Loading [a11y]/accessibility-menu.js
Refining classifier from unsampled data | IEEE Conference Publication | IEEE Xplore

Abstract:

For a learning task with a huge number of training instances, we sample some informative/important instances, which are then used for learning. Obtaining accurately label...Show More

Abstract:

For a learning task with a huge number of training instances, we sample some informative/important instances, which are then used for learning. Obtaining accurately labeling data is always difficult thus noise detection is required to filter out noises from sampled instances since the noises will degrade the learning performance. In this work, we propose to utilize unsampled instances to improve the performance of noise detection in sampled instances. Empirical study validates our idea that refined classifier can be achieved from noisy sampled instances by utilizing unsampled instances.
Date of Conference: 20-24 August 2009
Date Added to IEEE Xplore: 02 October 2009
ISBN Information:
Print ISSN: 1098-7584
Conference Location: Jeju, Korea (South)

References

References is not available for this document.