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 

Abstract — This paper considers the modelling and 
designing of a production-flow scheduler based on fuzzy 
interval system. Particularly, the supervisory control is built 
according to the satisfaction degree of conflicting objectives 
which are quantified by fuzzy intervals. The control system 
aims at adjusting the machine’s production rates in such a 
way that satisfies the demand while maintaining the overall 
performances within acceptable limits. At the shop-floor 
level, the actual dispatching times are determined from the 
continuous production rates through a sampling procedure. 
A decision for the actual part to be processed is taken using 
some criterions which represent a measure of the job’s 
priority. A case study demonstrates the efficiency of the 
proposed control approach 

I. INTRODUCTION 

he scheduling of job-shop manufacturing systems 
with flexible machines and producing multiple part 

types has been studied by many approaches. The most 
developed ones have been enumerative algorithms that 
provide exact solutions either by means of elaborate and 
sophisticated mathematical constructs, such as linear [8] 
and constraint programming [11]. However, the 
limitations of the enumerative techniques have led to 
suboptimal approximation methods using simulation [6]. 
Furthermore, in the case of incomplete or imprecise data 
knowledge, some solutions for scheduling problems have 
been provided according to artificial intelligence 
techniques, including neural networks, fuzzy logic and 
evolutionary algorithm [1][4][15]. 

The research reported in this paper is based on this 
last idea where a fuzzy system is used in a two levels 
control structure for discrete scheduling problems. Indeed, 
given a job-shop manufacturing system, this research 
attempts to address, at the shop-floor level, the discrete 
dispatching of the machine production rates computed at 
the flow control level. In this case, the proposed approach 
uses continuous control theory [5][16] and artificial 
intelligence techniques for production flow regulation of 
realistic (in terms of modelling assumptions) 
manufacturing systems [10][13][15]. 
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In our previous work, a production flow control 
strategy based on fuzzy interval arithmetic for multi-
objective optimization has been developed. Indeed, the 
supervisor combines multiple and possibly conflicting 
objectives such that a best compromise can be achieved 
between them. In this case, the overall objectives are 
quantified by fuzzy intervals since they are specified as 
imprecise and uncertain information. 

However, the provided control actions (production 
rates) are continuous time expression while the production 
operations are of discrete nature. Thus, in order to deal 
with a scheduling problem, there is need to manage the 
transient from the flow control (continuous) to the shop-
floor level (discrete). For this purpose, the developed 
scheduler is based on sampling procedure which translates 
the continuous-time production rates, computed at the 
flow control level, to a series of loading times at the shop-
floor level. In this case, the actual loading part is taken 
according to the route priority. 

The rest of the paper is organized as follows. Section 
2 describes the continuous-flow approximation to model 
the discrete flow of parts in manufacturing systems. The 
continuous-flow control methodology is presented in 
section 3. Section 4 introduces the sampling and 
dispatching procedure for discrete real-time scheduling of 
part types at shop-floor level. Section 5 illustrates the 
scenario and the experimental results for re-entrant and 
multi-product real manufacturing system. Finally, 
concluding remarks are given in section 6 

II. CONTINUOUS-FLOW DYNAMIC MODEL 

The manufacturing system can be viewed at the 
shop-floor level as a network of a finite number of 
machines and buffers. Thus, when considering a system 
composed of N machines Mi (i = 1,…, N), it may be 
decomposed into N basic production modules PM(i). Each 
one is composed of a machine Mi and its sets of upstream 
and downstream buffers. For instance, in the case of a 
transfer line (Fig. 1), the production module can be 
defined as PM(i) = {Bi-1, Mi, Bi}. 

 

Fig. 1. Transfer line 

For the sake of simplicity, the developments are 
given for a single-part-type system depicted in Fig. 1. The 
level of buffer Bi is given by the variable xi, collecting 
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continuously the products coming from machine Mi and 
feeding machine Mi+1. The machines are supposed 
reliable. The production rate of machine Mi at time t is 
denoted by ui(t) and the required processing time, noted τi, 
is supposed known and deterministic. Thus, the increasing 
rate of buffer Bi is a function of the production rate ui of 
the feeding machine Mi. The decreasing of buffer level xi 
is in relation with the processing rate ui+1 of the 
downstream machine Mi+1. Therefore, by aggregating the 
increasing and decreasing rates, the dynamic model of the 
evolution of buffer level (production-flow) xi is given by: 

max
1 )(0with,)()()( iiiii xtxtututx    (1) 

This dynamic equation represents the basis of the 
continuous-flow model used in simulation. The restriction 
in (1) concerns the inability of buffer xi to increase its 
content while the capacity bound xi

max is reached. 
Let us defines the fraction of the capacity of Mi 

devoted for processing at time t as follow: 
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where ui
max = 1/τi, and 0 ≤ ui(t) ≤ ui

max. In this paper, ri(t) 
represents the control variable to be defined that adjusts 
the production rate between zero and its maximum. 
Further, in order to track the demand at each production 
means, the production surplus si (tracking error), defining 
the difference between the cumulative production 
(performance measure) at this means (denoted yi), and the 
demand, is taken into account in the design of the closed 
loop control system. 

III. CONTINUOUS-FLOW CONTROL METHODOLOGY 

Given a manufacturing system represented by the 
production-flow dynamic model (1), the control objective 
is to adjust the production rates, through an appropriate 
capacity allocation policy, in such a way to reach a 
predefined required production while keeping all overall 
performance measures within their acceptable values [13]. 
For this purposes, the continuous-flow control 
methodology of two levels has been developed with a set 
of distributed fuzzy controllers at the lower level and a 
supervisory controller at the higher level. This section 
recalls the flow control methodology principles with 
focuses on the supervisory control strategy 

A. Distributed Fuzzy Control For Machine’s Capacity 
Allocation 

To make clear how the distributed fuzzy control 
strategy is designed, the basic idea is illustrated through 
the elementary transformation module PM(i). The control 
objective is to track the demand while keeping the 
upstream and downstream buffers Bi-1 and Bi of Mi neither 
full nor empty. This is achieved by allocating an 
optimised machine capacity to production at each instant 
according the following statements: 

- If the surplus level is satisfying, then try to prevent 
starving or blocking by increasing or decreasing the 
production rate of the machine. 

- If the surplus level indicates backlog or excess 
inventory, then produce respectively with the 
maximum or zero rate. 

In this case, the control law is determined on the 
basis of the expert knowledge, where a fuzzy system, 
constituting a controller, has been used. Indeed, the fuzzy 
controller FC(i) has been formalized by using a Takagi-
Sugeno system [12] as follows: 
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term of the input variables xi-1, xi and si, taken 
respectively from the sets Xi-1 = Xi = {Empty, Almost 
Empty, Normal, Almost Full, Full} and Si = 
{Backlog, Normal, Inventory} 

- ),,( 321 iii
i  is the real value involved in the rule 

conclusion indexed by (i1, i2, i3) that gives the 
fraction of capacity devoted to processing. 

Fig. 2 illustrates the fuzzy control structure FC(i) for 
a transformation operation. 

 
Fig. 2. The fuzzy control structure 

The output variable of the controller represents a 
weighting factor ri(t) to range the production rate of PM(i) 
between zero and its maximum ui

max. The complete 
rulebase for a fuzzy controller of a transformation module 
is given in [13]. 

Finally, when considering a general manufacturing 
system composed of N modules, the fuzzy control design 
detailed above has been deployed for each ones, which 
leads to a distributed fuzzy control (DFC) structure. 

B. Supervisory Based Fuzzy Interval Arithmetic 

In fully distributed control systems, global 
optimization is hard to obtain due to the “myopic 
behaviour” of distributed control systems. In order to deal 
with myopic behaviour, it is necessary to define a kind of 
“global optimizing mechanism” (GOM) [14]. 

There are several ways to integrate GOM into 
distributed control systems. In our case, global 
specifications are imposed within which global 
performance level must be maintained. Indeed, given a set 
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of performance indicators P = {P1,…, PL} with associated 
objectives Pobj = {P1

obj,…, PL
obj}, the supervisory control 

aims at reinforcing the local control action through an 
additive component in order to compensate the deviations 
of performance measures from their objectives. The key 
idea of the supervision function resides in: (i) the fuzzy 
intervals representation of the objectives and (ii) the 
combination mechanism based on the fuzzy interval 
arithmetic. 

 
Fig. 3. Trapezoidal fuzzy interval representation 

For the first point, a trapezoidal fuzzy interval, 
denoted by Pl

obj, has been used to represent the objective 
associated to the performance indicator Pl as illustrated in 
Fig. 3. The fuzzy interval is formalized by the left and 
right profiles denoted (Pl

obj)- and (Pl
obj)+ respectively [7]. 

In the case of trapezoidal shape, they are defined by: 
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Thus, given the fuzzy intervals of the objectives Pobj 
and their performance measures P, the principle of the 
proposed supervision mechanism is summarized on the 
following three steps: 
1) Combine the objectives Pobj = {P1

obj,…, PL
obj} 

through an uncertain operator Ψ, since they are 
defined by fuzzy intervals. The combined objective is 
a fuzzy interval denoted PT

obj 
2) Combine the performance indicator measures P = 

{P1,…, PL} using the precise version of the operator 
Ψ, denoted ψ. The combined measure is denoted PT 

3) Evaluate the resulted precise measure PT with regard 
to the combined fuzzy objective PT

obj. The result 
represents the satisfaction degree of the combined 
objective (the α-cut). 

At the first step, the arithmetic operations on fuzzy 
intervals are used according to the profiles representation 
(4). In this case, the uncertain operator can be 
implemented [2]. For instance, when using the weighted 
mean operator, the resulted fuzzy interval is expressed as 
follows: 
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where  is the fuzzy addition between fuzzy intervals 
such that: (Pl

obj  Pk
obj)(α) = [(Pl

obj)-(α) + (Pk
obj)-(α), 

(Pl
obj)+(α) + (Pk

obj)+(α)] 

The second step is performed in the same way by 
considering the precise performance indicator measures 
according to the precise operator [3]. Finally, at the third 
step, the resulted satisfaction degree (the α-cut) is used to 
determine the additive component (supervisory control 
action), denoted 

isr , under the constraint of the local 

control 
icr . 

 
Fig. 4. The evolution of the supervisory control 

Fig. 4 shows the domain values of 
isr  which are 

encapsulated within a triangular fuzzy interval 
isR  with 

the support ]1,[)0(
iii ccs rrR   and the kernel 

0)1( 
isR . 

For practical implementation, the supervisory control 
is determined according to the following statements: 
- If PT evolves within the kernel of PT

obj, the system 
behaviour is in normal mode. This means that the 
satisfaction degree of the objective is total ( = 1). In 
this case, the supervisor does not provide additive 
component ( 0)( tr

is ). 

- If PT evolves outside the support of PT
obj, a fully 

degraded operating mode is detected. The objective 
in this case is totally unsatisfied ( = 0), and the 
supervisory action is given by: 
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It consists in either allocate the maximum remaining 
capacity ( = 1) or stop the productivity of the 
module ( = 0). 

- If PT evolves in the switching modes, the 
corresponding -cut of the fuzzy interval PT

obj is used 
to determine the supervisory control. Indeed, whether 
PT evolves on the left or right profile, the -cut level 
is given by the reverse of the corresponding profile 
function. That is, when PT evolves on the left profile, 
the supervisory control is given as: 

 )(1)1()( trtr
ii cs    with   1

T
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In this case, the action attempts to allocate a fraction 
of the remaining capacity. 
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When Pl evolves on the right profile, the supervisory 
action attempts to reduce the productivity of the 
controlled module as follows: 

 )()1()( trtr
ii cs    with   1

T
obj
T )P()P(
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The functions (7) and (8) represent respectively the 
right and left profiles of a triangular fuzzy interval 

isR  of the supervisory control domain (Fig. 4). 

Finally, according to the local control given by the 
fuzzy controller and the supervisory control, the 
production rate is adjusted as follow: 

  maxmax )()()()( iiisci utrutrtrtu
ii

  (9) 

IV. DISCRETE REAL-TIME SCHEDULING METHODOLOGY 

In our case, the scheduling problem involves two 
types of decisions at this level: 

- to determine the loading times of actual parts and 
- to resolve the conflicts in the case of multiple-part-

type systems. 

For the first decision, a dispatching policy has to be 
used in order to determine the loading times of actual 
parts. Indeed, since the machine operation frequency is 
equivalent to the time between two successive machine 
loads, at a certain time, the sampled value is held constant 
during a time interval equal to its reverse. The holding 
period includes the operation and the idle times. Thus, the 
continuous time production rate is translated to a piece-
wise constant function as shown in Fig. 5. 

 
Fig. 5. Continuous production rate discretisation 

Using this definition, as the production rate evolves 
between 0 and ui

max, the lower bound correspond to an 
infinite idling time (no production) while the upper bound 
corresponds to the operation time (no idle time). For 
practical use, in order to limit the idle period when the 
production rate is too low, the lower bound is chosen 
equal to 50% of its maximum. 

For the case of a multiple-part-type system, a 
machine Mi may operates on different part types j such 
that jQ(i), where Q(i) is the set of part types to be 
processed on Mi and its cardinality is equal to J(i). Each 
of them may involves Kij (k = 1,…, Kij) different 
operations (case of re-entrant flow if Kij > 1). In this case, 

the original machine Mi is virtually divided into N(i) = 
{j|jQ(i)}Kij single-part-type sub-machines mijk. Only one 
submachine is allowed to work at a time. 

Thus, for the second decision, the criterion value 
representing the route priority measurement is derived on 
the basis of the control input values; the surplus 
performances (local and final) and the order of the 
operation in the case of re-entrant flow. The part to be 
loaded is the one with the largest criterion value. 

The proposed criterion value for each submachine 
mijk of a certain multiple-part-type machine Mi is given by 
the following weighting sum: 

 


4

1
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l
ijklijk cgJ   (10) 

where: 
- c1

ijk is the sampled value of the computed production 
rate ijkû  of the submachine mijk 

- c2
ijk is its corresponding local surplus such that c2

ijk = 
max{0, –sijk }, 

- c3
ijk is the finished surplus level sO(j) of the part-type j, 

with O(j) is the last submachine of its route, 
- c4

ijk is the order k in which the part of type j visits the 
machine Mi. 

In the criterion definition above, g(.) is a positive 
monotonically increasing non-linear function, with g(0) = 
0 and g(cl

ijk) = 1 for cl
ijk  . This function can be closely 

approximated by sigmoidals of the form: g(cl
ijk) = 1/(1 + 

exp(–cl
ijk)) [10]. According to the measures of cl

ijk (l = 
1,…,4), this function gives the maximum value for the 
route (submachine) which presents the highest calculated 
production rate, the larger backlog (negative local and 
final surpluses) and the latest operation in the case of re-
entrant flow. The values of c1

ijk, c2
ijk and c4

ijk lead to a 
criterion with a local scope, while c3

ijk introduces global 
insight of the state of the actual route. The parameters l 
are the weighting factors to be chosen according to the 
importance of each element cl

ijk. The following algorithm 
summarizes a practical implementation of the discrete 
dispatching procedure: 

Inputs 

uiRN(i), siZN(i), 
iOs ZJ(i) with Oi = {O(j) | j = 1,..., 

J(i)}. 
Outputs 

The selected submachine mijk with its discrete 

production rate ijkû , loading time *
nst  and holding time 

interval 1ˆijku . 

Begin 
(1) For all not idle submachines 

Calculate Jijk according to (10). 
Select the submachine mijk having the highest Jijk. 
Endfor 

(2) The production rate uijk of the selected submachine is 

sampled at a time *
nst  (n = 1, 2…) corresponding to 

the loading instant. A time interval equal to the 

ui(t) 

t 

1st
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1si tu  
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inverse of the sample is computed ( 1ˆijku  according to 

)(ˆ *
nsijkijk tuu  ). The values of the production rates 

evolving during the holding time are ignored. 
(3) As soon as the time interval is competed, a new 

sample of the production rate is considered and the 
process is repeated (go to step 1). 

End 

Fig. 6 summarises the production-flow scheduling 
methodology. 

Fig. 6. The production-flow scheduling methodology 

V. SCHEDULING METHODOLOGY APPLICATION 

In this section, the developed scheduling 
methodology is illustrated through a simulation study 
performed on a realistic example of a manufacturing cell 
taken from [10]. Comparisons with the results reported 
herein and those obtained with the first in first out (FIFO) 
policy are performed. Specifically, clear a fraction (CAF), 
clear largest buffer (CLB) [9], and the dynamic neural 
network scheduler (DNN) developed in [10], have been 
employed. 

 
TABLE I 

PART TYPES ROUTES 

 Machine 
Route M1 M2 M3 M4 M5 
1  2, 4 3 1 5 
2 1 2    
3  1 2  3 
4 2 5 1, 4 3  
5 3 2  1  
6  2 1 3 4 

 
The considered system consists of five machines and 

produces five different part types. Due to one assembly 
process, six routes are defined (Table I). The table 
elements show the order in which every product visits the 
machines. A production demand of 20 parts for each of 
the 5 part types has to be achieved. The machine 
operation times are taken equal to 5, 6, 5, 4 and 3 time 
units respectively. 

The number of operations for the second machine is 
equal to 7 instead 6, since it serves part type 1 twice (re-
entrant flow). The same holds for machine M3. 
Furthermore, raw materials arrive in the cell at a rate of 
0.03 parts per time unit, implying that for each route a raw 
material arrives every 34 time units. 

Based on the workload of the cell bottleneck 
machine, i.e. machine M2; the authors in [10] define a 
lower bound for the achievement of the production 
demand (makespan) which serves as the reference for 
comparison purposes. Specifically, the machine M2 (7 
submachines) must process 20 parts requiring 
7206=840 time units. As the first raw material arrives 
in the cell at time 34, a lower bound of 874 time units has 
been derived. 

In order to evaluate the effect of the supervision, the 
proposed methodology is simulated in both cases: without 
supervision (distributed fuzzy control – DFC) and with 
supervisory control (supervisory fuzzy control – SFC). 
When integrating the supervisory control, the overall 
performance indicators of the average and the 
instantaneous finished surplus, and the total production 
cost are used. This latter is given by: 

LTcBCKcINVcWIPc ltbckinvwip Cost Total (11) 

The first two terms of (11) represent the cost measures of 
storing parts in buffers. Specifically, measures for the 
work-in-process and inventory costs are provided by 
means of the average integral of the intermediate and 
output buffers respectively. The two last terms of (11) are 
concerned with the average backlogging costs and the 
average lead time costs. 

The cost units cwip, cinv, cbck, clt for all the 
performance measures in (11) are taken equal to 1 for 
simplicity. The measure of the total cost in the supervisor 
is chosen as the reverse of (11). The associated objectives, 
expressed by fuzzy intervals through the profile functions 
(4), are fixed, for the surplus performances, as: 

]23,23[obj
2

obj
1   PP , and for the total 

production cost performance as: 

]1.01.1,09.001.0[obj
3  P . When using the 

arithmetic mean operator (5), the resulted combined 

interval is: ]366.1366.2,363.1996.1[Pobj
T   . The 

parameters l of the criterion (12) are taken respectively 
equal to 0.4, 0.25, 0.25, 0.1. 

The obtained results are compared to the 
conventional FIFO strategy and those provided in [10], 
and are summarized in Table II for the case of reliable 
machines. In this case, the SFC methodology achieves the 
demand with the exact calculated lower bound and the 
utilisation rate of the bottleneck machine (M2), which is 
approximately 96%, is improved in comparison to the rate 
reached with a DFC methodology (Table III). 
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TABLE III 
MACHINE UTILISATION RATES WITHOUT FAILURES 

 Machine utilization rates (%) 
Methodology M1 M2 M3 M4 M5 
SFC 40.05 96.11 65.22 43.02 13.73 
DFC 34.76 83.42 56.11 38.13 11.92 
FIFO 34.21 95.78 57.01 36.49 13.68 

VI. CONCLUSION 

In this paper, the potential application of the 
production-flow control for discrete scheduling of a 
manufacturing cell is investigated. The production-flow 
control methodology is based on arithmetic fuzzy interval 
to build a decision according to the satisfaction degree of 

the conflicting objectives quantified by fuzzy intervals. At 
the shop-floor level, the scheduling problem is addressed 
in two steps. The first step performs the transition from a 
computed continuous control to a discrete dispatching 
control through a sampling procedure. The second step 
deals with the conflicts of multiple routes by using some 
criterion representing a measure of the priority. 

The only uncertainties considered in this paper are 
the overall objectives quantification. An important open 
issue is the robustness of the methodology when other 
forms of uncertainty are present, such as machine failures, 
random arrival, setup times etc. 
 

 
TABLE II 

SIMULATION RESULTS WITHOUT MACHINE FAILURES 

Methodology Makespan Avg. WIP Avg. inventory Avg. backlog Avg. lead time Total cost 

SFC 874 0.894 9.393 2.978 65.46 78.73 
DFC 1007 1.636 8.516 5.807 188.1 204.06 
FIFO 877 1.016 10.045 5.604 74.68 91.345 
DNN 963 0.506 8.17 0.00466 215.96 224.64 
CAF 1044 1.347 10.848 0.00262 142.763 154.96 
CLB 1083 1.149 11.468 0.00214 125.72 138.34 
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