An Efficient Fuzzy Unification Method and its Implementation into
the Bousi~Prolog System

Pascual Julidn-Iranzo and Clemente Rubio-Manzano

Abstract— Bousi~Prolog is a fuzzy logic programming lan-
guage whose main objective is to make flexible the query
answering process. Its operational mechanism is a extension of
the SLD-resolution (called weak resolution) where the classical
syntactic unification algorithm has been replaced by a fuzzy
one. This paper presents a generic method for the unification
of linguistic terms (i.e. fuzzy sets) which is also applicable to
other programming languages with an operational semantics
based on some kind of weak resolution mechanism. The basic
idea is to compile the information provided by fuzzy sets,
generating a binary fuzzy relation on the set of their associated
linguistic labels. Subsequently, this fuzzy relation can be used
in a standard, completely integrated way inside the unification
mechanism of the Bousi~Prolog system, what allows us to
handle linguistic labels on an equal basis with regard other
syntactic symbols occurring in the source program. This is
a novel approach because it is the first time that fuzzy sets
are introduced into the core of a Prolog system by means
of compilation techniques and combining fuzzy relations with
weak unification. An important feature of this approach is
its simplicity, since the inclusion is carried out in a very
natural way without affecting the operational semantics of
the Bousi~Prolog language and with very few syntactical
modifications. All these reasons convert our approach in a good
alternative to the techniques used by other fuzzy Prolog systems.

I. INTRODUCTION

Fuzzy Logic Programming is a research area which in-
vestigates how to introduce fuzzy logic concepts into logic
programming in order to deal with the uncertainty and/or
vagueness existing in the real world explicitly. There are mul-
tiple lines of work ricocheting between the ones that modify
the classical resolution procedure and replace it by a fuzzy
resolution mechanism [15], [17], [24] and those that extend
the classical SLD resolution principle, modifying its classical
unification algorithm and replacing it by a fuzzy unification
algorithm [9], [20], [23]. An example of an intermediate
approach is [3], [4] where both the unification algorithm and
the resolution principle are modified, combining probabilistic
and fuzzy uncertainty into a single framework.

Bousi~Prolog (BPL, for short) [11], [12], [13] is an
extension of the standard Prolog language. Its operational
semantics is an adaptation of the SLD resolution principle
where classical unification has been replaced by a fuzzy

Pascual Julidn-Iranzo. Department of Information Technologies and
Systems, University of Castilla-La Mancha, Paseo de la Universidad,
4. 13071 Ciudad Real, Spain (phone: +34 926 29 53 00; email: Pas-
cual.Julian@uclm.es).

Clemente Rubio-Manzano. Department of Information Technologies
and Systems, University of Castilla-La Mancha, Paseo de la Universi-
dad, 4. 13071 Ciudad Real, Spain (phone: +34 926 29 53 00; email:
Clemente.Rubio@uclm.es).

U.S. Government work not protected by U.S. copyright

unification algorithm based on proximity relations (i.e. binary
fuzzy relations that fulfill the reflexive and symmetric prop-
erties), allowing us to generalize proposals such as the ones
appeared in [8], [9], [20]. Informally, the weak unification
algorithm states that two terms f(¢1,...,t,) and g(s1, ..., Sp)
weakly unify if the root symbols f and g are approximate
and each of their arguments ¢; and ¢; weakly unify.

At the present time, there are two implementations for-
mats': a high level [11] and a low level implementation
[12], [14]. The high level implementation is written in Prolog
through a meta-interpreter and it is used for prototyping new
features of the BPL language. The low level implementation,
written in Java, consists of an architecture made up of a
compiler and an enlargement of the Warren Abstract Machine
[1], [25] which is able to handle fuzzy relations and to
execute BPL programs efficiently.

The following example serves to illustrate both the syntax
and the operational semantics of the language.

Example 1: Assume a fragment of a database that stores
information about films and user preferences encoded by
means of proximity equations.

%% DIRECTIVES
:—transitivity (yes) .

%% FACTS
film(the_lord_of_the_rings,adventures) .
film(terminator, action).
film(stargate, science_fiction).

%% PROXIMITY EQUARIONS
adventures~action=0.9.
adventures”science_fiction=0.8.

In a standard Prolog system, if we ask about whether
stargate is an action film, “?-film(stargate,
action)”, the system fails. However Bousi~Prolog allows
us to obtain the answer “Yes with 0.8” since the
goal weakly unifies with the fact “film(stargate,
science_fiction)”. This is possible because the
transitivity directive activates, at compile time, the
automatic generation of the transitive closure of the fuzzy
relation defined by the programmer by means of the
proximity equations (introduced in the source program).
Hence, the entry “action”science_fiction = 0.8” is
obtained and, lately, it is used, at run time, during the weak
unification process.

This paper is motivated by the necessity of improving
the current resouces that the BPL system have for the
management of vagueness and approximate reasoning. To

Both of them are publicly available and can be found at the URL address:
http://dectau.uclm.es/bousi.html .

achieve this objective, we aim to incorporate the domain
(data type) fuzzy set into the core of the Bousi~Prolog
system. Enhancing Bousi~Prolog with this feature extends its
application area: fuzzy control, fuzzy databases, approximate
reasoning and, in general, whatever application where the
management of vagueness using the joint power of fuzzy sets
and declarative languages is necessary. On this last respect, in
recent years, a new computational paradigm which combines
linguistic terms and logic programming is arising [23]. The
inclusion of fuzzy sets places Bousi~Prolog in a central
position among the theoretical and practical realizations of
this new paradigm (as we shall discuss later). Summarizing,
the aim is strengthen Bousi~Prolog as an authentic fuzzy
logic programming language useful for Soft computing.

The outline of the paper is as follows. In Section II, we
introduce the weak unification algorithm, which is syntactical
in nature and based on fuzzy relations. Then, to carry out the
main objective of this work, we start from the formal concept
of linguistic variable [27] and we develop, in Section III,
what can be seen as a new method for the unification of
linguistic terms. A linguistic variable is a structure composed
of a set of linguistic terms (also called linguistic labels)
whose semantic component are fuzzy subsets (linked to
each linguistic term). Therefore, we need to manage the
semantics of linguistic terms. The developed method consists
of transforming, at compile time, the information stored
by the fuzzy subsets in a fuzzy relation on the set of the
linguistic labels. Hence, the weak unification algorithm can
handle the linguistic labels in an analogous way as the
rest of syntactic symbols of the language. We observe that
this approach is useful for those fuzzy logic programming
languages like LIKELOG [7] or SiLog [16] which also use
an operational mechanism based on weak SLD resolution.
In Section IV we detail how to incorporate this generic
approach into the core of the (low level implementation)
of the BPL system. We specify a couple of directives to
declare fuzzy sets, a grammar to generate linguistic terms
and the distinct phases of their implementation. Section V
relates our proposal with others existing in the literature
and discusses some of its main features. Section VI shows
the usefulness of introducing linguistic variables in the core
of Bousi~Prolog by discussing a fuzzy control application
where a steam turbine is modeled. This example reveals the
expressive power of the BPL language to solve these kind
of problems. Finally, in Section VII we give our conclusions
and some lines of future research.

II. Fuzzy RELATIONS AND WEAK UNIFICATION

The concept of a fuzzy relation was introduced by Zadeh
in [26]. A binary fuzzy relation on a set U is a fuzzy subset
on U x U (that is, a mapping U x U — [0, 1]). A binary
fuzzy relation R is said to be a proximity relation if it fulfills
the reflexive property (i.e. R(z,xz) = 1 for any = € U)
and the symmetric property (ie. R(z,y) = R(y,z) for
any x,y € U). A proximity relation which in addition the
transitive relation (i.e., R(z,2) > R(x,y)AR(y, z), for any
x,y,z € U) is said to be a similarity relation. The operator

‘/\’ is an arbitrary t-norm. The notion of transitivity above is
A-transitive, if the operator A = A (that is, it is the minimum
of two elements), we speak of mim-transitive or A-transitive.
Bousi~Prolog uses mim-transitivity when the transitivity flag
is enabled.

The weak unification algorithm used by Bousi~Prolog is
an extension of the one appeared in [20], with proximity
relations on syntactic domains. It is formalized as a transition
system supported on a proximity-based unification relation
“=". The unification of two expressions & = f(t1,...,t,)
and & = g(s1,. .., Sn) is obtained by a state transformation
sequence starting from an initial state (G, id, o), where G =
{t1 ~ s1,...,tn, = s} is a set of unification problems 2 4d
is the identity substitution and cvg = 1 is the initial proximity
degree: (G,id,ap) = (G1,01,a1) = ... = (Gp, 0y, o).
When the final state (G,,, 0, ay,), with G,, = 0, is reached
(i.e., the equations in the initial state have been solved), the
expressions &; and & are unifiable by proximity with weak
most general unifier (w.m.g.u) 6, and unification degree
ap,. Therefore, the final state ((),6,,q,) signals out the
unification success. On the other hand, when expressions &;
and & are not unifiable, the state transformation sequence
ends with failure (i.e., G,, = Fail).

The proximity-based unification relation, “=", is defined
as the smallest relation derived by a set of transition rules
that behave as in the classical unification algorithm, except
for the rules:

e Term decomposition:

{ftry e tn)=
<{t1 X S1,...
e Failure rule:

<{f(t177t'n) %9(51,...,Sn)}UE79,O[>,R(f,g) :0
(Fail, 0, a)

In the rules above, E denotes a set of (remaining) equational
goals in the preceding state. Note that, when the proximity
relation R is the diagonal relation?, this algorithm conforms
with the classical unification algorithm.

Certainly, the weak unification algorithm we have just
presented can be weakened (even more) allowing fuzzy
relations that do not fulfill the symmetric property. Next
sections are examples of the usefulness of following this path.

g(slv .- '7571)}UE,970‘>7R(fv g) = ﬂ>0
Jtn = spt UEL O (a A P))

III. A GENERIC APPROACH FOR SEMANTIC UNIFICATION

The weak unification algorithm described in the last sec-
tion is syntactical in nature, since the symbols involved in
the unification process are treated syntactically. However,
when we want to unify linguistic terms, with fuzzy sets
associated as their meaning, the unification process relies
on semantics. In this section we propose an efficient generic
approach to include fuzzy sets and semantic unification in the
framework of fuzzy logic programming. Our approach differs

2Here, the symbol “~” represents that the arguments in £ and & are
capable to be equals by proximity.

3That is, R(a,a) = 1 and R(a,b) = 0 (when a and b are distinct
symbols in the alphabet).

from others because it compiles the information provided by
a linguistic variable into a set of fuzzy relations. Therefore,
this approach is suitable for those programming languages
with an operational mechanism based on some kind of weak
resolution supporting a syntactic unification algorithm guided
by fuzzy relations, as is the case of Bousi~Prolog or, in some
respect, of LIKELOG [7] and SiLog [16].

Formally, our approach relies on the concepts of a linguis-
tic variable [27] and a fuzzy relation [26].

A linguistic variable is a quintuple (X,T(X),U,G, M)
where: X is the variable name, T'(X) is the set of linguistic
terms of X (i.e., the set of names of linguistic values of X),
U is the domain or universe of discourse, GG is a grammar
that allows to generate 7'(X) and M is a semantic rule
which assigns to each linguistic term « in 7'(X) its meaning
(i.e., a fuzzy subset of U —characterized by its membership
function p,—).

Regarding the concept of linguistic variable, the following
remarks are convenient. 7'(X) is the syntactic component
of X, its elements are linguistic terms. Linguistic terms are
generated by means of the grammar G (for the moment, we
let it unspecified). It is usual to make the distinction between
atomic terms (also called, primary terms) and composite
terms which are composed of primary terms. The domain U
is an ordinary set (not necessarily numerical). The semantic
rule M associates meaning to composite terms by means
of precise computations starting from the meaning of their
atomic terms. The meaning of primary terms is defined
axiomatically, assigning to each atomic term a fuzzy subset
on U. In other words, the fuzzy subsets that M applies
to composite terms are calculated, while the ones applied
to primary terms are defined (in a subjective and context-
dependent way).

In this work we are interested in the definition of a
fuzzy relation on the set of terms, 7T'(X), associated to
a linguistic variable, X, in a way such that the linguistic
variable (including its semantic component) could be treated
at a purely syntactic level. To this end, we proceeds as
follows:

Suppose that T'(X) = {z; | ¢ € I}, where I is a set of
indexes. For each x; and x;, with 4,5 € I, we generate
the entry of a fuzzy relation on T'(X): R(z;,x;) = a.
The relationship degree o can be calculated as the relation
between the fuzzy subsets M (x;) and M (x;) associated
to these terms as meaning.

For this purpose, we can make use of fuzzy matching tech-
niques such as the ones developed in [5], [6], which have
been successfully used in the system FuzzyClips [10].

Once the fuzzy relation, R, has been generated, the opera-
tional mechanism of the language manipulates the linguistic
variable X and, more precisely, the terms in 7'(X) in a totally
standard way. That is, as symbols of a first order language
which are capable of participating in a weak unification
process at the same level as the rest of symbols of the
language alphabet. Therefore, we are able to manipulate a
semantic unification process by means of a weak unification

algorithm which is syntactical in nature.

Ending this section, it is important to note that, if we want
to cope with the distinction between general and specific
knowledge introduced in [19], the fuzzy relation constructed
during this process must fulfill the reflexive property but
not necessarily the symmetric and/or transitive properties.
In [19], and lately in [2], it is shown the importance of
distinguish between general and specific knowledge. For
instance: let Age be a linguistic variable and young and
between_19.22 two terms in T'(Age); it is clear that the
meaning of the linguistic term between_19_22 is included
into the meaning of the linguistic term young and not
viceversa; therefore, the fuzzy relation between young and
between_19_22 should not be symmetric, if we want repre-
sent this knowledge properly. Taken into account this obser-
vation, our proposal not only allows us to incorporate fuzzy
sets in an easy, efficient way, solving some implementation
problems mentioned in [23], but also it takes into account the
distinction between general and specific knowledge made in
[19].

IV. Fuzzy SETS IN THE BOUSI~PROLOG LANGUAGE

In this section, we explain at length the implementation
of a linguistic variable structure into the Bousi~Prolog lan-
guage. We begin with the syntactic aspects. Then, we de-
scribe the different implementation phases and data structures
which are generated to facilitate its implementation and later
execution.

A. Sintax

All sorts of programming languages must provide specific
instructions to declare and define their data structures. The
BPL language makes use of two directives to declare and
define the structure of a linguistic variable X. In fact, only
its semantic component is defined: the domain or universe
of discourse U and the fuzzy subsets which are associated
to primary linguistic terms in 7(X) (the rest, as we shall
see, is calculated automatically). On the other hand, we shall
not make a lexical distinction between the syntactic and the
semantic component of X. That is, we denote with the same
name both the linguistic variables and their domains. We
proceed with the linguistic terms and their values similarly,
employing the same symbol to designate them. Hence, we
shall rely on the context for disambiguation.

The domain directive: It allows to declare and define the
universe of discourse or domain associated to a linguistic
variable. In general, we use the same name both for the
linguistic variable and the domain. For practical reasons and
because it is not a significant limitation, in this implemen-
tation, we only deal with domains of the real interval. The
concrete syntax of this directive is:

:—domain (Dom_Name (n,m, Magnitude)) .

where, Dom_Name is the name of the domain, n and m
(with n < m) are the lower and upper bounds of the real
subinterval [n,m], and Magnitude is the name of the unit
wherein the domain elements are measured.

Example 2: The following directive defines a domain with
name age, whose values are numbers (between 0 and 100)
measured in years:

i)

‘:—domain (age (0,100, years))

The fuzzy_set directive: It allows to declare and define a
list of fuzzy subsets (which are associated to the primary
terms of a linguistic variable) on a predefined domain. The
concrete syntax of this directive is:

:—fuzzy_set (Dom_Name,
[Setl(al,bl,cl[,dl]), ...,

Fuzzy subsets are defined by indicating their name, Set_i,
and membership function type. At this time, it is possible
to define two types of membership functions: either a trape-
zoidal function, if four arguments are used for defining the
fuzzy subset or a triangular function, if three arguments are
used. It is important to note that, in general, these kind of
functions are well adapted to the definition of any concept,
with the advantage of their simplicity (what contributes to
an efficient information representation and computation).

Example 3: The following directive defines a list of fuzzy
subsets, whose universe of discourse is the domain age
defined in Example 2.
:—fuzzy_set (age, [young(0,0,30,50),

middle (20,40,60,80), old(50,80,100,100)]).

In particular, it defines three fuzzy subsets associated to the
primary terms young, middle and old whose membership
functions are trapezoidal functions characterized by their
arguments.

Once a domain and the fuzzy sets associated to the primary

terms have been declared, composite terms may be generated
through the following grammar:

<Term> ::= <Atomic_term> | <Composite_term>
<Composite_term> ::= <TModif>#<Atomic_term>
<TModif> ::= very|somewhat |more_or_less|extremely

Example 4: For the linguistic variable Age defined in
the examples 2 and 3, some of the composite terms that
may be generated from primary terms are: very#young,
more_or_less#middle Or extremely#old

Domain points and domain ranges: Additionally, a BPL
program may include what we call “domain points” and
“domain ranges”. A domain point is our practical artifice to
represent a precise crisp value in the universe of discourse,
aiming to compare it with other linguistic terms. We advance
that, domain points have a different behavior (meaning)
depending on either they are representing specific knowledge
or general knowledge. In the first case, the meaning assigned
to a domain point will be its membership function. In the
second case, the domain point will be fuzzified into a fuzzy
singleton set. Domain points are generated by means of the
following grammar.

<Dom_Point> ::= <Dom_Name>#<Dom_Val>|<Composite_DP>
<Composite_DP> ::= <PModif>#<Dom_Point>
<PModif> ::= about

where <Dom_vVal> is the set of symbols representing the
elements in the universe of discourse. Note that a domain
point can be transformed in a linguistic label associated to a
fuzzy subset when it is preceded by the modifier “about”.

SetN (aN,bN, cN[,dN]]) .

TABLE I
TABLE OF LINGUISTIC TERMS: MEMORY REPRESENTATION FOR A
FRAGMENT CONCERNING THE VARIABLE Dom.

Term Domain Membership Function

LingTermy Dom al b1 c1 dy
LingTerma Dom az bo co do
LingTermn Dom an bn, Cn dn

A domain range is a label for an interval of elements in
the universe of discourse. Domain range labels are generated
by means of the following grammar:

<Dom_Range> ::= <Composite_DR>

| <Dom_Name>#<Dom_Val>#<Dom_Val>
<Composite_DR> ::= <RModif>#<Dom_Range>
<RModif> ::= about

As in the previous case, a domain range can be fuzzified
adding the modifier about.

Example 5: Continuing with Example 2 and the lin-
guistic variable Age. Examples of domain points are:
age#22 and about#age#22. Examples of domain ranges
are: age#20#30 and about#age#20#30.

B. Compiling fuzzy sets

One of the most important features of the BPL system is its
ability to compile all the information regarding the linguistic
variables defined in a program. In this section the different
compilation phases of the data type fuzzy set are detailed.

Syntactical Analysis: During the syntactical analysis phase
it is verified whether there exist syntactic errors in the source
program. At the same time, the syntactic tree, which is
the basis for later code generation, is built. Additionally, in
this phase, the directives “domain” and “fuzzy_set” are
read and the domains and associated fuzzy subsets are built.
The directive domain triggers a procedure which creates an
object of type domain. Such an object is composed of a name,
a range and a magnitude. On the other hand, the directive
fuzzy._set triggers a procedure that creates an object of
type fuzzy set. An object of type fuzzy set is composed by a
domain (a reference to the domain created previously), and
a list of fuzzy subsets. In turn, each fuzzy subset is formed
by a linguistic label working as an identifier, which may be
used as a regular symbol of a first order alphabet* and a
membership function determined by the parameters which
are passed as the arguments of either a trapezoidal function
f(z,a,b,¢,d) = max(min((x —a)/(b—a),1,(d—z)/(d—
¢)), 0) or a triangular function f(z, a, b, c) = maz(min((x—
a)/(b—a),(c —x)/(c —b)),0). Conceptually, this process
may be understood as one that builds a table of linguistic
terms along with their meanings, as Table I illustrates.

Also, during the syntactical analysis phase the occurrence
of composite terms, domain ranges and domain points in
the source program is detected. These terms are included

4That is, as a constant, a function or, even, a predicate symbol.

TABLE I
MEANING OF COMPOSITE LINGUISTIC TERMS.

Modifier Description | Modifier Description
very(y) y? more_or_less(y) | /¥
somewhat(y) y0-333 extremely(y) y3

into the table of linguistic terms. The meaning assigned to
composite terms is a membership function which depends on
the modifier applied to their primary terms (see Table II).

The meaning associated to a domain range
domain_name#a#b is a membership function ;v defined by
the trapezoidal function f(z,a,a,b,b). That is, pu(z) = 1 if
a <z < band u(x) = 0 otherwise. In other words, a domain
range is a crisp subset. As it has been indicated in the
Section IV-A, a domain range admits the modifier about.
We associate the fuzzy subset defined by the trapezoidal
function f(x,max(a — F,n),a,b,min(b + F,m)) to
the linguistic label where
F = (m—n) x2.5/100 is a fuzzification factor for the crisp
set we start from. We recall that n and m are, respectively,
the lower and upper bound of the interval [n,m] that forms
the universe of discourse.

A domain point has no meaning assigned, since it is not
properly considered as a fuzzy subset in our approach. We
coded this fact introducing a null entry (symbolized as “_L” in
Table III) into the membership function field of a linguistic
terms table. This design decision will require us a special
treatment of such kind of terms in the next compilation phase.
A domain point also admits the modifier about. For the label
about#domain_name#a, we associate a fuzzy subset defined
by the triangular function f(x, maz(a — F,n),a,min(a +
F,m)), where F (defined as in the previous case) is a
fuzzification factor which converts the value a into a fuzzy
subset.

Ending this subsection, we note that we shall only store
information of those linguistic terms that appear in the source
code of a BPL program. That is, it is not necessary to
generate, for instance, all the composite terms derived from
primary ones.

_ Example 6: Continuing with Example 2, regarding the
linguistic variable Age, assume a fragment of a database that
stores information about people:

person (paul, about#age#40) .
person (warren, very#young) .

about#domain_name#a#b,

person (john, young) .
person (mary, age#35) .

For the above program, the result of this compilation phase
is shown in Table III.

Generation of fuzzy relations: Once the table of linguistic
terms has been built, the next phase is focused on generating
fuzzy relations between linguistic terms in order to compile
all the semantic information associated with them. The
generation phase is implemented by means of the following
algorithm, which takes into account the distinction between
general and specific knowledge. (for the sake of simplicity,
we focus our attention on linguistic terms associated to one
single linguistic variable).

TABLE III
LINGUISTIC TERMS TABLE, GENERATED AFTER THE SYNTACTICAL
ANALYSIS, FOR THE FRAGMENT PROGRAM OF EXAMPLE 6.

Term Domain membership Function
young age Hyoung

middle age Kmiddle

old age Hold

35 age 1

about_40 age Habout-40
very-young age MHvery_young

Algorithm 1:
Input: A Subset S = {(x;, ptz;) | ¢ € I} (where I is a set of
indexes) of terms/meanings of a linguistic variable X.
Output: A set R of entries which defines a fuzzy relation on S.
Initialization: R :=)
For each (v, ;) and (z;, pi;), with i, j € I, do
Case of
D pe; # L and pg; # L:
R :=RU{R(zi,x;) = match(pa;, pra;) }5
2) pa; # L and pg; = Lt
Let z; = dom#u; in R:=RU{R(xs, z;) = pio; (uj)};
3) pa; =L and pg; # L

Let z; = dom#u; in p,, 1= singleton(u;);
R :=RU{R(zi,x;) = match(pa;, pra;) }5
endCase
endFor
Return R

Last algorithm deserves some comments. First, it is note-
worthy that, the subset S only contains the primary terms
in T(X) an those composite terms occurring in the source
program. This is a good design option in order to keep
controlled the size of the fuzzy relation.

If we want to deal with the distinction between general
and specific knowledge, as it is done in [19], patterns passed
to the arguments of a relation must be classified as either
general or specific. In a logic programming language the
arguments of goals and atomic formulas in the body of
program clauses contain the general knowledge, whilst the
arguments of facts an the head of program clauses contain the
specific knowledge. On the other hand, due to the operational
features of the weak SLD resolution principle, for an entry
R(x,y) of the fuzzy relation constructed by Algorithm 1,
the argument z is classified as general information and the
argument y as specific information.

The matching function calculates the degree of relation
between two fuzzy subsets F and F’ by using a resemblance
measure. Following [5], [6], this measure is supported by the
concepts of possibility P and necessity IN. More precisely,
this function has been defined as follows: match(F,F') =

P(F,F) if N(F,F') > 0.5
(N(F,F')+0.5)« P(F,F') otherwise.
where, P(F,F') = maz{min(ur(u), ur (v)) | v € U}
and N(F,F')=1—P(F,F'), being F the complement of F
described by the membership function: pz(u) = 1 — pur(u),

VueU.

The matching function has an asymmetric behavior. There-
fore, it is suitable to deal with the distinction between gen-
eral and specific knowledge when building a fuzzy relation
starting from two linguistic terms with associated fuzzy sets
as meaning. However, when the fuzzy unification process
involves domain points some subtleties arise and we need to
perform a special treatment. The following examples clarify
this point.

Example 7: Assume a simple program containing the only
one fact person (mary, age#28).If we launch the goal 2-
person (mary, young), an admissible answer may be yes
with degree a where a = fiyoung(28) = 1.0. The reason
is that Mary is a young person because she is 28 years old
and the youth degree must be the membership degree of 28
in the fuzzy set young. The weak SLD resolution principle is
able to give this answer if the original program is completed
with the entry R(young, age#28) = lyoung(28).

Example 8: Now assume a simple program containing
the only one fact person(mary, young). If we launch
the goal ?- person(mary, age#28), we should expect
a positive answer but with a degree [lower than the one
obtained in Example 7. This lower degree is due to the fact
that in this example the specific knowledge is that “Mary
is young” and the general knowledge is that “Mary is 28
years old”, opposite to the situation reflected by Example 7.
Although a 28 years old person must be considered as young,
the specific knowledge “young” involves other age values
and we do not know the precise age of Mary. Certainly,
Mary’s age might be “20 years old” or other age instead
of “28 years old”. In order to preserve the constrain that
the degree (§ is lower than fiyoung(28), the BPL system
follows this procedure: the domain point age#238 is fuzzified,
converting it into a singleton fuzzy set characterized by a
trapezoidal function f(x,28,28,28,28) (i.e., Uagepas(x) =
1if z = 28 and pggepos(r) = 0 otherwise); then, the entry
R(age#28, young) = matching(fyoung, Hagest2s) = 0.5 is
built. We have verified analyzing several examples that the
matching function behaves well in these cases.

These two last examples help to understand the decisions
taken in the specification of cases 2 and 3 in Algorithm 1.

The following example shows the effect of applying Al-
gorithm 1 on a set of linguistic terms.

Example 9: Starting from data contained in Table III,
Algorithm 1 generates the entries defining a fuzzy relation.
A fragment of these entries are shown in Table IV, where the
term Term_1 represents the general knowledge and Term_2
the specific knowledge.

Once the compilation phase is concluded, all the meaning-
ful information represented by fuzzy subsets has been stored
in the fuzzy relation defined on the set of their linguistic
labels. Thanks to this artifice, the execution of a program
proceeds on a standard way, following the weak resolution
mechanism.

Example 10: Continuing with Example 2, related to
the linguistic variable Age and taking the clauses of
Example 6. If we ask about what people are young,
“?-person (X, young) .”, the BPL system will answer:

TABLE IV
FUZZY RELATION: ENTRIES FOR THE TERM young.

Term_1 Term_2 Relationship degree
young young 1.0

young middle 0.38

young old 0

young age#35 0.75

young about#age#40 0.52

young very#young 1.0

X=john with 1.0 ;
X=mary with 0.75 ;

X=paul with 0.52 ;
X=warren with 1.0

V. DISCUSSION AND RELATED WORK

The method for fuzzy unification we have just presented
in this paper is a semantic one, that is, it is centered in the
unification of linguistic terms, but it is supported by a weak
unification algorithm (see Section II) which is syntactic in
nature. In this section we discuss this two-faced reality.

Weak unification emerges from the theoretical works of
Gerla et al. [8], [9], where the classical syntactic unification
algorithm is extended with the ability of dealing with similar-
ity relations. The main practical realization of this research
line is the fuzzy logic language LIKELOG [7], with a fuzzy
resolution rule relying in the replacement of the classical syn-
tactic unification algorithm by the new similarity-based uni-
fication algorithm. LIKELOG is an interpreter implemented
in Prolog using rather direct techniques and cumbersome
concepts. A second line of research, which is the closest
to ours, is based on [20], where the concepts of weak
unification and weak SLD resolution were developed. In
[16], a similarity-based logic programming language, named
SiLog, was presented. SiLog is an interpreter written in Java.
Our contribution to this line of work has been to pay attention
of the importance of overcoming the knowledge representa-
tion limitations associated to similarity relations, extending
the operational mechanism with proximity relations (more
appropriated to this end) and proposing a completely new
declarative semantics view for a framework combining logic
programming and proximity relations [13]. Summarizing,
we can enumerate some additional features that distinguish
Bousi~Prolog from these other proposals: it gives automatic
support for the user when computing closures of the fuzzy
relation specified in a BPL program; it provides a more
flexible operational mechanism and additional expressive
power; it is a true extension of Prolog with an efficient
implementation® [12]. These and other related features were
largely discussed in [12] and [13]. We direct the interested
reader to those papers.

At the best of our knowledge, the inclusion of linguistic
terms into the field of logic programming was first suggested
in [5], where some techniques for solving the problem of

SNeither LIKELOG nor SiLog are publicly available and therefore a
practical comparison is impossible. However, we supply an implementation
based on an enhancement of WAM that should be more efficient than an
interpreter.

matching fuzzy constants were introduced. Lately, in [3] a
fuzzy pattern matching algorithm based on Baldwin’s mass
assignment theory was named “semantic unification”. Also
in [6] a fuzzy pattern matching method was developed which
is based on necessity and possibility measures. This method
has been successfully used in the system FuzzyClips [10] and
we adopted it for computing some relationship degrees when
generating fuzzy relations in Algorithm 1.

In later years, Virtanen [22], [23] presented a fuzzy
unification algorithm based on fuzzy equality relations (i.e.,
similarity relations) indicating the degree of resemblance of
two linguistic terms (how to compute these degrees is let
unspecified). The proposed algorithm propagates similarity
degrees to the bindings of variables and fuzzy equality entries
to an auxiliary structure called “Fuzzy Equality Reference”.
Variables are bound to a set of candidate terms and a set of
similarity degrees forming what is called a “pre-substitution”.
Lately the most suitable fuzzy set is selected and a fuzzy
unification degree is obtained. Some of these features were
inherited by other semantic unification methods lately.

Rios-Filho and Sandri [19] first introduce the distinction
between general and specific knowledge, giving raise to what
they call a contextual fuzzy unification algorithm. Contrary
to [3], [22] or [2] their algorithm does not propagate partial
matching measures. It uses different classes of measures to
verify the matching between two fuzzy constants. Depending
on their origin it uses: inclusion measures for comparing
a general information constant with regard to a specific
information constant; or resemblance measures otherwise.
These measures are ordinary relations by definition. They are
employed during the so called decision phase which returns a
condition failure if the expressions do not match. Therefore,
the behavior of this algorithm is more rigid than ours and it
does not deliver an unification degree.

The work [2] can be seen as a refinement in the line of
contextual fuzzy unification. Alsinet and Godo make a clear
separation between the syntactic and the semantic component
of a linguistic variable from which we take inspiration. This
separation is inherited by their fuzzy unification algorithm.
Also they established a similarity measure for quantifying
the inclusion degree between two fuzzy constants. The so
called similarity degree is used in the computation of a
unification degree associated to a most general unifier of two
expressions.

All these proposals share some features in common:

e In general, they are complex algorithms with a prolif-
eration of cases and sophisticated data structures taken into
account sets of linguistic term candidates and propagating
partial matching measures. In contrast, our proposal appears
to be more simple and structured.

e The whole fuzzy unification process is developed at
run time managing a considerable amount of intermediate
information. We think this may be harmful for efficiency.
However, our algorithm can be seen as a two phase procedure
where the semantic component of linguistic terms is prepro-
cessed at compile time. The fact that the relationship between

linguistic terms is compiled, jointly with the simplicity of the
weak unification algorithm, which uses these fuzzy relations,
make our proposal more efficient.

e These algorithms do not work with function symbols
and variables only can be bound to linguistic terms. Neither
a linguistic term can play the role of a predicate. In general,
all these proposals impose severe syntactical limitations.
For instance, in Virtanen [23] only the so called linguistic
predicates are considered. That is, atomic formulas such as
p(y) or p(x,y) where p is the name of a linguistic variable
and exactly one argument y is a linguistic term in T'(p).
However, in our case, it is possible to treat linguistic terms
as function or predicate symbols and no limitations are
imposed to the first order syntax of the language. This feature
may produce big benefices with little effort. For example,
Bousi~Prolog has greater expressivity and can deal with
approximate reasoning easily.

Example 11: Think in the following BPL program:
wise (X) :— old(X). very#old (john) .

If we ask about whether john is a wise person,
“?-wise (john)”, the BPL system answers “Yes with
1.0” (because, the term very#old is included into the term
old).

VI. A Fuzzy CONTROL APPLICATION

In this section we implement a fuzzy logic controller
which is an adaptation of the one described in [21]. The
device being controlled has a set of activators that take
the input and use this to affect its settings and a set of
sensors that get information from the device. The fuzzy
logic controller takes the *crisp’ information from the sensors
as input and fuzzifies this into some linguistic variables,
propagates membership values using linguistic rules and,
finally, defuzzifies the output and returns these ’crisp’ values
to the activators. The controller we shall implement will use
a set of fuzzy rules to adjust the throttle of a steam turbine
according to its current temperature and pressure to keep it

running smoothly.

First we need to decide upon the linguistic variables that
are going to be used in the BPL program. We do this by
looking at the descriptors that will be used by the rules, in
this case ‘temperature’, ‘pressure’ and ‘throttle’:

:—domain (temperature (0, 500, Celsius)) .
:—fuzzy_set (temperature, [cold(0,0,110,165),
coo0l(110,165,220), normal (165,220,275),

warm(220,275,330), hot(275,330,500,500)7) .

:—domain (pressure (0,300, kpa)) .

:—fuzzy_set (pressure,
[weak (0,0,10,70),1low(10,70,130),0k(70,130,190),
strong(130,190,250), high(190,250,300,300)1]) .

:—domain (throttle (-60, 60, rpm)) .

:—fuzzy_set (throttle, [neg_large(-60,-60,-45,-30),
neg_medium(-45,-30,-15), neg_small (-30,-15,0),
zero(-15,0,15), pos_small(0,15,30),
pos_medium(15,30,45), pos_large(30,45,60,60)]1) .

For the ’throttle’ variable, a negative value indicates that the
throttle should be moved back and a positive value that it
should be moved forward. The problem results in moving the

throttle by large, medium or small amounts in the negative

and positive directions.

Now we can proceed to define the rules. An example of
a rule specified by an exgert is: If the temperature is cold
and the pressure is weak then increase the throttle by a large
amount. This rule has a direct translation to BPL code:

throttle (positive_large) :—temperature (cold),

pressure (weak) .

We can define the rest of rules, in a similar way.

The inputs to the logical system should be taken from the
sensors of the real device, but in this simple example they
are modeled by facts:

temperature (temperature#300) .
pressure (pressure#150) .

Running this BPL program, it is possible to re-
turn a ’crisp’ value for the throttle by means of the
BPL built-in predicate defuzzify % when the goal
“?—defuzzify (throttle(.),Y).?’ is launched, the an-
swer “Y = throttle#-14.09” is obtained.

It is noteworthy that this BPL program employs very
few extensions to the Prolog syntax, obtaining a natural
codification of this problem that can be understood easily by
a Prolog programmer ’. Hence, the main difference between
a BPL program and a Prolog program is in the inside, not
in the surface.

VII. CONCLUSIONS AND FUTURE WORK

Bousi~Prolog is a fuzzy logic programming whose aim is
the management of vagueness and incomplete information
using declarative techniques. In this paper has been detailed
how to integrate fuzzy sets into the BPL system. The general
idea consists of defining a fuzzy relation on the set of terms,
T(X), associated to a linguistic variable, X, in such a way
that this (included its semantic component —i.e, the fuzzy
subsets—) could be treated at a purely syntactic level in the
context of a logic program. This implementation technique
is simple, elegant and efficient, allowing the use of fuzzy
sets in a very natural way (in the context of those languages
whose operational semantics is based on some kind of weak
resolution mechanism). On the other hand, this approach is
original since it is the first time that fuzzy sets are introduced
into the core of a Prolog system by compiling them into
fuzzy relations (which serve as a basis for executing a weak
unification algorithm).

As a mater of future work, on the theoretical side, we have
to investigate the formal properties of the resulting algorithm.
On the practical side, we should incorporate: (graphical)
tools for helping the programmer to define fuzzy sets; other
fuzzy matching options; and better techniques to defuzzify
the output of a computation involving linguistic variables.
Also, the BPL system should allow the programmer to define
its own linguistic modifiers. Finally, we want to continue
complementing the BPL system in order to make it a suitable

6As a reasonable starting point we are using the standard method of
“average of the maximum” as defuzzifying method.
7We suggest to compare our solution with the one appeared in [21].

tool for Soft Computing. To this end, we want to enhance
the BPL operational mechanism allowing the use of several
continuous t-norms, other than the minimum. Also, we are
working for adding to the system tools for managing term
ontologies modelled by proximity equations.

Acknowledges: This work has been partially supported by FEDER
and the Spanish Science and Innovation Ministry under grant TIN 2007-
65749 and by the Castilla-La Mancha Regional Administration under grant
PII1109-0117-448]1.

REFERENCES

[1] H. At-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction.
The MIT Press, Cambridge, MA (1991).

[2] T. Alsinet and L. Godo. Fuzzy Unification Degree. In Proc. of the
2nd Intl. Workshop on Logic Programming and Soft Computing’98,
Manchester (UK), pp 18 (1998).

[3] J.F. Baldwin Evidential support logic programming. Fuzzy Sets and
Systems, 24, pp 1-26 (1987).

[4] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. The implementation
of FProlog — a fuzzy prolog interpreter. Fuzzy Sets and Systems, 23,
pp 119-129 (1987).

[5] M. Cayrol, H. Farency, and H. Prade.
Kybernetes, 11:103-106 (1982).

[6] D. Dubois, H. Prade, and C. Testemale. Weighted fuzzy pattern
matching. Fuzzy Sets and Systems, 28:313-331 (1988).

[7]1 F. A. Fontana and F. Formato. Likelog: A logic programming language
for flexible data retrieval. In Proc. of the ACM SAC, pp. 260-267,
1999.

[8] F.A Fontana and F. Formato. A similarity-based resolution rule. Int.
J. Intell. Syst., 17(9):853-872 (2002).

[9]1 F. Formato, G. Gerla, and M.I. Sessa. Similarity-based unification.
Fundam. Inform., 41(4):393-414 (2000).

[10] R.A. Orchard. FuzzyClips Version 6.04A. User’s Guide Integrated
Reasoning. Institute for Information Technology. Canada (1998).

[11] P. Julidn, C. Rubio and J. Gallardo. Bousi~Prolog: a Prolog extension
language for flexible query answering. In: ENTCS, vol 248, pp. 131-
147. Elsevier, Amsterdam (2009).

[12] P. Julidn and C. Rubio. A similarity-based WAM for Bousi~Prolog.

In: LNCS, vol 5517, pp. 245-252. Springer, Heidelberg (2009).

P. Julidn and C. Rubio. A Declarative Semantics for Bousi~Prolog. In:

Proc. of 11th Intl. Symposium on PPDP’09. ACM SIGPLAN (2009).

[14] P. Julidn and C. Rubio. UNICORN: A Programming Environment for
Bousi~Prolog. In: Proc. of PROLE’09. (2009).

[15] R.C.T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the
ACM, 19(1):119-129 (1972).

[16] V. Loia, S. Senatore, and M. Sessa. Similarity-based SLD resolution
and its implementation in an extended prolog system. In FUZZ-IEEE,
pp. 650-653, 2001.

[17] M. Mukaidono, Z.L. Shen and L. Ding. Fundamentals of fuzzy Prolog.
Intl. J Approximate Reasons, 3, pp. 1080-1086 (1989).

[18] H.T. Nguyen and E.A. Walker. A First Course in Fuzzy Logic.
Chapman & Hall/CRC, Boca Ratén, Florida, 2000.

[19] L.G. Rios-Filho and S.A. Sandri. Contextual Fuzzy Unification. In:
Proc. of IFSA’95,pp. 81-84 (1995).

[20] M.IL Sessa. Approximate reasoning by similarity-based SLD resolu-
tion. Theoretical Computer Science, 275(1-2): 389-426, 2002.

[21] R. Shalfield. LPA-PROLOG: Flint Reference. Logic Programming
Associates Itd. (2005).

[22] H.E. Virtanen. Fuzzy Unification.
(France), pp. 1147-1152 (1994).

[23] H.E. Virtanen. Linguistic Logic Programming. In Proc. of the 2nd
Intl. Workshop on Logic Programming and Soft Computing’98, pp.
91-110, Wiley (1998).

[24] P. Vojtas. Fuzzy Logic Programming. Fuzzy Sets and Systems, 124
(1): 361-370 (2001).

[25] David H. D. Warren. An Abstract Prolog Instruction Set. Technical
note 309, SRI International, Menlo Park, CA., October,1983.

[26] L. A. Zadeh. Fuzzy Sets. Information and Control, 8(3):338-353,
1965.

[27] L. A. Zadeh. The Concept of a Linguistic Variable and its Applications
to Approximate Reasoning I, II and III. J. of Information Sciences 8
and 9, Elsevier (1975).

Fuzzy pattern matching.

[13

In: Proc. of IPMU’94, Paris

