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Finding Fuzzy-Rough Reducts with Fuzzy Entropy

Neil Mac Parthaláin, Richard Jensen, and Qiang Shen

Abstract— Dataset dimensionality is undoubtedly the single
most significant obstacle which exasperates any attempt to
apply effective computational intelligence techniques to problem
domains. In order to address this problem a technique which re-
duces dimensionality is employed prior to the application of any
classification learning. Such feature selection (FS) techniques
attempt to select a subset of the original features of a dataset
which are rich in the most useful information. The benefits
can include improved data visualisation and transparency, a
reduction in training and utilisation times and potentially, im-
proved prediction performance. Methods based on fuzzy-rough
set theory have demonstrated this with much success. Such
methods have employed the dependency function which is based
on the information contained in the lower approximation as an
evaluation step in the FS process. This paper presents three
novel feature selection techniques employing fuzzy entropy to
locate fuzzy-rough reducts. This approach is compared with
two other fuzzy-rough feature selection approaches which utilise
other measures for the selection of subsets.

I. INTRODUCTION

When data is collected or recorded, very often every single

aspect of the domain which is being examined may be con-

sidered such that complete representation can be achieved,

and also to ensure that no potentially useful information

is lost. The disadvantage associated with recording such

large numbers of domain attributes however means that any

attempt to use machine learning tools to extract knowledge,

results in very poor performance. Feature Selection (FS)

[5] is a process which attempts to select features which

are information-rich but also retain the original meaning of

the features following reduction. It is unsurprising therefore,

that feature selection has been applied to problems which

have very large dimensionality (>10,000) [3]. Problems of

such scale are usually outside the scope of most learning

algorithms, and in the few instances where they are not, the

learning algorithm will often find patterns that are spurious

and invalid.

As mentioned previously, it may be expected that the inclu-

sion of an increasing number of features should also improve

the likelihood of the ability to distinguish between classes.

This may not be the case however if the training data size

does not also demonstrate a simultaneous significant increase

with the addition of each feature. Most learning approaches

utilise a reduction step to overcome such problems when

dealing with large dimensionality. An efficient and effective

method to achieve this therefore is clearly desirable.

Rough set theory (RST) [13] offers an alternative, and

formal methodology that can be employed to reduce the
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dimensionality of datasets, as a preprocessing step to assist

knowledge discovery methods for learning from data. It

helps to select the most valuable features in a dataset,

and does this without transforming the data, whilst at the

same time attempting to minimise information loss during

the selection process. Computationally, the approach is very

efficient, and relies on simple set operations, which in-turn

makes it suitable as a preprocessor for techniques that are

significantly more complex. Unlike statistical correlation-

reduction approaches [7], RST requires no human input

or intervention. Most importantly however, it retains the

underlying semantics of the data, which results in models

that are more transparent to human scrutiny. The primary

disadvantage associated with the RST approach lies in its

inability to deal with real-valued data, and a number of

extensions to the basic rough set model have been proposed

in an attempt to address this shortcoming, e.g. [18]. These

extensions whilst offering more flexibility, rely on a threshold

value or other information which is non-data derived. This

obviously is a departure from the RST tenet of using only

the information contained in the data.

Other approaches focus on hybridizing RST with other

techniques such that one technique complements the other.

One such approach is the combination of RST with fuzzy

set theory to create fuzzy-rough sets [9], [17]. Fuzzy-rough

feature selection (FRFS) provides a means by which discrete

or real-valued noisy data (or a mixture of both) can be

effectively reduced without the need for user-supplied infor-

mation. Additionally, this technique can be applied to data

with continuous or nominal decision attributes, and as such

can be applied to regression as well as classification. This

paper proposes three new measures based on fuzzy entropy

in order to locate small, yet information-rich, fuzzy-rough

feature subsets.

This paper is structured as follows. The theoretical back-

ground is given in section II, providing the necessary details

for crisp rough set theory and fuzzy-rough concepts. In

the third section, the new developments for fuzzy-rough

feature selection incorporating measures of fuzzy entropy

are presented. Some initial experimentation is provided in

section IV. The paper is concluded in section V.

II. BACKGROUND

Although the principal focus of this paper lies in the

use of the various fuzzy entropy based evaluation measures

of fuzzy-rough sets for FS, an in-depth view of both the

RST and fuzzy-rough methodologies is necessary in order to

demonstrate the motivation for the investigation of the fuzzy

entropy as an evaluation metric. It is perhaps worth noting

at this point that this paper does not introduce a new feature
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selection method but rather proposes a new set of evaluation

metrics that are used to measure subset ’goodness’.

RST is an extension of conventional set theory which

supports approximations in decision making. A rough set is

the approximation of a vague concept by a pair of precise

concepts which are known as upper and lower approxi-

mations. The lower approximation is a definition of the

collection of the domain objects which are known with

absolute certainty to belong to the concept of interest, whilst

the upper approximation is the set of those objects which

possibly belong to the concept of interest.

A. Rough Set Attribute Reduction (RSAR)

At the heart of the RSAR approach is the concept of

indiscernibility. Let I = (U, A) be an information system,

where U is a non-empty set of finite objects (the universe)

and A is a non-empty finite set of attributes so that a : U→
Va for every a ∈ A. Va is the set of values that a can take. For

any P ⊆ A, there exists an associated equivalence relation

IND(P ):

IND(P ) = {(x, y) ∈ U
2|∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denoted

U/IND(P ) and is calculated as follows:

U/IND(P ) = ⊗{a ∈ P | U/IND({a})} (2)

where,

U/IND({a}) = {{x|a(x) = b, x ∈ U}|b ∈ Va} (3)

and,

A⊗B = {X ∩ Y | ∀X ∈ A,∀Y ∈ B,X ∩ Y �= ∅} (4)

If (x, y) ∈ IND(P ), then x and y are indiscernible

by attributes from P . The equivalence classes of the P -

indiscernibility relation are denoted [x]p. Let X ⊆ U. X can

be approximated using only the information contained in P
by constructing the P-lower and P-upper approximations of

X:

PX = {x|[x]p ⊆ X} (5)

PX = {x|[x]p ∩X �= ∅} (6)

Let P and Q be equivalence relations over U, then the

positive, negative and boundary regions can be defined:

POSP (Q) =
⋃

X∈U/Q

PX (7)

NEGP (Q) = U−
⋃

X∈U/Q

PX (8)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (9)

By employing this definition of the positive region it is

possible to calculate the rough set degree of dependency of

a set of attributes Q on a set of attributes P . This can be

achieved as follows: For P , Q ⊆ A, it can be said that Q
depends on P in a degree k (0 ≤ k ≤ 1), this is denoted

P ⇒k Q if:

k = γP (Q) =
|POSP (Q)|

|U|
(10)

Where, | · | denotes the cardinality of the relevant set.

The reduction of attributes or selection of survival features

can be achieved through the comparison of equivalence

relations generated by sets of attributes. Attributes are re-

moved such that the reduced set provides identical predictive

capability of the decision feature or features as that of the

original or unreduced set of features. A reduct can be defined

as a subset of minimal cardinality Rmin of the conditional

attribute set where γR(D) = γC(D).
The QUICKREDUCT algorithm shown in Fig. 1 [3]

searches for a minimal subset without exhaustively generat-

ing all possible subsets. The search begins with an empty

subset, attributes which result in the greatest increase in

the rough set dependency value are added iteratively. This

process continues until the search produces its maximum

possible dependency value for that dataset (γC(D)). Note

that this type of hill-climbing search does not guarantee a

minimal subset and may only discover a local minimum.

QUICKREDUCT(C,D).

C, the set of all conditional features;

D, the set of decision features.

(1) R← {}
(2) do

(3) T ← R
(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Fig. 1. The QUICKREDUCT algorithm

B. Fuzzy-Rough Feature Selection (FRFS)

Previous work on fuzzy-rough feature selection used a

fuzzy partitioning of the input space [17] in order to deter-

mine fuzzy equivalence classes. Alternative definitions for

the fuzzy lower and upper approximations can be found in

[16], where a T -transitive fuzzy similarity relation is used to

approximate a fuzzy concept X:

μRP X(x) = inf
y∈U

I(μRP
(x, y), μX(y)) (11)
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μRP X(x) = sup
y∈U

T (μRP
(x, y), μX(y)) (12)

Here, I is a fuzzy implicator and T a t-norm. RP is the fuzzy

similarity relation induced by the subset of features P :

μRP
(x, y) =

⋂

a∈P

{μRa
(x, y)} (13)

μRa
(x, y) is the degree to which objects x and y are

similar for feature a. Many fuzzy similarity relations can

be constructed for this purpose, for example:

μRa
(x, y) = 1−

|a(x)− a(y)|

|amax − amin|
(14)

μRa
(x, y) = exp(−

(a(x)− a(y))2

2σa
2

) (15)

μRa
(x, y) = max(min(

(a(y)− (a(x)− σa))

(a(x)− (a(x)− σa))
,

((a(x) + σa)− a(y))

((a(x) + σa)− a(x))
, 0) (16)

where σa
2 is the variance of feature a. As these relations

do not necessarily display T -transitivity, the fuzzy transitive

closure must be computed for each attribute [6]. The combi-

nation of feature relations in equation (13) has been shown

to preserve T -transitivity [19].

1) Reduction: In a similar way to the original RSAR

approach, the fuzzy positive region [10] can be defined as:

μPOSRP
(D)(x) = sup

X∈U/D

μRP X(x) (17)

The resulting degree of dependency is:

γ′
P (D) =

∑
x∈U

μPOSRP
(D)(x)

|U|
(18)

A fuzzy-rough reduct R can be defined as a minimal subset

of features that preserves the dependency degree of the entire

dataset, i.e. γ′
R(D) = γ′

C
(D). Based on this, a fuzzy-rough

QUICKREDUCT algorithm can be constructed that operates

in the same way as Fig. 1, but uses equation (18) to gauge

subset quality. In [10], it has been shown that the dependency

function is monotonic and that fuzzy discernibility matrices

may also be used to discover reducts.

Core features may be determined by considering the

change in dependency of the full set of conditional features

when individual attributes are removed:

Core(C) = {a ∈ C|γ′
C−{a}(Q) < γ′

C(Q)} (19)

III. FUZZY ENTROPY FEATURE SELECTION

This section presents some new evaluation metrics for

fuzzy-rough feature selection, based on the fuzzy entropy

measure. These metrics are applied to the fuzzy-rough lower

approximation and also to the fuzzy-rough boundary region.

A. Fuzzy Boundary Region-based FS

The lower approximation contains information regarding

the extent of certainty of object membership to a given

concept. However, the upper approximation contains infor-

mation regarding the degree of uncertainty of objects and

hence this information can be used to discriminate between

subsets. For example, two subsets may result in the same

lower approximation but one subset may produce a smaller

upper approximation. This subset will be more useful as there

is less uncertainty concerning objects within the boundary

region (the difference between upper and lower approxima-

tions).

Following the original rough set approach, the fuzzy-rough

boundary region for a concept X can be defined by:

μBNDRP
(X)(x) = μRP X(x)− μRP X(x) (20)

When the decision feature is real-valued the same fuzzy

similarity measure is employed, resulting in the relation

RD with foresets D1,D2, ...,Dn. The fuzzy-rough boundary

region then becomes:

μBNDRP
(Dj)(x) =

μRP Dj
(x)− μRP Dj

(x)

|Dj |
(21)

for decision foreset Dj , where |Dj | stands for the cardinality

of Dj .

1) Reduction: As the search for an optimal subset pro-

gresses, the object memberships to the boundary region for

each concept diminishes until a minimum is achieved. For

crisp rough set FS, the boundary region will be zero for each

concept when a reduct is found. This may not necessarily be

the case for fuzzy-rough FS due to the additional imprecise

information (ID) involved. The ID for a concept X described

using features in P can be calculated as follows:

UP (X) =

∑
x∈U

μBNDRP
(X)(x)

|U|
(22)

This is the average extent to which objects belong to the

fuzzy boundary region for the concept X . The total ID degree

for all concepts, given a feature subset P is defined as:

λP (D) =

∑
X∈U/D

UP (X)

|U/D|
(23)

When the decision feature is fuzzy, this becomes:

λP (D) =

∑
Dj∈RD

UP (Dj)

∑
Dn∈RD

(|Dn|)−1
(24)

Obviously, this degenerates to the previous definition when

dealing with crisp decisions. A QUICKREDUCT-style algo-

rithm can be constructed for locating fuzzy-rough reducts

based on this measure. Instead of maximising the dependency

degree, the task of the algorithm is to minimize the total

uncertainty degree. When this reaches the minimum for the

dataset, a fuzzy-rough reduct has been found.
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Theorem 1: B-FRFS monotonicity. Suppose that P ⊆ C,

a is an arbitrary conditional feature that belongs to the dataset

and Q is the set of decision features. Then λP∪{a}(Q) ≤
λP (Q).

Proof: The fuzzy boundary region of a concept X for

an object x and set of features P ∪ {a} is defined as

μBNDRP∪{a}
(X)(x) = μRP∪{a}X(x)− μRP∪{a}X(x)

For the fuzzy upper approximation component of the fuzzy

boundary region:

μRP∪{a}X(x) = sup
y∈U

T (μRP∪{a}
(x, y), μX(y))

It is known from Theorem 1 in [9] that μRP∪{a}
(x, y) ≤

μRP
(x, y), so μRP∪{a}

X(x) ≤ μRP X(x). As

μRP∪{a}X(x) ≥ μRP X(x), then μBNDRP∪{a}
(X)(x) ≤

μBNDRP
(X)(x). Thus, UP∪{a}(Q) ≤ UP (Q) and therefore

λP∪{a}(Q) ≤ λP (Q).

Object a b c q

1 −0.4 −0.3 −0.5 no
2 −0.4 0.2 −0.1 yes
3 −0.3 −0.4 −0.3 no
4 0.3 −0.3 0 yes
5 0.2 −0.3 0 yes
6 0.2 0 0 no

TABLE I

EXAMPLE DATASET

2) Example: To determine the fuzzy boundary region, the

lower and upper approximations of each concept for each

feature must be calculated. Considering feature a and concept

{1,3,6}:

μBNDRa ({1,3,6})(x) = μRa{1,3,6}(x)− μRa{1,3,6}(x)

For object 4, this is

μBNDRa ({1,3,6})(4) = sup
y∈U

T (μRa
(4, y), μ{1,3,6}(y))

− inf
y∈U

I(μRa
(4, y), μ{1,3,6}(y))

= 0.699− 0.0

= 0.699

For the remaining objects, this is:

μBNDRa ({1,3,6})(1) = 1.0

μBNDRa ({1,3,6})(2) = 1.0

μBNDRa ({1,3,6})(3) = 0.699

μBNDRa ({1,3,6})(5) = 1.0

μBNDRa ({1,3,6})(6) = 1.0

Hence, the ID for concept {1,3,6} is:

Ua({1, 3, 6}) =

∑
x∈U

μBNDRa ({1,3,6})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

For concept {2, 4, 5}, the ID is:

Ua({2, 4, 5}) =

∑
x∈U

μBNDRa ({2,4,5})(x)

|U|

=
1.0 + 1.0 + 0.699 + 0.699 + 1.0 + 1.0

6
= 0.899

From this, the total ID for feature a is calculated as follows:

λa(Q) =

∑
X∈U/Q

Ua(X)

|U/Q|

=
0.899 + 0.899

2
= 0.899 (25)

The values of the total ID for the remaining features are:

λ{b}(Q) = 0.640 λ{c}(Q) = 0.592

As feature c results in the smallest total imprecision degree,

it is chosen and added to the reduct candidate. The algorithm

then considers the addition of the remaining features to the

subset:

λ{a,c}(Q) = 0.500 λ{b,c}(Q) = 0.0

The subset {b, c} results in the minimal imprecision degree

for the dataset, and the algorithm terminates. Interestingly,

this is the same subset as that chosen by the fuzzy lower

approximation-based method above.

B. Integration of Fuzzy Entropy

In the above method, the overall uncertainty is evaluated

by averaging the uncertainty of all decision concepts. The ID

for a concept is itself an average measure of the belonging

of objects to the fuzzy boundary region. A more appropriate

way of measuring the uncertainty within the boundary region

of a concept X is to calculate the fuzzy entropy:

U ′
P (X) =

∑

x∈U

−
μBNDRP

(X)(x)

|BNDRP
(X)|

log2

μBNDRP
(X)(x)

|BNDRP
(X)|

(26)

λ′
P (D) =

∑
Dj∈RD

U ′
P (Dj)

∑
Dn∈RD

(|Dn|)−1
(27)

This will be minimized when all fuzzy boundary regions are

empty, hence λ′
P (D) = λP (D) = 0 and therefore P must be

a fuzzy-rough reduct.

C. Fuzzy-Rough Reduction with Fuzzy Entropy

Fuzzy entropy itself can be used to find fuzzy-rough

reducts [11]. A subset P ⊆ C induces a fuzzy similarity

relation (RP ) with corresponding foresets F1, F2, ..., Fn.

Similarly, the foresets induced by the (fuzzy) decision feature

D are D1,D2, ...,Dn. The fuzzy entropy for a foreset Fi can

be defined as:

H(Fi) =
∑

Dj∈RD

−p(Dj |Fi) log2 p(Dj |Fi)

|Dj |
(28)
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where p(Dj |Fi) is the relative frequency of foreset Fi with

respect to the decision Dj , and is defined:

p(Dj |Fi) =
|Dj ∩ Fi|

|Fi|
(29)

Based on these definitions, the fuzzy entropy for an attribute

subset P can be defined as follows:

E(P ) =
∑

Fi∈RP

|Fi|∑
Yi∈RP

|Yi|
H(Fi) (30)

This fuzzy entropy is monotonic and can be used to

gauge the utility of feature subsets in a similar way to that

of the fuzzy-rough measure. By dividing the entropy by

log2(
∑

Dn∈RD
(|Dn|)

−1), the measure will be normalized.

This can be integrated into a QUICKREDUCT-style algorithm,

employing a greedy hill-climbing approach. Again, as the

measure monotonically decreases with addition of features,

the search algorithm seeks to minimize this value in a manner

similar to the boundary region minimization approach.

Theorem 2: E-FRFS reducts are fuzzy-rough reducts.

Suppose that P ⊆ C. If E(P ) = 0 then P is a fuzzy-rough

reduct.

Proof: Equation (17) can be rewritten as [9]:

μPOSRP
(D)(x) = sup

Dj

sup
Fi

min( inf
y∈U

I(μFi
(y), μDj

(y)))

If P is a fuzzy-rough reduct, then it must be the case that

Fi ⊆ Dj or Fi ∩ Dj = ∅ ∀Fi,Dj . If Fi ⊆ Dj , then

p(Dj |Fi) = 1, and if Fi ∩ Dj = ∅, then p(Dj |Fi) = 0
∀Fi,Dj . Therefore each H(Fi) = 0, and E(P ) = 0.

1) Example: Returning to the example dataset in Table I,

the fuzzy entropy measure is used to determine fuzzy-rough

reducts. The algorithm begins with an empty subset, and

considers the addition of individual features. The attribute

that results in the greatest decrease in fuzzy entropy will

ultimately be added to the reduct candidate. For attribute a,

the fuzzy entropy is calculated as follows (A = {a}):

E(A) =
∑

Fi∈RA

|Fi|∑
Yi∈RA

|Yi|
H(Fi)

Each foreset Fi corresponds to one row in the matrix RA:

F1 1.0 1.0 0.699 0.0 0.0 0.0
F2 1.0 1.0 0.699 0.0 0.0 0.0
F3 0.699 0.699 1.0 0.0 0.0 0.0
F4 0.0 0.0 0.0 1.0 0.699 0.699
F5 0.0 0.0 0.0 0.699 1.0 1.0
F6 0.0 0.0 0.0 0.699 1.0 1.0

Considering F1, H(F1) must be calculated:

H(F1) =
∑

Dj∈RD

−p(Dj |F1) log2 p(Dj |F1)

|Dj |

Each foreset Dj corresponds to one row in the matrix RD:

D1 1.0 0.0 1.0 0.0 0.0 1.0
D2 0.0 1.0 0.0 1.0 1.0 0.0
D3 1.0 0.0 1.0 0.0 0.0 1.0
D4 0.0 1.0 0.0 1.0 1.0 0.0
D5 0.0 1.0 0.0 1.0 1.0 0.0
D6 1.0 0.0 1.0 0.0 0.0 1.0

For D1:

H(D1) =
−p(D1|F1) log2 p(D1|F1)

|D1|

=
−(1.699/2.699) log2(1.699/2.699)

3.0

Calculating this for each Dj produces:

H(F1) = 0.140+0.177+0.140+0.177+0.177+0.140 = 0.951

The procedure is repeated for each remaining foreset:

H(F2) = 0.951,H(F3) = 0.871,H(F4) = 0.871,

H(F5) = 0.951,H(F6) = 0.951

Hence, the fuzzy entropy is:

E(A) =
∑

Fi∈RA

|Fi|∑
Yi∈RA

|Yi|
H(Fi)

= 0.926 =E({a})

(32)

Repeating this process for the remaining attributes gives:
E({b}) = 0.921

E({c}) = 0.738
From this it can be seen that attribute c will cause the greatest

decrease in fuzzy entropy. This attribute is chosen and added

to the potential reduct, R ← R ∪ {c}. The process iterates

and the two fuzzy entropy values calculated are
E({a, c}) = 0.669

E({b, c}) = 0.0
Adding attribute b to the reduct candidate results in the

minimum entropy for the data, and the search terminates,

outputting the subset {b, c}. The dataset can now be reduced

to only those attributes appearing in the reduct.

D. Fuzzy-Rough Reduction with Fuzzy Gain Ratio

The Information Gain (IG) [15] is the expected reduction

in entropy resulting from partitioning the dataset objects

according to a particular feature. For the fuzzy case this can

be expressed as:

IG(P ∪ {a}) = E(P )− E(P ∪ {a}) (33)

One limitation of the IG measure is that it favours features

with many values. The Gain Ratio (GR) seeks to avoid this

bias by incorporating another term, split information, that is

sensitive to how broadly and uniformly the attribute splits

the considered data. Again, for the fuzzy case this can be

expressed as:
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TABLE II

REDUCT SIZE AND TIME TAKEN

Dataset Objects Features Reduct size
E B L BE GR

Cleveland 297 14 10 9 9 10 10
Glass 214 10 9 9 10 10 9
Heart 270 14 9 8 8 8 9

Ionosphere 230 35 8 9 9 10 8
Olitos 120 26 6 6 6 6 6

Water 2 390 39 7 7 7 7 7
Water 3 390 39 7 7 7 7 7

Web 149 2557 23 20 21 20 18
Wine 178 14 6 6 6 6 6

SP (Q) =
∑

Fi∈RQ

|Fi|∑
Yi∈RQ

|Yi|
log2

|Fi|∑
Yi∈RQ

|Yi|
(34)

The Gain Ratio is then defined as follows:

GR(P ∪ {a}) =
IG(P ∪ {a})

SP (P ∪ {a})
(35)

When this is minimized, P ∪ {a} is a fuzzy-rough reduct

due to the monotonicity of the fuzzy entropy measure. This

metric is applied in the same manner as described previously

for the feature selection approach.

IV. EXPERIMENTATION

This section presents the initial experimental evaluation of

the selection methods for the task of pattern classification,

over nine benchmark datasets obtained from [12] with two

classifier learners.

A. Experimental Setup

For the fuzzy-rough methods, the Łukasiewicz fuzzy con-

nectives are used, with fuzzy similarity defined in (16). After

feature selection, the datasets are reduced according to the

discovered reducts. These reduced datasets are then classified

using the relevant classifier learning method.

Two learning mechanisms were employed to create clas-

sifiers for the purpose of evaluating the resulting subsets

from the feature selection phase: JRip [4] and PART [20],

[21]. JRip learns propositional rules by repeatedly growing

rules and pruning them. During the growth phase, features

are added greedily until a termination condition is satisfied.

Features are then pruned in the next phase subject to a

pruning metric. Once the ruleset is generated, a further

optimization is performed where classification rules are eval-

uated and deleted based on their performance on randomized

data. PART generates rules by means of repeatedly creating

partial decision trees from data. The algorithm adopts a

divide-and-conquer strategy such that it removes instances

covered by the current ruleset during processing. Essentially,

a classification rule is created by building a pruned tree for

the current set of instances; the leaf with the highest coverage

is promoted to a rule.

B. Experimental Results

Table II compares the reduct size for fuzzy entropy-

based FS (E), fuzzy boundary region-based FS (B), fuzzy

lower approximation-based FS (L), fuzzy boundary/entropy

FS (BE) and fuzzy gain ratio FS (GR). It can be seen that

the new entropy-based fuzzy-rough methods find smaller

subsets in general (B, BE, GR). The fuzzy boundary region-

based method finds smaller or equally-sized subsets than

the L. This is to be expected, as B includes fuzzy upper

approximation information in addition to that of the fuzzy

lower approximation. The entropy-based methods perform

similarly, with the fuzzy gain ratio measure finding the

smallest subsets in general. This demonstrates the utility

of considering the split information when evaluating subset

quality.

Fig. 2. Performance: JRip

Fig. 3. Performance: PART

Table III shows the average classification accuracy as

a percentage obtained using 10-fold cross validation. The

classification accuracies are also presented in Figs. 2 and 3

for each of the nine datasets. The classification was initially

performed on the unreduced dataset, followed by the reduced

datasets which were obtained using the feature selection

techniques. All techniques perform similarly, with both the

boundary (B) and lower approximation (L) FS approaches

showing the most consistent results for both classifier learn-

ers. It would appear that the GR approach also generally

selects subsets at the expense of classification accuracy.

The BE approach demonstrates that there is some useful
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TABLE III

RESULTING CLASSIFICATION ACCURACIES (%)

Dataset JRip PART
Unred. E B L BE GR Unred. E B L BE GR

Cleveland 52.19 53.53 54.55 54.55 53.20 53.53 50.17 56.22 53.20 53.20 57.23 56.22
Glass 71.50 65.89 65.89 71.50 71.50 65.89 67.76 70.56 70.56 67.76 67.76 70.56
Heart 77.41 80.37 78.52 78.52 78.15 80.37 73.33 78.51 76.30 76.30 76.30 78.51

Ionosphere 86.52 84.37 88.26 88.26 89.15 84.37 88.26 86.95 86.09 86.09 88.26 86.95
Olitos 70.83 67.50 71.67 64.17 65.83 67.50 57.50 61.67 67.50 58.33 69.16 56.67

Water 2 83.85 82.30 85.64 85.64 84.36 83.59 83.08 83.59 84.62 84.62 84.10 82.31
Water 3 82.82 81.29 82.56 81.03 84.10 81.29 83.33 80.76 81.03 80.77 85.39 80.76

Web 58.39 53.02 46.97 55.03 50.37 52.34 42.95 55.70 55.03 57.72 52.34 53.69
Wine 92.70 94.94 95.50 95.50 93.82 91.57 93.82 94.94 94.38 94.38 94.94 93.82

information to be extracted from the fuzzy-rough boundary

region for the PART classifier learner. However as this

approach only examines the boundary region information,

there is no consistency in the results - as can be seen in Fig.

2.

V. CONCLUSIONS

This paper has presented three new techniques for fuzzy-

rough feature selection based on the use of fuzzy entropy

as an evaluation metric for the fuzzy-rough lower approx-

imations. Note that no user-defined thresholds are required

for any of the methods, although a choice must be made

regarding fuzzy similarity relations and connectives.

Further work in this area will include a more in-depth

experimental investigation of the proposed methods and the

impact of the choice of relations and connectives. Addition-

ally, the development of fuzzy discernibility matrices here

allows the extension of many existing crisp techniques for

the purposes of finding fuzzy-rough reducts. In particular,

by reformulating the reduction task in a propositional satis-

fiability (SAT) framework [2], SAT solution techniques may

be applied that should be able to discover such subsets,

guaranteeing their minimality. The performance may also

be improved through simplifying the fuzzy discernibility

function further. This could be achieved by considering the

properties of the fuzzy connectives and removing clauses that

are redundant in the presence of others.

Also, a more complete comparison of fuzzy-rough feature

selection using the metrics proposed in this paper and com-

pared with other FS techniques, would form the basis for a

series of topics for future investigation.
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