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Abstract— Design and study of mixed animal-robot societies
are the fields of scientific exploration that can bring new oppor-
tunities for research into the group behavior of social animals.
Our goal is to develop a Chicken Robot – an autonomous
mobile robot, socially acceptable by a group of chicks and
able to interact with them using appropriate communication
channels. One of the basic requirements to such a robot is the
safety of its motion with respect to the chicks, so it has to be
endowed with an efficient real-time collision avoidance system.
In this paper we present a fuzzy obstacle avoidance system
that was designed for the Chicken Robot using the theory of
fuzzy relation equations. This approach allows to easily check a
consistency of a used rule base and provides a more systematic
approach to design of fuzzy control systems comparing with
the classical techniques. The experimental results demonstrate
that a mobile robot equipped with the presented system is
able to successfully avoid obstacles and safely navigate on an
experimental arena.

I. INTRODUCTION

The goal of the Chicken Robot project is to develop a
mobile robot able to interact with a group of domestic chicks
using communication channels relevant for them, and to
control specific group behaviors. A mobile robot capable to
reply to an animal and to adapt to an animal’s behavior offers
a promising opportunity to ethology. It can be used in purely
scientific experiments to study animal social behavior as well
as in farming applications to improve breeding conditions of
intensively produced animals.

Design of such a robot and its control system is also
an interesting challenge for robotics. There are very few
projects in the animal-robot interaction field [1]–[5]. In
our research we follow a general methodology developed
within the European project Leurre, where a mixed society
of cockroaches and robots was created and successfully
controlled [5]. We apply and modify this methodology for a
case of more complex social animals such as chickens.

In order to overcome the problem of social recognition and
acceptance of the robot by chicks we use the mechanism of
the filial imprinting [6]. Once the robot is presented to very
young chicks, they consider it as their hen and then will
follow it, forming a stable group.

The young chicks have fragile bodies, hence one of the
main requirements to the Chicken Robot is the safety of its
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displacements with respect to chicks, i.e. a collision risk must
be low and the eventual effects of collision be harmless.

A number of reactive navigation systems have been imple-
mented in robotics. Among them the potential field method,
where a robot follows to a superposed force field from
obstacles and the goal [7]; the dynamic window approach
that takes into account dynamics of a robot and deals
with constraints imposed by robot’s limited velocities and
accelerations [8]; and the vector field histogram method
[9], where a motion command is deduced from the polar
histogram of obstacles density constructed from the current
sensor readings. Finally, a number of mobile navigation
approaches based on the principles of fuzzy control were
proposed [10]–[12].

In this work we also take a fuzzy control based approach
to the task of collision avoidance. In comparison with other
techniques the fuzzy control has such advantages as use of
expert’s heuristic knowledge in a natural linguistic form and
ability to provide a satisfactory performance in case of noisy
input. This makes the fuzzy control a good choice for the
needs of autonomous robotics, where a mathematical model
of the environment is often not available, sensory data are
noisy and real-time operation is necessary [11].

The conventional way to construct fuzzy control systems
is to determine the relationship between input and output
sets in form of fuzzy rules and then to use the resulted rule
base directly to compute the output of the system. Being
in the common use, this approach by default assumes that
all of the rules create a consistent control algorithm that is
not always the case; design of an efficient control system
demands an intense tuning of the system parameters via
trial-and-error adjustment. An alternative way is to represent
the knowledge about the mapping of the input space to the
output space contained in the rule base in the form of a single
fuzzy relation by applying the fuzzy relation equations theory.
Initially proposed by Sanchez [13] in 1976 these equations
have been intensively studied since then [14]–[21] and found
their applications in different fields [22]–[24]. Use of fuzzy
relation equations allows to easily check the consistency of
the rule base and provides a more systematic approach to
design of the fuzzy control system comparing with other
approaches [22].

In this paper we present a fuzzy collision avoidance system
designed for the Chicken Robot using the theory of fuzzy
relation equations. We represent a relationship between an
input set of robot’s sensor values and an output set of steering
directions in the form of a fuzzy rule base. Then we prove
the consistency of the rule base and find a mathematical



representation of the knowledge that it contains in the form of
a fuzzy relation R by solving a corresponding fuzzy relation
equation. The fuzzy relation R is further used to compute a
robot’s steering angle allowing to avoid detected obstacles.
To validate efficiency of the proposed obstacle avoidance
system we conduct experiments with a real robot.

The paper is organized as follows. Section II presents
an overview of the Chicken Robot and its control system.
Section III explains how the obstacle avoidance system works
and discusses efficiency issues, followed by the experimental
results in Section IV.

II. THE CHICKEN ROBOT AND ITS CONTROL SYSTEM

A. The Chicken Robot

In animal-robot experiments we use a modification of
a marXbot robot (Modular All-teRrain eXperimentation
roBOT) developed in our group (Figure 1a). It is a modular
mobile robot that can be expanded with different extensions
supporting specific mechanical or electronic features. A
base module of the marXbot (Figure 2) guarantees a stable
contact with the ground and a remarkable maneuverability. It
consists of two treels (tracks plus wheels) with two motors;
24 infrared proximity sensors around the robot used as
bumpers; twelve infrared ground and close ground sensors;
three dsPIC33 microcontrollers, one for each motor and one
to manage the sensors; and space for a battery pack. The
infrared bumpers have a distance range about 3 cm.

We extended the base module by adding a speaker module
with a Sony Ericsson MBS-100 Bluetooth speaker used to
improve quality of the imprinting and a top board with color
markers (Figure 1b). The markers are used in the off-line
analysis of recorded animal-robot experiments video data to
determine the position and orientation of the robot.

(a) The design of the marXbot
robot.

(b) The Chicken Robot.

Fig. 1: The design of the marXbot robot and its Chicken
Robot modification.

The Chicken Robot has a size of an adult chicken, energy
autonomy up to several hours and Bluetooth connectivity.

B. The robot’s behavior

The control architecture of the Chicken Robot is a
behavior-based controller [25]. It consists of a collection of

behaviors arranged in a hierarchy where behaviors on higher
levels integrate behaviors on lower levels (Figure 3). The
highest level behaviors are manually activated through the
GUI on the user PC that has a Bluetooth connection with
the robot; the behaviors of the second level work on the
robot’s microcontroller managing sensors.

When a user control behavior is activated, a user remote
controls robot’s displacements through the Bluetooth connec-
tion. If a wandering behavior is activated, the robot executes
a forward move till sensors detect any obstacle. Based on the
number of adjoining sensors detecting the obstacle the robot
can distinguish two types of obstacles – walls and not walls.
If the obstacle is a wall, the robot turns away. The walls
avoidance algorithm is simple, the robot goes away from the
wall with a turn-away angle equal to an angle of incident.

If the obstacle is not a wall, then the fuzzy collision avoid-
ance system is activated. Based on the positions of obstacles
it generates a new heading angle. When the obstacle is not
detected any more, odometry data are used to return the robot
to the original direction and it continues to move forward.

This behavioral model can be expanded by more complex
behaviors depending on results of biological experiments. To
combine behaviors we plan to apply the multivalued behavior
control approach [10], [26].

Fig. 2: The base module of the marXbot robot.
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Fig. 3: An overview of the behavioral architecture of the
Chicken Robot.

III. THE OBSTACLE AVOIDANCE METHOD

A. The method’s description

To design the fuzzy control system responsible for obstacle
avoidance we use the approximate reasoning method. We first



construct fuzzy partitions of an input and an output sets, and
then determine a relationship between elements of the fuzzy
partitions in the form of IF-THEN rules. This relationship
is further used to determine the mapping of the input to the
output space in the form of a single fuzzy relation.

An input set S is a finite set of infrared sensors of
the Chicken Robot. To decrease computational load on the
system we reduced the cardinality of S by grouping sensors
in pairs (Figure 4a), thus |S| = 12. We chose an output set
F to be a set of forbidden directions of travel, i.e. directions
that lead to a collision with an obstacle. We also reduced its
cardinality by partitioning a 360

� range into sectors of 30

�

each (Figure 4b), |F | = 12.
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Fig. 4: The input and the output sets of the obstacle avoidance
system.
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where m is a cardinality of X [14].
The Figures 5-6 represent the fuzzy partitions O4 and D4

of sets S and F correspondingly that we constructed for our
fuzzy inference system. For simplicity reasons we restricted
the number of elements in each of two partitions to four. We
used triangular and trapezoid membership functions.
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Fig. 5: The fuzzy sets combining the fuzzy partition O4.

Fuzzy sets of O4 have the following linguistic represen-
tation:

O1 � an obstacle is detected in front of the robot;
O2 � an obstacle is detected in the direction of the sensor

pair 2;
O3 � an obstacle is detected behind the robot;
O4 � an obstacle is detected in the direction of the sensor

pair 10;

1
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F
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Fig. 6: The fuzzy sets combining the fuzzy partition D4.

while the fuzzy sets of D4 have the following linguistic
representation:
D1 � a movement in directions of sectors 0, 1, 10 and 11

is disallowed;
D2 � a movement in directions of sectors 1-3 is disallowed;
D3 � a movement in directions of sectors 3-8 is disallowed;
D4 � a movement in direction of sectors 8-10 is disallowed.

The wideness of the fuzzy set O3 and hence D3 is
explained by the fact that O3 corresponds to obstacles behind
the robot that are less important than obstacles close to the
front of the robot.

After the fuzzy partitions on the input and the output
sets are chosen, the next step is to establish a relationship
between them. Since the elements of O4 and D4 have a clear
linguistic meaning, empirical linguistic rules can be used in
order to describe this relationship. Combining rules with the
generalized modus ponens rule of inference, we obtain an
approximate reasoning scheme for our obstacle avoidance
system in the following form:

RULE 1: IF o IS O1 THEN d IS D1

RULE 2: IF o IS O2 THEN d IS D2

RULE 3: IF o IS O3 THEN d IS D3

RULE 4: IF o IS O4 THEN d IS D4

ANTECEDENT: o IS O
CONSEQUENCE: d IS D.

(1)

A mathematical representation of the procedure (1) can be
obtained by applying the compositional rule of inference. If
we define knowledge contained by the rule base as a fuzzy
relation R : S ⇥ F ! [0, 1] and R12⇥12 is a matrix form of
R, then any input o (a fuzzy subset on S) can be represented
by a vector o = [O(s1), O(s2), ..., O(s12)] and an output
d = [D(f1), D(f2), ...,D(f12)] is given by

d = o �R,

where � denotes a max-T composition with T being a
continuous T-norm. In this work we use min(a, b) T-norm.

The main problem here is to find the fuzzy relation R, i.e.
the matrix R. The conventional approach suggests to use any
well-known fuzzy implication to represent each rule [27].
An alternative way is to solve a system of fuzzy relation
equations, where each equation represents one rule O

i

!
D

i

, i 2 {1, 2, 3, 4}:
8
>><

>>:

d1 = o1 �R
d2 = o2 �R
d3 = o3 �R
d4 = o4 �R,

(2)
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The selection of one of these two approaches depends on

the application and cannot be predetermined, but the fuzzy
relation equations based approach has such advantages as
theoretical soundness and clearly defined properties [15],
providing reliable models of processes and making the whole
design process more consistent and systematic. Its main
disadvantage is the potential nonexistence of the solution
of (2). However in last decades a variety of necessary and
sufficient conditions of the solution existence were derived
[16], [20] as well as methods allowing to increase the
solvability of equations by modifying a rule base [17] and
techniques to find approximate solutions [18], [19].

A rule base and a fuzzy inference system using this rule
base are said to be consistent when there is a common
solution for all the equations of (2).

Let an antecedents matrix O is defined as

O =

2

664

o1

o2

o3

o4

3

775 =

2

664

O1(s1) O1(s2) . . . O1(s12)

O2(s1) O2(s2) . . . O2(s12)

O3(s1) O3(s2) . . . O3(s12)

O4(s1) O4(s2) . . . O4(s12)

3

775 ,

and a consequences matrix D is defined as

D =

2

664

d1

d2

d3

d4

3

775 =

2

664

D1(f1) D1(f2) . . . D1(f12)

D2(f1) D2(f2) . . . D2(f12)

D3(f1) D3(f2) . . . D3(f12)

D4(f1) D4(f2) . . . D4(f12)

3

775 .

Then the system of equations (2) can be rewritten in the form
of one fuzzy relation equation

O �R = D. (3)

Thus the rule base is consistent iff equation (3) is solvable.
For the rule base that we designed for our obstacle

avoidance system the antecedents and consequences matrices
have the following forms:

O =

2

64

1 1/2 0 0 0 0 0 0 0 0 1/2 1
0 1/2 1 1/2 0 0 0 0 0 0 0 0
0 0 0 1/2 1 1 1 1 1/2 0 0 0
0 0 0 0 0 0 0 0 1/2 1 1/2 0

3

75 ,

D =

2

64

1 1 1/2 0 0 0 0 0 0 1/2 1 1
1/2 1 1 1 1/2 0 0 0 0 0 0 0
0 0 1/2 1 1 1 1 1 1 1/2 0 0
0 0 0 0 0 0 0 1/2 1 1 1 1/2

3

75 .

For these given values of O and D equation (3) is solvable
as the following solvability criteria holds true: if the input
fuzzy sets A

i

are semi-overlapped, satisfying the conditions

height(A
i

^A
i+1) = 1/2 and 8x 2 X

X

i

A
i

(x) = 1,

where A
i

and A
i+1 are adjacent normal fuzzy sets, then

equation A �R = B can be exactly solved [28].
If a fuzzy relation equation is solvable, a number of

numerical methods can be used to find its solution set [21],
[29], [30]. We found R as

R = min

8i

(o
i

'd
i

), (4)

where ' is a residual implication to a T-norm used in (3).
For the min T-norm

'(x, y) =

⇢
1 x  y
y x > y

.

Equation (4) gives a maximum solution of the equation (3)
[31]. In our case

R =

2

66666666666666664

1 1 1/2 0 0 0 0 0 0 1/2 1 1
1 1 1 0 0 0 0 0 0 0 0 0

1/2 1 1 1 1/2 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0
0 0 1/2 1 1 1 1 1 1 1/2 0 0
0 0 1/2 1 1 1 1 1 1 1/2 0 0
0 0 1/2 1 1 1 1 1 1 1/2 0 0
0 0 1/2 1 1 1 1 1 1 1/2 0 0
0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1/2 1 1 1 1/2
0 0 0 0 0 0 0 0 0 1 1 1
1 1 1/2 0 0 0 0 0 0 1/2 1 1

3

77777777777777775

.

After R is one time computed, we can use it in the
control system to calculate the output. The proposed obstacle
avoidance system is presented on Figure 7. The fuzzification
procedure computes the input vector o using the following
formula

o
i

=

v
i

� T

V
max

� T
,

where v
i

– proximity value from the i-th sensor pair (we take
the largest of two sensors’ values), V

max

is the known largest
proximity value and T is the obstacle avoidance activation
threshold. The disallowed directions are calculated as

d = o �R.

To find the steering angle we calculate an allowed direction
fuzzy subset as d = 1 � d and then use the centroid of
the largest area defuzzification method [10]. The resulted
steering angle is sent to microcontrollers responsible for the
motor control, where it is translated to the left and the right
motor speed values.

IR sensors values

Fuzzification
Fuzzy input o

Fuzzy inference
d = oR Defuzzification

Fuzzy output d

New heading angle

Fig. 7: The overview of the obstacle avoidance system.

B. Computational complexity estimation

We will show that the use of the fuzzy relation R in
the inference process allows to reduce the computational
load comparing with the conventional approach to fuzzy
control. Let N be the cardinality of the input set, M be
the cardinality of the output set, o0 = [O0

(s1), ..., O
0
(s

N

)]

be an input vector, and vectors o
k

and d
k

represent the left
and the right parts of the k-th rule, then the output vector



d0
k

= [D0
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(f1), ...,D
0
k

(f
M

)] of the k-th rule is calculated as
follows [27]

D0
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(T (O0
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i

), D
k

(f
j

)))),

where T is a T-norm and I is a fuzzy implication used to
represent the rule. Hence, a computation of one element of
the vector d0

k

requires N calls of function I , N calls of
function T and N � 1 comparisons to find the maximal
element. If the rule base contains K rules, then the outputs
of all rules have to be computed that requires KMN calls of
function I , KMN calls of T and KM(N�1) comparisons.

If the fuzzy relation equation based approach is used,
then we only compute a single output vector d0

=

[D0
(f1), ...,D

0
(f

M

)]:

D0
(f

j

) = max

i

(T (O0
(s

i

), R(s
i

, f
j

))), j 2 {1, ..,M}

that requires only MN calls of T and M(N � 1) compar-
isons. Thus this approach provides a significant reduction in
the computational load.

From the memory requirements point of view, the fuzzy
relation matrix R contains MN elements to store, whereas
to store the rule base we need only (M + N)K elements;
therefore, when input and output sets are of big cardinalities,
storing of R is less efficient. However the size of R does not
depend on the number of rules in the rule base, hence it is
possible to considerably concretize control rules and expand
the rule base without increasing the memory demands. For
example, for our obstacle avoidance system M = N = 12,
therefore R has 144 elements and if the rule base has more
than six rules, then R needs less storage space than the rule
base.

Hence, the fuzzy relation equation based approach pro-
vides the significant reduction in computational load and in
many cases saves memory.

IV. EXPERIMENTAL RESULTS

This section validates experimentally the presented ap-
proach. We tested the obstacle avoidance system on the real
platform that is the base module of the marXbot robot. The
experimental set-up is composed of a square arena with sides
of 1.5 meters in length, an overhead camera and tennis balls
placed on the arena as obstacles. The speed of the robot is 60
mm/s, the obstacle avoidance is a real-time control loop at
10Hz. We used the tennis balls as their sizes approximately
correspond to the sizes of young chicks. We recorded the
experiments with the help of the color Scout Gigabit Ethernet
camera scA1300-32gc from Basler.

Figure 8 shows the result of one of our runs. The trajectory
of the robot is extracted from the recorded experimental
video data with the help of the SwisTrack software [32].
The tests confirmed that using presented real-time obstacle
avoidance system the robot is able to safely navigate on the
arena successfully avoiding collisions. Repeating experiment
many times we noticed that sometimes the robot gently
touched the balls while avoiding them. It can be explained
by the fact that in our system we use only four rules; this

Starting point

Tennis balls

Fig. 8: The experimental results: the robot successfully
avoids collisions with obstacles. The blue marker on top of
the robot is used by the off-line tracker to estimate the robot’s
position and orientation.

can be overcome by adding extra rules to make the rule base
more accurate.

V. CONCLUSIONS

In this paper, we have presented a reactive fuzzy collision
avoidance system that was designed using the theory of
fuzzy relation equations. Furthermore, we have presented
experimental results that show that a mobile robot endowed
with this system is able to successfully avoid obstacles and
safely navigate on the experimental arena in real-time.

It does worth comparing the used fuzzy behaviors ap-
proach with two other popular methods of real-time reactive
navigation, namely, the vector field histogram approach and
the potential fields approach. The vector field histogram
approach [9] uses the local information from the sensors
to construct a one-dimension polar histogram of obstacles
density that is then analyzed to determine candidate direc-
tions of movement, and the one closed to the goal direction
is selected. In the potential field method [7] a robot’s
motion direction vector is computed as a combination of the
repulsive fields from obstacles with the attraction fields from
goals.

All three methods are not computationally heavy and can
be performed in real-time on the dsPIC33 microcontroller,
used in the Chicken Robot. However, each of them has
features to take into account. The vector field histogram
method can only deal with obstacle avoidance while pursuing
a single goal location and is therefore less general than the
potential field approach that is able to deal with multiple
behaviors and to combine their outputs for a variety of
different tasks. However, the potential field approach suffers
from the well known problem of local minima in the potential



field; its another problem is that arbitration of behaviors by
vector addition can result in the command, which does not
satisfy to any of the contributing behaviors. For example,
a robot cannot pass through closely spaced obstacles. The
fuzzy behaviors based method does not have this limitation,
but similar to the potential field approach it allows to
combine different behaviors to carry out complex tasks [33].
At the same time the vector field histogram method is able
to produce shorter while less smooth paths than the fuzzy
behaviors based one does [34]. Therefore, the approach based
on the fuzzy behaviors is an optimal choice for the reactive
mobile navigation system in the case when the flexibility to
add new behaviors is demanded.

In our work several issues still remain open for improve-
ment. The rule base that we employ is rather simple, using
it we intended to test and illustrate the proposed approach.
In future we are planning to expand the rule base, providing
more detailed relationship between the input and output sets,
and also to replace the current wall avoidance system by
the fuzzy one, using the same design approach. Finally, the
evaluation of our collision avoidance system on real animals
in animal-robot experiments will be a part of the future work.
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