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A Noise-Tolerant Approach to Fuzzy-Rough Feature Selection

Chris Cornelis and Richard Jensen

Abstract— In rough set based feature selection, the goal is
to omit attributes (features) from decision systems such that
objects in different decision classes can still be discerned. A
popular way to evaluate attribute subsets with respect to this
criterion is based on the notion of dependency degree. In the
standard approach, attributes are expected to be qualitative;
in the presence of quantitative attributes, the methodology
can be generalized using fuzzy rough sets, to handle grad-
ual (in)discernibility between attribute values more naturally.
However, both the extended approach, as well as its crisp
counterpart, exhibit a strong sensitivity to noise: a change in
a single object may significantly influence the outcome of the
reduction procedure. Therefore, in this paper, we consider a
more flexible methodology based on the recently introduced
Vaguely Quantified Rough Set (VQRS) model. The method
can handle both crisp (discrete-valued) and fuzzy (real-valued)
data, and encapsulates the existing noise-tolerant data reduction
approach using Variable Precision Rough Sets (VPRS), as well
as the traditional rough set model, as special cases.

I. INTRODUCTION

Fuzzy sets [1] and rough sets [2] address two important

characteristics of imperfect data and knowledge: the former

model vague information by expressing that objects belong

to a set or relation to a given degree, while the latter provide

approximations of concepts in the presence of incomplete

information. To merge these notions into a joint theory that

combines their mutual strengths has been the object of a

hybridisation movement that emerged in the early 1990’s

with the seminal research of Dubois and Prade [3] and

has flourished ever since [4]. Recently, cross-disciplinary

research has also been boosted by the adoption of computing

paradigms like granular computing (see e.g. [5]), with its

focus on clustering information entities into granules in

terms of similarity or indiscernibility, and soft computing

[6], which has stressed the role of fuzzy sets and rough sets

as partners, rather than as adversaries, within a panoply of

practical applications.

At the heart of the synergy between fuzzy sets and rough

sets are the definitions of lower and upper approximations

of a fuzzy set A under a fuzzy relation R (see e.g. [7] for a

fairly general version of these definitions). In this framework,

R assesses objects’ indiscernibility, such that objects are

categorized into classes, or granules, with soft boundaries

based on their similarity to one another. On the other hand,

the fuzzy set A models a vague concept, i.e., such that objects

can meet its characteristics to varying degrees.
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Recently, it was noted in [8] that by focusing on conserva-

tive extensions of its contributing ingredients, fuzzy rough set

theory inherits not only their strengths, but also some of their

weaknesses. In particular, although they allow for gradual

membership, the classical branch of fuzzy rough sets are still

abrupt in a sense that adding or omitting a single element

may drastically alter the outcome of the approximations.

Therefore, the authors proposed vaguely quantified rough

sets (VQRS), in which an object y belongs to the lower

approximation of a set A to the extent that most objects

related to y are in A, and to the upper approximation to the

extent that some objects related to y are in A. The discerning

feature of the VQRS approach is the introduction of vague

quantifiers like ‘some’ or ‘most’ into the approximations; it

extends Ziarko’s noise-tolerant model of variable precision

rough sets (VPRS, [9]), which uses crisp thresholds 0 ≤ l <
u ≤ 1 to add an element y to the lower approximation of a

set A if at least 100 ∗ u percent of the elements related to y
are in A, and to its upper approximation if more than 100∗ l
percent of the elements related to y are in A.

In this paper, we explore the potential of the VQRS

model for feature selection [10], [11] in decision systems,

i.e., the problem of selecting those input features (attributes)

that are most predictive of the outcome (decision) of the

system. Rough set analysis [12] is very well-suited for this

problem because it can achieve semantics-preserving data

dimensionality reduction without the need for additional

parameters other than the supplied data itself. The original

framework requires that data be qualitative (discrete-valued,

nominal or crisp); this means that quantitative (real-valued,

continuous or fuzzy) data need to be preprocessed, either

by replacing the numerical attribute values by interval codes

(discretisation, see e.g. [13], [14]), or by considering a notion

of approximate equality, or graded indiscernibility, between

objects, leading to fuzzy-rough feature selection (FRFS)

methods (see e.g. [15], [16]).

In either case, and in fact regardless of whether qualitative

or quantitative data are used, noise is an important factor

degrading the performance of reduction: a single misclas-

sified object prevents rough set analysis from making any

conclusive statements about all other objects it is related

to. To reduce the impact of noise, the original rough set

approach has been adapted by using VPRS approximations

(see e.g. [17]), such that problematic elements are not taken

into account as long as their relative proportion remains

below a certain threshold. In this paper, we go one step

further by relaxing this crisp threshold into a smoother

region of tolerance towards classification errors. As an added

benefit, our approach can be integrated seamlessly with FRFS

approaches, providing a general model that encapsulates all
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the above-mentioned approaches as specific cases.

The remainder of this paper is structured as follows: in

Section II, we review the fuzzy-rough hybridisation process

by briefly recalling its ingredients (fuzzy sets and rough

sets) as well as its resulting end products (fuzzy rough sets

vs. vaguely quantified rough sets). Section III focuses on

feature selection: after recalling the classical rough set based

procedure for qualitative data reduction (Section III-A), as

well as its fuzzy-rough extension to quantitative data, and

the associated notion of fuzzy decision reducts [18] (section

III-B), we outline the VQRS-based approach in Section III-C.

We also investigate its theoretical characteristics; as with the

VPRS approach, some basic properties taken for granted in

the traditional case do not extend to the noise-tolerant setting,

and practical implementations need to be aware of this. Initial

experimental results that demonstrate the potential of the

approach are presented in Section IV. Finally, Section V

concludes the paper and outlines some ideas for future work.

II. FUZZY-ROUGH HYBRIDISATION

A. Fuzzy Sets

Recall that a fuzzy set in X is an X → [0, 1] mapping,

while a fuzzy relation in X is a fuzzy set in X × X . For

all y in X , the R-foreset of y is the fuzzy set Ry defined

by Ry(x) = R(x, y) for all x in X . If R is reflexive and

symmetric, i.e., R(x, x) = 1 and R(x, y) = R(y, x) hold

for all x and y in X , then R is called a fuzzy tolerance

relation. For fuzzy sets A and B in X , A ⊆ B ⇐⇒ (∀x ∈
X)(A(x) ≤ B(x)). The intersection A∩B and union A∪B
of A and B are defined in this paper by, for x in X ,

(A∩B)(x) = min(A(x), B(x)) (1)

(A∪B)(x) = max(A(x), B(x)) (2)

If X is finite, the cardinality of A equals

|A| =
∑
x∈X

A(x) (3)

Fuzzy logic connectives play an important role in the

hybridisation process. We therefore recall some important

definitions. A triangular norm (t-norm for short) T is any

increasing, commutative and associative [0, 1]2 → [0, 1]
mapping satisfying T (1, x) = x, for all x in [0, 1]. Common

examples of t-norms include the minimum, the product and

TL defined by TL(x, y) = max(0, x + y − 1) for x, y
in [0,1]. An implicator is any [0, 1]2 → [0, 1]-mapping I
that is decreasing in its first, and increasing in its second

component, and that satisfies I(0, 0) = 1 and I(1, x) = x,

for all x in [0, 1]. In this paper, we consider IL, defined by,

for x, y in [0,1],

IL(x, y) = min(1, 1 − x + y) (4)

It satisfies the following property, called confinement

principle (see e.g. [19]), for x and y in [0, 1],

x ≤ y ⇔ I(x, y) = 1 (5)

B. Rough Sets (RS)

Rough set theory makes statements about the membership

of an object y of X to the concept of which A is a set

of examples, based on the indiscernibility between y and

the elements of A. Usually, indiscernibility is described by

means of an equivalence relation R in X; in this case,

(X,R) is called a standard, or Pawlak, approximation space.

In a Pawlak approximation space (X,R), an element y of

X belongs to the lower approximation R↓A of A if the

equivalence class Ry of y is included in A. On the other

hand, y belongs to the upper approximation R↑A of A if its

equivalence class has a non-empty intersection with A:

y ∈ R↓A iff Ry ⊆ A (6)

y ∈ R↑A iff Ry ∩ A �= ∅ (7)

In other words,

y ∈ R↓A iff (∀x ∈ X)((x, y) ∈ R ⇒ x ∈ A) (8)

y ∈ R↑A iff (∃x ∈ X)((x, y) ∈ R ∧ x ∈ A) (9)

C. Fuzzy Rough Sets (FRS)

Research on hybridising fuzzy sets and rough sets has

focused mainly on fuzzifying the definitions of lower and

upper approximation. Typically, it is assumed that R is at

least a fuzzy tolerance relation.

For the lower and upper approximation of a fuzzy set A
in X by means of R, we adopt the definitions proposed by

Radzikowska and Kerre in [7]: given an implicator I and a

t-norm T , Formulas (8) and (9) are paraphrased to define

R↓IA and R↑T A in X by

(R↓IA)(y) = inf
x∈X

I(R(x, y), A(x)) (10)

(R↑T A)(y) = sup
x∈X

T (R(x, y), A(x)) (11)

for all y in X .

D. Vaguely Quantified Rough Sets (VQRS)

Formulas (10) and (11) have been conceived with the

purpose of conserving the traditional lower and upper ap-

proximations in mind. Indeed, when A and R are both crisp,

it can be verified that (8) and (9) are recovered. Note in

particular how the inf and sup operations play the same role

as the ∀ and ∃ quantifiers, and how a change in a single

element can thus have a large impact on (10) and (11). This

makes fuzzy rough sets equally susceptible to noisy data —

which is difficult to rule out in real-life applications— as

their crisp counterparts.

To make up for this shortcoming, Cornelis et al. [8]

proposed to soften the universal and existential quantifier

by means of vague quantifiers like most and some. Math-

ematically, they modeled such vague quantifiers in terms of

Zadeh’s [20] notion of a regularly increasing fuzzy quantifier

Q: an increasing [0, 1] → [0, 1] mapping that satisfies the

boundary conditions Q(0) = 0 and Q(1) = 1.
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Examples of fuzzy quantifiers can be generated by means

of the following parametrized formula, for 0 ≤ α < β ≤ 1,

and x in [0, 1],

Q(α,β)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ α
2(x−α)2

(β−α)2 , α ≤ x ≤ α+β
2

1 − 2(x−β)2

(β−α)2 , α+β
2 ≤ x ≤ β

1, β ≤ x

(12)

For instance, Q(0.1,0.6) and Q(0.2,1) might be used respec-

tively to reflect the vague quantifiers some and most from

natural language.

Once a couple (Ql, Qu) of fuzzy quantifiers is fixed, the

Ql-upper and Qu-lower approximation of a fuzzy set A under

a fuzzy relation R are defined by

(R↑Ql
A)(y) = Ql

( |Ry ∩ A|
|Ry|

)
(13)

(R↓Qu
A)(y) = Qu

( |Ry ∩ A|
|Ry|

)
(14)

for all y in X . In other words, an element y belongs to the

lower approximation of A if most of the elements related

to y are included in A. Likewise, an element belongs to the

upper approximation of A if some of the elements related

to y are included in A. Remark that when A and R are a

crisp set and a crisp equivalence relation, respectively, the

approximations may still be non-crisp. In this case, note also

that when

Q>xl
(x) =

{
0, x ≤ xl

1, x > xl
Q≥xu

(x) =

{
0, x < xu

1, x ≥ xu

with 0 ≤ xl < xu ≤ 1 are used as quantifiers, we recover

Ziarko’s variable precision rough set (VPRS) model [9], [21],

and moreover when we use

Q∃(x) =

{
0, x = 0
1, x > 0

Q∀(x) =

{
0, x < 1
1, x = 1

we obtain Pawlak’s standard rough set model as a particular

case of the VQRS approach.

As such, the VQRS model puts dealing with noisy data

into an interesting new perspective: it inherits both the

flexibility of VPRSs for dealing with classification errors (by

relaxing the membership conditions for the lower approxima-

tion, and tightening those for the upper approximation) and

that of fuzzy sets for expressing partial constraint satisfaction

(by distinguishing different levels of membership to the

upper/lower approximation).

III. FEATURE SELECTION

In the following, we assume that (X,A∪{d}) is a decision

system, i.e., X = {x1, . . . , xn} and A = {a1, . . . , am} are

finite, non-empty sets of objects and conditional attributes,

respectively, and d is a designated attribute outside A called

decision or class attribute. Each a in A∪{d} corresponds to

an X → Va mapping, in which Va is the value set of a over

X . In general, value sets of all attributes can be infinite, but

in this paper we assume that Vd = {v1, . . . , vp} (p ≥ 2); in

this way, X is partitioned into p decision classes Xk (k =
1, . . . , p).

A. RS-Based Feature Selection

Central to rough set based attribute reduction is the concept

of indiscernibility. For every subset B of A ∪ {d}, the B-

indiscernibility relation RB is defined as

RB = {(x, y) ∈ X2 and (∀a ∈ B)(a(x) = a(y))} (15)

Clearly, each RB is an equivalence relation. When B ⊆ A,

its equivalence classes can be used to approximate concepts,

i.e., subsets A of X , by means of RB↓A and RB↑A.

In practice, the concepts are usually equivalence classes of

the decision attribute. Given B ⊆ A, the B-positive region

POSB contains those objects for which the values of B
allow to predict the decision class unequivocally:

POSB =

p⋃
k=1

RB↓Xk (16)

The predictive ability w.r.t. d of the attributes in B is then

measured by the following value (degree of dependency of

d on B):

γB =
|POSB |
|X| (17)

(X,A∪{d}) is called consistent if γA = 1, i.e., if all objects

are discernible when the entire conditional attribute set is

taken into account. A subset B of A is called a decision

reduct if it satisfies POSB = POSA, i.e., B preserves the

decision making power of A, and if it cannot be further

reduced, i.e., there exists no proper subset B′ of B such that

POSB′ = POSA. If the latter constraint is lifted, i.e., B is

not necessarily minimal, we call B a decision superreduct.

Decision (super)reducts can be used to synthesize minimal

decision rules: the rules result from overlaying the reducts

over the original decision system and reading off the values.

Unfortunately, computing all decision reducts is an NP-

complete problem. In many cases, however, it suffices to

generate a single (super)reduct of a decision system, a

problem for which several heuristic algorithms have been

devised.

For instance, the QUICKREDUCT algorithm [16], [22],

shown in Algorithm 1, starts off with B = ∅, and computes

γB∪{a} for each attribute a in A; the attribute for which

this value is highest (or one of them in case there are

several) is selected and added to B. Then, the same process

is repeated for the remaining attributes, until γB = γA.

REVERSEREDUCT [15], shown in Algorithm 2, proceeds

in a dual fashion, starting with B = A, and progressively

eliminating attributes from B as long as γB = γA.

Note that, by construction, when REVERSEREDUCT fin-

ishes, the set B is guaranteed to equal a true reduct

of (X,A∪{d}). This does not hold, in general, for

QUICKREDUCT, which may produce a superreduct B, i.e.,

while γB = γA, there may be proper subsets B′ of B also

satisfying this property. In practice, when A is very large

(e.g., contains hundreds of attributes), REVERSEREDUCT

may be computationally expensive, or even infeasible, be-

cause the construction of B-indiscernibility relations for

large subsets B of A is very time-consuming.
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Algorithm 1: The QUICKREDUCT Algorithm

(1) B ← {}
(2) repeat

(3) T ← B
(4) foreach a ∈ (A \ B)

(5) if γB∪{a} > γT

(6) T ← B ∪ {a}
(7) B ← T
(8) until γB = γA
(9) return B

Algorithm 2: The REVERSEREDUCT algorithm

(1) B ← A
(2) repeat

(3) T ← ∅
(4) foreach a ∈ B
(5) if γB\{a} = γA
(6) T ← B \ {a}
(7) B ← T
(8) until T = ∅
(9) return B

B. FRS-Based Feature Selection

The RS-based feature selection approach requires that the

value sets of all attributes in a decision system be finite.

In order to cope with objects described by quantitative

measurements, it is possible to use discretisation, yet often

it is more natural, and more effective, to consider a gradual

notion of discernibility rather than an absolute one [18].

There are several ways of constructing fuzzy (tolerance)

relations (see e.g. [23]) that express the extent to which two

objects are indiscernible. In this paper, given a quantitative

attribute a, we compute the approximate equality between

two objects w.r.t. a, by the relation Ra [16], defined by, for

x and y in X:

Ra(x, y) = max
(
0, 1 + min(a(y)−a(x),a(x)−a(y))

σa

)
(18)

in which σ2
a represents the variance of attribute a.

Assuming that for a qualitative attribute a, the classical

way of discerning objects is used, i.e., Ra(x, y) = 1 if

a(x) = a(y) and Ra(x, y) = 0 otherwise, for any subset

B of A, the fuzzy B-indiscernibility relation RB is defined

by conjunctively combining the individual fuzzy relations Ra

(a ∈ B) with a t-norm T .

It can easily be seen that RB is a fuzzy tolerance rela-

tion, and also that if only qualititative attributes (possibly

stemming from discretisation) are used, then the traditional

concept of B-indiscernibility relation is recovered.

Using fuzzy B-indiscernibility relations, the fuzzy B-

positive region [16], [18] is defined by, for y in X ,

POSB(y) =

(
p⋃

k=1

RB↓Xk

)
(y) (19)

Hence, the fuzzy B-positive region is a fuzzy set in X , to

which an object y belongs to the extent that its RB-foreset is

included into at least one of the decision classes. As shown

in [18], Formula (19) can be simplified to

POSB(y) = (RB↓Xk∗)(y) (20)

such that d(y) = vk∗ . In other words, to determine the

membership of y to the fuzzy B-positive region, only the

decision class y belongs to needs to be inspected.

In [18], a general notion of fuzzy decision reduct based

on an increasing [0, 1]-valued measure was introduced. In

this paper, we consider a particular instantiation of this

definition based on a normalized1 extension of the degree

of dependency:

γB =
|POSB |
|POSA| (21)

B is called a fuzzy decision superreduct to degree α if γB ≥
α, and a fuzzy decision reduct to degree α if moreover for

all B′ ⊂ B, γB′ < α.

In order to produce a single fuzzy decision (super)reduct

to a preset degree α (α ∈]0, 1]), we can use modified ver-

sions of QUICKREDUCT and REVERSEREDUCT, shown in

Algorithms 3 and 4. Again, by construction, QUICKREDUCT

produces guaranteed fuzzy decision superreducts, while RE-

VERSEREDUCT obtains fuzzy decision reducts.

Algorithm 3: The fuzzy-rough QUICKREDUCT al-

gorithm (α ∈]0, 1])

(1) B ← {}
(2) repeat

(3) T ← B
(4) foreach a ∈ (A \ B)
(5) if γB∪{a} > γT

(6) T ← B ∪ {a}
(7) B ← T
(8) until γB ≥ α
(9) return B

Algorithm 4: The REVERSEREDUCT algorithm

(α ∈]0, 1])
(1) B ← A
(2) repeat

(3) T ← ∅; β ← α
(4) foreach a ∈ B
(5) if γB\{a} ≥ β
(6) T ← B \ {a}
(7) β ← γB\{a}

(8) B ← T
(9) until T = ∅
(10) return B

1Normalization is required in order that the measure yield a value of 1
for the whole attribute set; in this way, the notion of fuzzy reduct to degree
α is meaningful regardless of the consistency of the decision system. In this
paper, we assume POSA �= ∅.
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C. VQRS-Based Feature Selection

We start this section by presenting a few simple exam-

ples to illustrate the negative effects of noise on feature

selection. We explain how the existing VPRS model tackles

these defects, and then demonstrate how using VQRS lower

approximation can extend the limited facilities of the VPRS

approach to provide a finer-grained and more flexible noise

handling mechanism.

Example 1: Consider the decision system D1 in Table I.

It is discrete-valued and has two decision reducts, viz. {a1}
and {a2, a3}. When we corrupt the system by changing

the decision of x5 to 1 (resulting in D2 in Table I), the

decision reducts are {a1, a2} and {a2, a3}. In other words,

the noise has increased the average reduct size, and there

is no longer a reduct of length 1 in the corrupted decision

system. Moreover, POS{a1} = {x2, x3, x4}, so γ{a1} =
3/7, a very sharp drop in the dependency degree considering

that only one element out of seven has been affected.

A certain tolerance to noise may be introduced by using

Ziarko’s VPRS model; for instance, if we use xu = 0.75 as a

threshold, and replace the lower approximation in definition

(16) of the positive region by the corresponding VPRS

lower approximation ↓Q≥0.75
, then the {a1}-positive region

contains every object in D2. For instance, x1 belongs to this

positive region since

|R{a1}x1 ∩ X0|
|R{a1}x1| =

|{x1, x6, x7}|
|{x1, x5, x6, x7}| =

3

4
(22)

Hence, with this definition, γ{a1} = 1.

TABLE I

A) DECISION SYSTEM D1 B) DECISION SYSTEM D2 .

a1 a2 a3 d

x1 0 1 0 0

x2 2 1 1 1

x3 1 2 1 0

x4 2 0 1 1

x5 0 2 0 0

x6 0 0 0 0

x7 0 1 0 0

a1 a2 a3 d

x1 0 1 0 0

x2 2 1 1 1

x3 1 2 1 0

x4 2 0 1 1

x5 0 2 0 1

x6 0 0 0 0

x7 0 1 0 0

This example confirms the use of the VPRS model, but it is

clear that the choice of the threshold is crucial — if a slightly

higher value of l is chosen, say l = 0.8, the initial problems

reappear, and if l is chosen too low, say l = 0.65, {a3}
is returned as a reduct by the reduction procedure as well.

Moreover, as the following example shows, it also makes a

difference which particular object is affected by noise.

Example 2: Consider the decision system D3 in Table II,

which is the same as D1 but with x4 changed instead of x5.

Using classical lower approximation, the dependency degree

for {a1} is now γ{a1} = 5/7, a higher value than in Ex. 1.

However, this value does not increase when using the VPRS

lower approximation ↓Q≥0.75
, since e.g.

|R{a1}x2 ∩ X1|
|R{a1}x2| =

|{x2}|
|{x1, x2}| =

1

2
< 0.75 (23)

TABLE II

DECISION SYSTEM D3 .

a1 a2 a3 d

x1 0 1 0 0

x2 2 1 1 1

x3 1 2 1 0

x4 2 0 1 0

x5 0 2 0 0

x6 0 0 0 0

x7 0 1 0 0

The examples indicate that noise negatively impacts de-

cision systems, since longer reducts also mean less general,

weaker rules, and that, as a noise-handling mechanism, the

VPRS approach is useful but rather opaque when it comes to

choosing the right threshold. It is also fairly coarse-grained,

classifying objects either as belonging to the positive region

or not. These observations motivate the need for a smoother

approach, based on the following VQRS-based definition of

positive region:

POSQu

B (y) =

(
p⋃

k=1

RB↓Qu
Xk

)
(y) (24)

The VQRS degree of dependency of d on B, γQu

B , can be

defined analogously as in Formula (21), but some precautions

apply, see further on. Similarly as in FRS-based feature

selection, it is possible to look for fuzzy decision reducts to

a certain degree (regardless of whether the data is qualitative,

quantitative or mixed).

Example 3: If Qu = Q(0.25,0.75) is used in Formula

(24), the {a1}-positive region contains all objects of D2, so

γQu

{a1}
= 1. Also, γQu

{a2}
≈ 0.69 and γQu

{a3}
≈ 0.97. For D3,

it can be seen that e.g. POSQu

{a1}
(x2) = Qu(1/2) = 1/2,

and that γQu

{a1}
= 6/7. Likewise, it can be verified that

γQu

{a2}
= γQu

{a3}
≈ 0.98. This indicates that, for this data,

{a2} and {a3} are better candidates for data reduction than

{a1}.

It is important to note that, unlike in the FRS-based model

of the previous section, a simplification like the one in

Formula (20) does not apply automatically. Indeed, if an

object is misclassified (like x5 in D2), it is likely to belong to

a larger extent to the lower approximation of another decision

class (in this case, X0) than to that of its own class (i.e., X1).

Still, there may be reasons to prefer such a simplifi-

cation over the general definition (24). From a pragmatic

perspective, the reduction in computational cost is significant

(computing lower approximations for one decision class vs.

for all of them). Also, thinking about rule induction, it would

be undesirable to induce rules from misclassified objects

(e.g., “if a1 = 0 then d = 1” in the case of x5 and D2).

This can be prevented if such an object is excluded from the

positive region, which effectively happens when we replace

Formula (24) by

POS′Qu

B (y) = (RB↓Qu
Xk∗)(y) (25)
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with k∗ such that d(y) = vk∗ . The corresponding degree of

dependency is denoted γ′Qu

B .

Example 4: Consider again the data of Ex. 1. If

we use Formula (25) to compute the positive region,

POS′Qu

{a1}
(x1) = Qu(3/4) = 1, but POS′Qu

{a1}
(x5) =

Qu(1/4) = 0, and γ′Qu

{a1}
≈ 0.86. Similarly, γ′Qu

{a2}
≈ 0.56

and γ′Qu

{a3}
≈ 0.71.

Clearly, POS′Qu

B ⊆ POSQu

B always holds. Unfortunately,

neither POSQu or POS′Qu itself is monotonic, that is, from

B1 ⊆ B2 does not always follow that POSQu

B1
⊆ POSQu

B2
,

nor POS′Qu

B1
⊆ POS′Qu

B2
. As a consequence, γQu and γ′Qu

are not monotonic, either.

Example 5: Consider again the data of Ex. 3. It can be

verified that γ{a2} ≈ 0.98 > γ{a1,a2} ≈ 0.86.

Non-monotonicity of the dependency degree, which occurs

also in the VPRS approach, generates a number of complica-

tions that are both of theoretical and practical concern. First,

it can occur that POSQu

B �⊆ POSQu

A . For such a subset B,

computing γQu

B as in Formula (21) results in a dependency

degree that is strictly greater than 1. Therefore, a safer way

of defining γQu

B is given by

γQu

B = min

(
1,

|POSQu

B |
|POSQu

A |

)
(26)

Similar observations can be made for γ′Qu

B . Note that the

above problems do not occur when the decision system is

consistent.

Non-monotonicity also restricts the effectiveness of heuris-

tic algorithms like (fuzzy-rough) QUICKREDUCT and RE-

VERSEREDUCT, in a sense that neither of them is guaranteed

to produce true (fuzzy) decision reducts. While from a

theoretical point of view this is a fairly heavy price to

pay, in practice the algorithms can still be used to produce

sufficiently good attribute subsets.

Finally, the following proposition reveals an interesting

relationship between the FRS- and the VQRS-based approach

in case the second parameter of the fuzzy quantifier Q(α,β)

is equal to 1.

Proposition 1: Assume (X,A∪{d}) is a consistent deci-

sion system, B ⊆ A, Qu = Q(α,1), and I is an implicator

that satisfies the confinement principle (5). Then γQu

B = 1 if

and only if γB = 1.

The proposition can be used to force the VQRS reduction

process to generate fuzzy decision (super)reducts to degree 1

in the sense of Section III-B. In this way, if QUICKREDUCT

is used, the noise-handling facilities of the VQRS approach

are applied only in the intermediary stages, in which, de-

pending on the value of α in Q(α,1), a more flexible attribute

selection criterion is used.

IV. EXPERIMENTAL RESULTS

In this section, we perform a number of preliminary

experiments to analyse the performance of the VQRS feature

selection approach for the task of classification, and to inves-

tigate the role of certain parameters and options. In particular,

we compare the alternatives (24) and (25) for defining the

VQRS positive region, and we consider two choices of fuzzy

quantifiers, viz. Qu = Q(0,0.8) and Qu = Q(0.2,1). We

compare them to the VPRS approach, using xu = 0.9 as a

threshold, and to the traditional RS- and FRS-based reduction

approaches. Due to space restrictions, we only apply (fuzzy-

rough) QUICKREDUCT for generating attribute subsets, and

we always put the treshold α equal to 1, i.e., the algorithm

finishes when a subset is found with a dependency degree

(γ, γQu or γ′Qu , depending on the approach) of 1.

To back up the claim that our approach can handle

qualitative as well as quantitative data, we consider both

crisp and real-valued benchmark datasets from [15] and [24].

These datasets are medium-to-large in size, with between 32

and 699 objects per dataset and the number of conditional

features ranging from 6 to 2556. All of them are consistent.

The quality of subsets found is evaluated using JRip

[25] implemented in the WEKA toolkit [26]. JRip learns

propositional rules by repeatedly growing rules and pruning

them. During the growth phase, features are added greedily

until a termination condition is satisfied. Features are then

pruned in the next phase subject to a pruning metric. Once

the ruleset is generated, a further optimization is performed

where classification rules are evaluated and deleted based on

their performance on randomized data.

A. Crisp datasets

Table III contains general information about the used

datasets, and shows for each approach the size of the

resulting conditional feature set. Between brackets, we also

list the γ value (i.e., the classical dependency degree) of this

attribute subset. Due to Prop. 1, for Q(0.2,1), this value is

always 1, but for the other approaches this does not hold

in general. As can be seen, in general shorter or equal-

length subsets are found with high dependency degrees. In

some cases, like for derm2 with γQ(0,0.8) and γ′Q(0.2,1) ,

the results appear disappointing. Upon closer inspection, we

noticed that in these cases QUICKREDUCT produced good-

quality intermediary subsets (e.g. with γQ(0,0.8) ≥ 0.95) in

early stages, but that afterwards the algorithm stalled by

consecutively adding features with only a minimal increase

of the dependency value. This might be mended by selecting

a slightly lower α threshold to interrupt the process timely.

Table IV contains the accuracy results obtained when

the dataset is reduced according to the found subset and

classified with JRip using 10-fold cross validation. Again,

comparable or better results are obtained in general with

VQRS. It is also interesting to note that the “simplified”

VQRS dependency degree γ′
Qu

does not produce worse

results than the original version γQu
, which is encouraging

given the computational advantages of the former.

B. Real-valued datasets

Tables V and VI contain the experimental results for

continuous decision systems. We used TL and IL as t-norm

and implicator for defining fuzzy indiscernibility relations

and for computing γ, respectively.

2008 IEEE International Conference on Fuzzy Systems (FUZZ 2008) 1603



TABLE III

CRISP DATASET DETAILS

Dataset Features Objects Subset size and γ value

γ γQ≥0.9 γQ(0,0.8) γQ(0.2,1) γ′Q≥0.9 γ′Q(0,0.8) γ′Q(0.2,1)

breast 9 699 4 4(1.0) 5(0.98) 4(1.0) 4(1.0) 4(1.0) 4(1.0)

corral 6 64 5 5(1.0) 6(1.0) 6(1.0) 5(1.0) 5(1.0) 5(1.0)

derm 34 366 7 7(1.0) 7(1.0) 6(1.0) 7(1.0) 6(1.0) 6(1.0)

derm2 34 358 10 11(1.0) 26(1.0) 11(1.0) 11(1.0) 9(1.0) 25(1.0)

heart 13 294 7 7(1.0) 10(1.0) 8(1.0) 7(1.0) 7(1.0) 8(1.0)

ionos 34 230 8 7(0.93) 11(1.0) 9(1.0) 8(1.0) 8(1.0) 8(1.0)

lung 56 32 4 4(0.56) 3(0.19) 4(1.0) 5(1.0) 4(1.0) 4(1.0)

soybeanL 35 266 12 12(1.0) 13(1.0) 11(1.0) 12(1.0) 11(1.0) 11(1.0)

soybeanS 35 47 2 2(1.0) 2(1.0) 2(1.0) 2(1.0) 2(1.0) 2(1.0)

vote 16 300 9 16(1.0) 8(0.91) 16(1.0) 16(1.0) 9(1.0) 16(1.0)

water 38 521 15 13(1.0) 19(1.0) 13(1.0) 13(1.0) 14(1.0) 14(1.0)

zoo 16 101 5 6(1.0) 4(0.37) 5(1.0) 5(1.0) 5(1.0) 5(1.0)

TABLE IV

CRISP DATASET CLASSIFICATION ACCURACY

Dataset JRip (%)

γ γQ≥0.9 γQ(0,0.8) γQ(0.2,1) γ′Q≥0.9 γ′Q(0,0.8) γ′Q(0.2,1)

breast 95.6 95.6 94.3 94.7 95.6 95.6 95.6

corral 95.3 95.3 96.9 96.9 95.3 95.3 95.3

derm 76.2 86.1 80.9 80.9 86.1 80.9 70.5

derm2 89.7 90.8 93.9 86.6 90.8 91.1 93.0

heart 81.3 77.9 78.9 79.9 77.9 83 78.2

ionos 81.8 75.7 87.8 82.6 87.0 82.2 82.2

lung 84.4 84.4 71.9 84.4 84.4 87.5 84.4

soybeanL 84.2 84.2 82.3 83.9 83.1 83.1 83.1

soybeanS 100 100 100 100 100 100 100

vote 95.0 94.7 94.7 94.7 94.7 95.0 94.7

water 67.0 69.5 62.6 68.7 69.5 70.1 67.6

zoo 92.1 90.0 88.1 88.1 92.1 92.1 92.1

Similar observations can be made as for the crisp case.

The benefit of VQRS is clearest for web, with considerably

shorter subsets produced that achieve greater accuracy. In-

cidentally, note that for this dataset, especially remarkable

because of its amount of features, VPRS performs worst.

Also, it can be seen that there is no single best parameter

combination for the fuzzy quantifier; apparently, this depends

on the dataset, and on whether γQu or γ′Qu is used.

Finally, the hill-climbing style of the QUICKREDUCT

heuristic may also limit the effectiveness of reduction. In

future experiments, we plan to implement more advanced

search algorithms, based e.g. on genetic algorithms or ant

colony optimization, that can lead to more optimal subsets.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new fuzzy-rough

approach to feature selection. Its key novelty is the incorpora-

tion of a more flexible lower approximation into the reduction

process, which is motivated by the need to downsize the

adverse effect of noise in datasets. As such, our framework

bears much similarities to Ziarko’s VPRS approach, which it

generalizes by providing more, and smoother quantifiers. It

also integrates noise-handling facilities with existing fuzzy-

rough based approaches, and in particular with measures for

approximate, rather than crisp, equality.

We conjecture that, with fuzzy quantifiers, the attribute

selection procedure can be made more robust w.r.t. the quan-

tifier parameters, but this point remains to be confirmed by

further experimentation. From our preliminary observations,

we noticed that the second parameter in Q(α,β) is still

quite determining for the quality of the resulting feature

subsets, which also raises the possibility of learning optimal

quantifiers from the data itself. This is an important avenue

of further research.

We also noted that the VQRS and VPRS approaches

satisfy less theoretical properties than their classical coun-

terparts, but in practice this does not hamper the algorithms

exceedingly. The non-monotonicity of γQu and γ′Qu re-

mains a critical point, however, affecting e.g. the effec-

tiveness of heuristic algorithms like QUICKREDUCT and

REVERSEREDUCT. In [27], Ziarko recently proposed a
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TABLE V

REAL-VALUED DATASET DETAILS

Dataset Features Objects Subset size and γ value

γ γQ≥0.9 γQ(0,0.8) γQ(0.2,1) γ′Q≥0.9 γ′Q(0,0.8) γ′Q(0.2,1)

cleveland 13 297 8 7(0.999) 8(1.0) 8(1.0) 8(1.0) 7(1.0) 9(1.0)

heart 13 270 7 7(0.999) 8(0.997) 8(1.0) 7(0.999) 7(1.0) 8(1.0)

ionosphere 34 230 8 8(1.0) 7(0.998) 7(1.0) 7(0.999) 6(0.998) 7(1.0)

olitos 25 120 5 5(1.0) 5(0.995) 5(1.0) 5(1.0) 5(0.993) 5(1.0)

water 2 38 390 6 6(0.999) 9(0.997) 6(1.0) 6(0.999) 6(0.996) 6(1.0)

water 3 38 390 6 6(1.0) 8(0.995) 7(1.0) 6(1.0) 5(0.996) 6(1.0)

web 2556 149 20 26(0.999) 12(0.749) 16(1.0) 27(1.0) 16(0.991) 16(1.0)

wine 13 178 5 5(1.0) 5(0.998) 5(1.0) 5(0.999) 5(1.0) 5(1.0)

TABLE VI

REAL-VALUED DATASET CLASSIFICATION ACCURACY

Dataset JRip (%)

γ γQ≥0.9 γQ(0,0.8) γQ(0.2,1) γ′Q≥0.9 γ′Q(0,0.8) γ′Q(0.2,1)

cleveland 54.5 55.2 54.2 54.5 52.9 55.6 53.5

heart 78.5 81.9 75.2 70 81.9 81.9 80.4

ionosphere 87.8 88.3 87.8 87.8 88.7 90.9 89.6

olitos 60.8 60.8 60.8 61.7 64.2 64.2 65.8

water 2 83.1 82.8 83.8 86.4 83.6 83.1 83.3

water 3 80.5 85.1 79.2 84.1 81.8 81.8 81.8

web 53.7 52.3 55.0 59.7 48.3 53.7 53

wine 95.5 92.7 95.5 90.4 95.5 93.3 95.5

monotonic dependency degree for VPRS-based attribute re-

duction in crisp datasets; an interesting challenge is therefore

to extend this to the case of continuous data and fuzzy

quantifiers.

REFERENCES

[1] L.A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, 338–353,
1965.

[2] Z. Pawlak, “Rough sets,” International Journal of Computer and

Information Sciences, vol. 11(5), 341–356, 1982.

[3] D. Dubois, H. Prade, “Rough fuzzy sets and fuzzy rough sets,”
International Journal of General Systems, vol. 17, 91–209, 1990.

[4] C. Cornelis, M. De Cock, A. Radzikowska, “Fuzzy Rough Sets: from
Theory into Practice,” Handbook of Granular Computing (W. Pedrycz,

A. Skowron, V. Kreinovich, eds.), in press, 2008.

[5] A. Bargiela, W. Pedrycz, Granular Computing. An introduction. Kluwer
Academic Publishers, 2002.

[6] L.A. Zadeh, “Soft Computing and Fuzzy Logic,” IEEE Software, vol.
11(6), 48–56, 1994.

[7] A.M. Radzikowska, E.E. Kerre, E.E., “A comparative study of fuzzy
rough sets,” Fuzzy Sets and Systems, vol. 126, 137–156, 2002.

[8] C. Cornelis, M. De Cock and A. Radzikowska, “Vaguely Quantified
Rough Sets,”, Proc. 11th Int. Conf. on Rough Sets, Fuzzy Sets, Data

Mining and Granular Computing (RSFDGrC2007), Lecture Notes in

Artificial Intelligence 4482, 87–94, 2007.

[9] W. Ziarko, “Variable precision rough set model”, Journal of Computer

and System Sciences, vol. 46, 39-59, 1993.

[10] M. Dash, H. Liu, “Feature Selection for Classification”, Intelligent

Data Analysis, vol. 1(3), 131–156, 1997.

[11] P. Langley, “Selection of Relevant Features in Machine Learning”,
Proc. AAAI Fall Symp. on Relevance, 1–5, 1994.

[12] Z. Pawlak, Rough Sets — Theoretical aspects of reasoning about data.

Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.

[13] H.S. Nguyen, “Discretization Problem for Rough Sets Methods”, 1st

Int. Conf. on Rough Sets and Current Trends in Computing (RSCTC’98),
545–552, 1198.

[14] J.W. Grzymala-Busse, J. Stefanowski, “Three discretization methods
for rule induction”, International Journal of Intelligent Systems, vol.
16(1), 29-38 (2001).

[15] R. Jensen, Q. Shen, “Fuzzy-rough sets assisted attribute selection,”
IEEE Transactions on Fuzzy Systems, vol. 15(1), 73–89, 2007.

[16] R. Jensen, Q. Shen, “New approaches to fuzzy-rough feature selec-
tion,” IEEE Transactions on Fuzzy Systems, to appear, 2008.

[17] W. Ziarko, “Decision Making with Probabilistic Decision Tables”,
Proc. 7th Int. Workshop on New Directions in Rough Sets, Data Mining,

and Granular-Soft Computing (RSFDGrC’99) , 463-471, 1999.
[18] C. Cornelis, G. Hurtado Martı́n, R. Jensen, D. Ślȩzak, “Feature
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