊲, n, C) > p, there are two of themy, z, with no y 6
.
= z and

2. y is neither a root node nor an ancestor ofz
then 1.L(z) → L(z) ∪ L(y) and

2. if z is an ancestor ofx
then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)

3. L(〈x, y〉) −→ ∅ and setu 6
.
= z for all u with u 6

.
= y

(≤r⊲
) if 1. 〈≤ pR.C, ⊲, n〉 ∈ L(x),

♯RF
c (x, ⊲, n, C) > p, there are two of themy, z, both root nodes, with noy 6

.
= z and

then 1.L(z) → L(z) ∪ L(y) and
2. For all edges〈y, w〉:
i. if the edge〈z, w〉 does not exist, create it withL(〈z, w〉) = ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)

3. For all edges〈w, y〉:
i. if the edge〈w, z〉 does not exist, create it withL(〈w, z〉) = ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)

4. SetL(y) = ∅ and remove all edges to/fromy, setu 6
.
= z for all u with u 6

.
= y and sety

.
= z

completion rules is applicable. The algorithm stops when a
clash occurs; it answers ‘A is consistent’ iff the completion
rules can be applied in such a way that they yield a complete
and clash-free completion forest, and ‘A is inconsistent’
otherwise.

Lemma 4.6:Let A be an fKD-ALCIQ ABox. Then,

1) when started forA the tableaux algorithm terminates.
2) A has a fuzzy tableau if and only if the expansion rules

can be applied toA such that they yield a complete
and clash-free completion forest.

Proof: [sketch] The proof of this lemma follows the
same principles as those shown for other more expressive
fuzzy DLs like fKD-SHIN [12].

Termination (first claim in Lemma 4.6) is a result of the
properties of the expansion rules as in the classical case [24]
and the case for fuzzy DLs shown in [12].

For the “if” case of the second claim, we can obtain a
fuzzy tableauT = (S,L, E ,V) from a complete and clash
free completion-forestF quite trivially since in the absence
of GCIs the algorithm terminates and thus no blocking is

required [24], [12]. In brief letF be a complete and clash-
free completion-forest constructed by the tableaux algorithm
for A. A fuzzy tableauT = (S,L, E ,V) can be defined as
follows:

S = {x | x is a node inF , andx},
L(x,⊥) = 0, for all x ∈ S,
L(x,⊤) = 1, for all x ∈ S,
L(x, C) = glb{[⊲, ni]}, for all x in F ,

L(x,¬A) = 1 − L(x, A), for all x in F ,
with 〈¬A,≥, n〉 ∈ L(x),

E(R, 〈x, y〉) = {glb{[≥, ni]} | y an R≥ni
-successor ofx}

V(ai) = xi
0, wherexi

0 is a root node

whereglb is defined in [9] and returns the maximum degree
n out of the set of membership triples of the form〈A,≥, ni〉,
or n + ǫ, whereǫ is a small real number converging to 0, if
the maximum degree appears in a membership triple of the
form 〈A, >, ni〉, or finally 0 if no such triple exists. It can
be shown thatT is a fuzzy tableau forΣ.

For the “only-if” direction, following [12], if we have a



fuzzy tableauT for A we can use it to trigger the application
of the expansion rules such that they yield a completion-
forestF that is both complete and clash-free.

Example 4.7:Lets see how our procedure can be used to
identify the inconsistency of the ABoxAc we introduced in
section III. Firstly, the algorithm initializes one root node
xa, labelled withL(xa) = {〈≥ 3R.⊤,≥, 0.7〉, 〈≤ 1R.B,≥
, 0.7〉, 〈≤ 1R.¬B,≥, 0.7〉}. Then, we repeatedly apply the
rules of Table III. First, the≥≥-rule creates threebi, such
thatL(〈xa, bi〉) = {〈R,≥, 0.7〉}, L(bi) = {〈⊤,≥, 0.7〉} and
b1 6= b2 6= b3. Then, for the triple〈≤ 1R.B,≥, 0.7〉 the
choose-rule has to non-deterministically add either〈¬B,≥
, 0.7〉, or 〈B, >, 0.3〉 in the labelsL(bi). For either of the
choices we will get a clash:

1) If we choose the triple〈B, >, 0.3〉 for two of them
then: 〈≤ 1R.B,≥, 0.7〉 ∈ L(xa), and for two bi,
〈xa, bi〉 is conjugated with 〈¬R,≥, 0.7〉, L(bi) ∪
{〈¬B,≥, 0.7〉} contains a clash and allbi are different
with each other.

2) If we choose〈¬B,≥, 0.7〉 for two of them then:〈≤
1R.B,≥, 0.7〉 ∈ L(xa), and for two bi, 〈xa, bi〉 is
conjugated with〈¬R,≥, 0.7〉, L(bi)∪{〈¬¬B,≥, 0.7〉}
contains a clash (the added triple〈¬B,≥, 0.7〉 clashes
with 〈B,≥, 0.7〉 ≡ 〈¬¬B,≥, 0.7〉) and all bi are
different with each other.

Thus, all possible expansions result to a clash andAc is
inconsistent.

Theorem 4.8:The tableaux algorithm is a decision pro-
cedure for the consistency of fKD-ALCIQ ABoxes and
the satisfiability and subsumption of fKD-ALCIQ-concepts
with respect to simple and acyclic terminologies.
Theorem 4.8 is an immediate consequence of lemmas 4.3 and
4.6. Moreover, as we discussed in section II, subsumption can
be reduced to consistency checking for ABoxes.

V. CONCLUSIONS

Today more and more applications are using Semantic
Web technologies, in order to be able to publish their content
on the Web. Unfortunately, many of these application have
special knowledge representational needs, hence the adoption
of Semantic Web languages, like OWL and DLs, in such
domains and applications is difficult. More precisely, many
applications need the ability to represent and reason about
uncertain and fuzzy knowledge. To this extent we have
presented an extension of the description logicALCIQ with
fuzzy set theory. The fuzzy DL fKD-ALCIQ extends the
fuzzy DL fKD-ALC [9] with inverse roles and QCRs. Al-
though QCRs are not part of OWL they will be added in the
future since they are very important for practical applications
[4]. Additionally, we have presented a detailed reasoning
algorithm for deciding fKD-ALCIQ ABox consistency. In
order to achieve this goal we have provided an investigation
of the properties of fuzzy QCRs, in order to provide sound
rules for such types of concept constructors.

As far as future directions are concerned, these will include
the extension of the algorithm of fKD-SHIN [12] with

the algorithm for QCRs presented here and moreover the
addition of nominals (O). Thus, we plan to provide full
reasoning for the DL language fKD-SHOIQ. Additionally,
we also plan to provide a tableaux reasoning algorithm for
fuzzy nominals (Of ) which have been proposed in [26]
and for which no tableaux algorithm exists, thus providing
reasoning for fKD-SHOfIQ.
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