Abstract:
In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology p...Show MoreMetadata
Abstract:
In this paper we present a parallel evolutionary multi-objective methodology for granularity and rule-based learning for Mamdani Fuzzy Systems. The proposed methodology produces a set of solutions with different trade-off between accuracy and interpretability, based on searching the number of labels and the fuzzy rules, and also makes a variable selection. This process is achieved by exploiting present parallel computer systems allowing it to deal with more complex models.
Published in: 2009 IEEE International Conference on Fuzzy Systems
Date of Conference: 20-24 August 2009
Date Added to IEEE Xplore: 02 October 2009
ISBN Information:
Print ISSN: 1098-7584