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Hybrid Fuzzy-Rough Rule Induction and Feature Selection

Richard Jensen, Chris Cornelis and Qiang Shen

Abstract— The automated generation of feature pattern-
based if-then rules is essential to the success of many intelligent
pattern classifiers, especially when their inference results are
expected to be directly human-comprehensible. Fuzzy and
rough set theory have been applied with much success to this
area as well as to feature selection. Since both applications of
rough set theory involve the processing of equivalence classes
for their successful operation, it is natural to combine them into
a single integrated method that generates concise, meaningful
and accurate rules. This paper proposes such an approach,
based on fuzzy-rough sets. The algorithm is experimentally
evaluated against leading classifiers, including fuzzy and rough
rule inducers, and shown to be effective.

I. INTRODUCTION

Fuzzy rule induction forms a major approach to learn-
ing robust transparent models. The use of such learning
algorithms allows for enhanced transparency in both the
learned models themselves and the inferences performed with
these models. Many fuzzy rule induction algorithms have
been established, mostly for deriving a concise and human-
comprehensible set of rules for tasks like classification and
prediction. These include, for example, fuzzy association
rule mining [4], [29], first-order fuzzy rule generation [8],
[22], and linguistic semantics-preserving modeling [20], [24].
However, the efficacy of most of the existing approaches
to fuzzy rule induction reduces as the data dimensionality
increases. Some methods manage to avoid this, for example
standard covering algorithms for rule induction (e.g. RIPPER
[5]) that learn rules in an incremental way, with each rule in
turn constructed by adding maximally informative features
one by one.

A usual technique to address this problem is to employ
a feature selection mechanism as a pre-processor. Yet, this
adds overheads in the learning process. In addition to this,
the feature selection step is typically carried out in isolation
to rule induction for filter approaches. This separation can
prove costly in that the subset of features returned by the
selection process may not be those that are the most useful
for the rule induction phase. This has been the motivation
behind wrapper approaches to feature selection, but these
come with the additional complexity of performing rule
induction repeatedly in the search for the optimal set of
features. Clearly, a tighter integration of feature selection and
rule induction is desirable.
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Over the past ten years, rough set theory (RST [21]) has
become a topic of great interest to researchers and has been
applied to many domains. RST offers an alternative approach
that preserves the underlying semantics of the data while
allowing reasonable generality. It possesses many attributes
that are highly desirable; for example, it requires no param-
eters (eliminating the need for, possibly erroneous, human
input) and it finds a minimal knowledge representation. The
two main areas of highly successful application for RST are
feature selection and rule induction. Since both approaches
involve the analysis of equivalence classes generated from
the partitioning of the universe of discourse by sets of
features, it is natural, to integrate the two, producing a hybrid
feature selection/rule induction algorithm that combines the
advantages of both. This paper proposes a framework for
the development of such techniques. Although the methods
presented here are based on a greedy hill-climbing strategy,
any search method may be implemented for the purpose, with
suitable algorithmic modifications.

The remainder of this paper is structured as follows: in
Section II, the necessary theoretical background is provided
concerning information and decision systems, and the re-
quired fuzzy and rough set concepts. Section III introduces
the new hybrid fuzzy-rough rule induction method and pro-
vides a simple walkthrough example to illustrate the process.
Experimental results that demonstrate the potential of the
approach are presented in Section IV. Finally, Section V
concludes the paper and outlines some ideas for future work.

II. PRELIMINARIES

A. Existing Work

Due to its recency, there have been very few attempts at
developing fuzzy-rough set theory for the purpose of rule
induction. Previous work has largely focused on using crisp
rough set theory to generate fuzzy rulesets [13], [26] but
mainly ignores the direct use of fuzzy-rough concepts.

The induction of gradual decision rules, based on fuzzy-
rough hybridization, is given in [9]. For this approach, new
definitions of fuzzy lower and upper approximations are
constructed that avoid the use of fuzzy logical connectives
altogether. Decision rules are induced from lower and upper
approximations defined for positive and negative relation-
ships between credibility of premises and conclusions. Only
the ordinal properties of fuzzy membership degrees are
used. More recently, a fuzzy-rough approach to fuzzy rule
induction was presented in [27], where fuzzy reducts are
employed to generate rules from data. This method also
employs a fuzzy-rough feature selection preprocessing step.

Also of interest is the use of fuzzy-rough concepts in
building fuzzy decision trees. Initial research is presented



in [1] where a method for fuzzy decision tree construction
is given that employs the fuzzy-rough ownership function.
This is used to define both an index of fuzzy-roughness
and a measure of fuzzy-rough entropy as a node splitting
criterion. Traditionally, fuzzy entropy (or its extension) has
been used for this purpose. In [16], a fuzzy decision tree
algorithm is proposed, based on fuzzy ID3, that incorporates
the fuzzy-rough dependency function as a splitting criterion.
A fuzzy-rough rule induction method is proposed in [12]
for generating certain and possible rulesets from hierarchical
data.

B. Information Systems and Fuzzy Indiscernibility

In the context of rough or fuzzy-rough data analysis,
an information system is a couple (X,A), where X =
{x1, . . . , xn} and A = {a1, . . . , am} are finite, non-empty
sets of objects and attributes, respectively. Attributes can
be either qualitative (discrete-valued) or quantitative (real-
valued). A qualitative attribute a takes values from a finite
set, and comparison between values is done on a strict equal-
ity basis; this is reflected by the so-called a-indiscernibility
relation Ra, defined as Ra = {(x, y) ∈ X2|(a(x) = a(y)}.
When a is quantitative, its values are drawn from a closed
interval of real numbers, and compared by means of a fuzzy
a-indiscernibility relation Ra, for example,

Ra(x, y) = max
(

min
(
a(y)− a(x)

σa
,
a(x)− a(y)

σa

)
+ 1, 0

)
(1)

Ra(x, y) = 1− |a(x)− a(y)|
|amax − amin|

(2)

∀x, y ∈ X , with σa denoting the standard deviation of a.
Given a subset B of A, the fuzzy B-indiscernibility relation
RB is then defined as, for x and y in X ,

RB(x, y) = T (Ra(x, y)︸ ︷︷ ︸
a∈B

) (3)

in which T represents a t-norm. B may contain both quanti-
tative and qualitative attributes; if all attributes are qualitative,
RB is a crisp relation. In general, RB is a fuzzy tolerance
(i.e., reflexive and symmetric) relation. The fuzzy tolerance
classes1 of RB can be used to approximate fuzzy sets in X
(called concepts). Given such a fuzzy set A, its lower and
upper approximations w.r.t. RB are defined by

(RB↓A)(y) = inf
x∈X
I(RB(x, y), A(x)) (4)

(RB↑A)(y) = sup
x∈X
T (RB(x, y), A(x)) (5)

for all y in X , in which I represents an implicator2 and T is
a t-norm. In this paper, the min t-norm and Kleene-Dienes
implicator (I(x, y) = max(1− x, y)) are used.

1For each y ∈ X , its fuzzy tolerance class RBy is defined by RBy(x) =
RB(x, y), ∀x ∈ X .

2An implicator is defined as a mapping I : [0, 1]2 → [0, 1] such that I is
decreasing in its first, and increasing in its second component, and satisfies
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0.

C. Decision Systems and Feature Selection

A decision system (X,A∪ {d}) is an information system
in which d (d 6∈ A) is a designated attribute called decision.
In this paper, it is assumed that decision values are always
qualitative; in other words, based on these values, X is
partitioned into a number of non-overlapping decision classes
Xk (k = 1, . . . , p). Decision systems are often used in the
context of classification.

Given B ⊆ A, the fuzzy B-positive region is a fuzzy set
in X that contains each object y to the extent that all objects
with approximately equal values for the attributes in B, have
equal decision values d [7]. In particular,

POSB(y) =

(
p⋃

k=1

RB↓Xk

)
(y)

=
p

max
k=1

inf
x∈X
I(RB(x, y), Ak(x)) (6)

Given y ∈ Xk∗ , this formula can be simplified [7] to

POSB(y) = (RB↓Xk∗)(y) (7)

The predictive ability w.r.t. d of the attributes in B is reflected
by the ratio γB (degree of dependency of d on B), defined
as

γB =
|POSB |
|POSA|

=

∑
x∈X

POSB(x)∑
x∈X

POSA(x)
(8)

A subset B of A is called a decision superreduct if γB = 1,
i.e., B preserves the decision making power of A. If it cannot
be further reduced, i.e., there exists no proper subset B′ of
B such that POSB′ = POSA, it is called a decision reduct.

Computing all decision reducts is NP-hard, but in practice
it often suffices to generate a single decision superreduct;
for this purpose, QUICKREDUCT, a heuristic hill-climbing
search algorithm shown in Fig. 1 can be used [16].

(1) B := {}
(2) do
(3) T := B
(4) foreach a ∈ (A \B)
(5) if γB∪{a} > γT

(6) T := B ∪ {a}
(7) B := T
(8) until γB = γA
(9) return B

Fig. 1. The QUICKREDUCT algorithm

D. Crisp Rough Set Rule Induction

In crisp rough set theory, rules can be generated through
the use of minimal complexes [10]. Let D be a concept, t an
attribute-value pair (a, v), and T be a set of attribute-value
pairs. The block of t, denoted [t], is the set of objects for
which attribute a has value v. A concept D depends on a set
of attribute-value pairs T , if and only if



∅ 6= ∩{[t]|t ∈ T} ⊆ D (9)

T is a minimal complex of D if and only if D depends on
T and no proper subset T ′ of T exists such that D depends
on T ′.

It is often the case that a minimal complex describes a
concept only partially, and hence more than one minimal
complex is required to cover a concept. A local covering T
of a concept D is such a collection of minimal complexes,
such that the union of all minimal complexes is exactly D
and T is minimal (i.e. contains no spurious attribute-value
pairs). The discovery of such local coverings forms the basis
of several approaches to rough set rule induction [23]. A
partitioning of the universe of discourse by a reduct will
always produce equivalence classes that are subsets of the
decision concepts and will cover each concept fully. Once
a reduct has been found, rules may be extracted from the
underlying equivalence classes. In the literature, reducts for
the purpose of rule induction are termed global coverings.

The most widely-used approach to rule induction is the
LEM2 algorithm [10], which follows a heuristic strategy for
creating an initial rule by choosing sequentially the “best”
elementary conditions according to some heuristic criteria.
Learning examples that match this rule are removed from
consideration. The process is repeated iteratively while some
learning examples remain uncovered. The resulting set of
rules covers all learning examples. In [14], additional factors
characterizing rules are taken into account: the strength of
matched or partly-matched rules (the total number of cases
correctly classified by the rule during training), the number
of non-matched conditions, the rule specificity (i.e. length of
condition parts). All factors are combined and the strongest
decision wins. If no rule is matched, the partly matched rules
are considered and the most probable decision is chosen.

III. HYBRID FUZZY RULE INDUCTION

Feature selection often precedes classification as a prepro-
cessing step, simplifying a decision system by selecting those
conditional attributes that are most pertinent to the decision,
and eliminating those that are redundant and/or misleading.

As mentioned previously, a common strategy in rough
set theory is to induce (fuzzy) rules by overlaying decision
reducts over the original (training) decision system and read-
ing off the values. In other words, by partitioning the universe
via the features present in a decision reduct, each resulting
equivalence class forms a single rule. As the partitioning is
produced by a reduct, it is guaranteed that each equivalence
class is a subset of, or equal to, a decision concept, meaning
that the attribute values that produced this equivalence class
are good predictors of the decision concept. The use of a
reduct also ensures that each object is covered by the set of
rules. A disadvantage of this approach is that the generated
rules are often too specific, as each rule antecedent always
includes every feature appearing in the final reduct. For
this reason, we propose to integrate the rule induction step
directly into the feature selection process, generating rules on

the fly. In particular, we adapt the QUICKREDUCT algorithm
such that, at each step, fuzzy rules that maximally cover the
training objects, with a minimal number of attributes, are
generated.

For the purposes of combining rule induction and fea-
ture selection, rules are constructed from tolerance classes
(antecedents) and corresponding decision concepts (con-
sequents). A fuzzy rule, then, is represented as a triple
(B,C,D), in which B ⊆ A is the set of conditional attributes
that appear in the rule’s antecedent, C is the fuzzy tolerance
class of the object that generated the rule and D refers to a
decision class (the consequent of the rule). This formulation
is used as it provides a fast way of determining rule coverage
(the cardinality of C) and rule specificity (the cardinality of
B).

A. Algorithm

QUICKRULES is shown in Fig. 2. It proceeds in a similar
way as QUICKREDUCT (indeed, the output B will be iden-
tical to the one obtained in Fig. 1), extending this algorithm
with the rule induction phase in lines (5)–(7). The rule set is
maintained in Rules, while the fuzzy set Cov in X records
the current degree of coverage of each object in the training
data by the current set of rules. Initially, like B, both are
equal to the empty set (line 1). The function covered(Cov)
returns the set of objects that are maximally covered in Cov,
and is defined as

covered(Cov) = {x ∈ X | Cov(x) = POSA(x)} (10)

This says that an object is considered to be covered by the
set of rules if its membership to Cov is equal to that of the
positive region of the full feature set. A rule is constructed
for an object y and an attribute subset B ∪ {a} only when
it has not been covered maximally yet (line 5), i.e., when
y 6∈ covered(Cov), and it belongs maximally to POSB∪{a}
(line 6). This means that a rule is created for y only when y’s
tolerance class RBy is fully included in a decision concept,
and so the attribute values that generated this tolerance class
are good indicators of the concept.

In line (7), the procedure CHECK is called for the newly
created rule; it is added to the rule set only if there are no
existing rules with the same or a higher coverage (line (3-
4)). If an existing rule has a coverage that is strictly smaller
than the new rule’s, it is deleted (line (5-6)). Finally, if the
new rule meets the criteria for addition, the rule set and
coverage are updated. The new coverage is determined by
taking the union of the rule’s tolerance class with the current
coverage. When all objects are fully covered, no further rules
are created.

The underlying feature selection process will terminate
only when each object belongs to the positive region to the
maximal extent, which is also the condition for the rule set
to cover all objects maximally. Thus, when the algorithm has
finished, the resulting rule set will cover all objects. From the
generated set of rules, classification is achieved using Mam-
dani inference [19]. The complexity of the computation of



(1) B := {}, Rules := {}, Cov := {}
(2) do
(3) T := B
(4) foreach a ∈ (A \B)
(5) foreach y ∈ X \ covered(Cov)
(6) if POSB∪{a}(y) = POSA(y)
(7) CHECK(B ∪ {a}, RB∪{a}y,Rdy)
(8) if γB∪{a} > γT

(9) T := B ∪ {a}
(10) B := T
(11) until γB = γA
(12) return B,Rules

CHECK(B, C, D).
(1) Add := true
(2) foreach Rule ∈ Rules
(3) if C ⊆ Rule.C
(4) Add := false; break
(5) elseif Rule.C ⊂ C
(6) Rules := Rules \Rule
(7) if Add = true
(8) Rules := Rules ∪ (B,C,D)
(9) Cov := Cov ∪ C
(10) return

Fig. 2. The QUICKRULES Algorithm

the dependency degree, and the underlying positive regions,
is the same as for QUICKREDUCT, O(|A| · |X|2).

B. Walkthrough Example

To illustrate the operation of the proposed algorithm, rules
are induced via QUICKRULES from the decision system
below3, with 7 objects and 8 conditional attributes, all
quantitative:

a1 a2 a3 a4 a5 a6 a7 a8 d
x1 1 101 50 15 36 24.2 0.526 26 0
x2 8 176 90 34 300 33.7 0.467 58 1
x3 7 150 66 42 342 34.7 0.718 42 0
x4 7 187 68 39 304 37.7 0.254 41 1
x5 0 100 88 60 110 46.8 0.962 31 0
x6 0 105 64 41 142 41.5 0.173 22 0
x7 1 95 66 13 38 19.6 0.334 25 0

For this example, the similarity is computed using equation
(1), and tolerance class membership represented in vector
form.

The algorithm begins (as with QUICKREDUCT) by eval-
uating individual features. First, a1 is considered. There
are no rules at first, so no objects are covered, hence the
first object, x1, is evaluated. It is found that the degree
to which this object belongs to POS{a1} is the same as

3This is a sample taken from the Pima Indians Diabetes dataset located
at the UCI Machine Learning repository [2].

the degree to which it belongs to POSA, and therefore
CHECK({a1}, R{a1}x1, Rdx1) is called, with:

R{a1}x1 = [1.0, 0.0, 0.0, 0.0, 0.73, 0.73, 1.0]
Rdx1 = [1, 0, 1, 0, 1, 1, 1]

As there are no existing rules, a new rule
({a1}, R{a1}x1, Rdx1) is added to the empty rule set
and the coverage is updated:

Cov = [1.0, 0.0, 0.0, 0.0, 0.73, 0.73, 1.0]

It can be seen from this that the rule fully covers the
first and last objects, and covers objects x5 and x6 to
degree 0.73. The algorithm continues to evaluate objects
for attribute a1. When it reaches object x5 (which is
only covered partially by the existing rule set), the algo-
rithm calculates that POS{a1}(x5) = POSA(x5) and so
CHECK({a1}, R{a1}x5, Rdx5) is called, with:

R{a1}x5 = [0.73, 0.0, 0.0, 0.0, 1.0, 1.0, 0.73]
Rdx5 = [1, 0, 1, 0, 1, 1, 1]

As R{a1}x5 6⊆ R{a1}x1 and R{a1}x1 6⊂ R{a1}x5, a new
rule, ({a1}, R{a1}x5, Rdx5), is added to the set of rules and
the coverage is again updated to become

Cov = [1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0]

No further objects are considered for attribute a1 as the
rule set fully covers them. The dependency degree is calcu-
lated, producing γ{a1} = 0.61. Other features are evaluated
in the same way, producing no rules:

γ{a2} = 0.89 γ{a3} = 0.28
γ{a4} = 0.55 γ{a5} = 0.70
γ{a6} = 0.56 γ{a7} = 0.46

During the evaluation of feature a8, it is
determined that POS{a8}(x2) = POSA(x2), so
CHECK({a8}, R{a8}x2, Rdx2) is called, the rule
({a8}, R{a8}x2, Rdx2) is added to the rule set and
the coverage is updated. The dependency is calculated,
resulting in γ{a8} = 0.71. All features have now been
evaluated and the algorithm chooses the feature that causes
the greatest increase in dependency degree (line 10); in
this case, feature a2 with a value of 0.89. As this does not
equal the dependency degree for the full set of conditional
features, the algorithm loops, this time evaluating all
combinations of individual features with this feature.

No rules are created for subset {a1, a2}. For
subset {a2, a3}, POS{a2,a3}(x3) = POSA(x3) and
R{a2,a3}x3 is not a subset of existing rules, so the rule
({a2, a3}, R{a2,a3}x3, Rdx3) is added and the coverage
updated. Similarly, the rule ({a2, a3}, R{a2,a3}x4, Rdx4)
is added to the rule set, with Cov updated to become
[1, 1, 1, 1, 1, 1, 1]. The dependency degree of this subset is



γ{a2,a3} = 1. The algorithm terminates and outputs the
fuzzy rules:

({a1}, R{a1}x1, Rdx1),
({a1}, R{a1}x5, Rdx5),
({a8}, R{a8}x2, Rdx2),
({a2, a3}, R{a2,a3}x3, Rdx3),
({a2, a3}, R{a2,a3}x4, Rdx4)

where, for example, the last rule translates to: if a2 is
1̃87 and a3 is 6̃8 then d is 1. Here, 1̃87 and 6̃8 are
fuzzy numbers whose membership function is defined by the
original similarity relation, equation (1).

IV. EXPERIMENTATION

This section presents the initial experimental evaluation
of the proposed method for the task of pattern classification,
over 11 benchmark datasets from [2] and [16] with several
classifiers. The details of the benchmark datasets used can be
found in Table I. The number of conditional features ranges
from 8 to 2556 over the datasets, and the number of objects
ranges from 120 to 690.

TABLE I
DATASET CHARACTERISTICS

Dataset n m p
AUSTRALIAN 690 14 2
CLEVELAND 297 13 5

GLASS 270 13 7
HEART 214 9 2

IONOSPHERE 230 34 2
OLITOS 120 25 4
PIMA 392 8 2

WATER 2 390 38 2
WATER 3 390 38 3

WEB 149 2556 5
WINE 178 13 3

The classifiers themselves are obtained from the WEKA
toolkit [28] and ROSE software [23], and are evaluated using
their default parameter settings. Additionally, two approaches
for nearest neighbor classification are used based on fuzzy
sets (FNN) [18] and fuzzy-rough sets (FRNN) [15], as well
as a recent method for fuzzy rule induction, QSBA [25].
LEM2 and ModLEM [23], are the leading rough set rule
induction methods. The QUICKRULES algorithm uses the
similarity measure given in equation (2). Experimentation is
also carried out with several non-rough set-based techniques,
namely J48, JRip, PART, SMO and Naive Bayes [28] with
default parameters selected. For each algorithm, ten-fold
cross validation is performed; the resulting classification
accuracies and standard deviations can be seen in Table II
for the fuzzy/rough set methods and Table III for the others.

From Table II, it can be seen that QUICKRULES performs
best overall for the fuzzy and rough set-based methods. This
demonstrates the power of fuzzy-rough set theory in handling
the vagueness and uncertainty often present in data. For the
nearest neighbor approaches, the only result of statistical
significance where they outperform QUICKRULES is for
the GLASS dataset. For seven datasets, their performance

is statistically worse than QUICKRULES. LEM2 performs
relatively poorly, particularly for GLASS, IONOSPHERE and
OLITOS datasets. QSBA performs poorly for the WEB
dataset in particular, demonstrating the shortcomings of the
approach when handling many features. It should also be
noted that, unlike QUICKRULES and QSBA, LEM2 and
ModLEM perform a degree of rule pruning during induction
which should produce more general rules and better resulting
accuracies.

When compared with several leading classifiers (Table
III), the proposed technique performs very well. Indeed, the
overall performance of QUICKRULES is slightly worse than
that of the support vector method (SMO), and comparable
to or better than the remaining classifiers.

V. CONCLUSIONS

This paper proposed a novel hybrid approach for fuzzy-
rough set rule induction. By performing feature selection
and rule induction simultaneously, the generated rulesets are
guaranteed to be compact and transparent. The experimental
results show that the method performs very well against a
range of leading classifiers.

The QUICKRULES induction algorithm currently does
not employ any post-processing procedures to improve rule
quality. It is likely that such optimizations will improve
classification accuracy further. One possible mechanism for
this could be achieved by extending and applying the LEM2
pruning procedure, where antecedents are removed if the
underlying equivalence class remains unaffected by their
removal. Also, it may be beneficial to employ the VQRS
measure [6] instead of the traditional dependency measure
in order to better handle noise and uncertainty, particularly
when applying the method to real-world problems.

As the induction of rules is based on examining the
equivalence classes produced by a partitioning of the universe
by a feature subset, any search mechanism formulated in
this way can be applied to discover rules. This could be
performed (for example) by standard search algorithms such
as breadth-first search, best first search, etc or stochastic
approaches such as Ant Colony Optimization [3] and Genetic
Algorithms [11].
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