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Abstract—Fuzzy-rough sets play an important role in dealing
with imprecision and uncertainty for discrete and real-valued or
noisy data. However, there are some problems associated Withe
approach from both theoretical and practical viewpoints. These
problems have motivated the hybridisation of fuzzy-rough sts
with kernel methods. Existing work which hybridises fuzzy+ough
sets and kernel methods employs a constraint that enforcesié
transitivity of the fuzzy T-norm operation. In this paper, such
a constraint is relaxed and a new kernel-based fuzzy-roughes$
approach is introduced. Based on this, novel kernel-basedizzy-
rough nearest-neighbour algorithms are proposed. The workis
supported by experimental evaluation, which shows that theew
kernel-based methods offer improvements over the existinfuzzy-
rough nearest neighbour classifiers. The abstract goes here

Keywords—Fuzzy-rough sets; Fuzzy tolerance relation; Kernel
theory; Nearest neighbour classification

I. INTRODUCTION
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feature space.

The initial work on hybridising fuzzy-rough sets and kernel
methods is presented in [6]. This work exploited the appnoac
as described in [7], which explored the relationship betwee
kernels andT-transitivity. In particular, kernel methods are
integrated into fuzzy-rough sets (and more recently ganssi
kernels [8]). In the work of [6], the concept dfernelised
fuzzy-rough setsvas proposed, in which kernel functions are
employed to compute the fuzzy similarity relations between
samples. One of the shortcomings of this approach howesver, i
the fact that the fuzzy relations are limited onlyXg,, equiv-
alence relations [7] in an attempt to guaranied¢ransitivity.
However, as argued in [9]-transitivity does not necessarily
need to be enforced for fuzzy-rough sets [10], as the use of
fuzzy tolerance relations [11] may be sufficient [12].

In this paper, an improved approach to using kernel methods

Fuzzy-rough set theory [1] is a hybridisation of rough setsith fuzzy-rough sets is presented. The reason why the pro-
[2] and fuzzy sets [3], which is capable of dealing witlposed method is termedernel-based fuzzy-rough setgther
imprecision and uncertainty in data. As a hybridisation dghankernelised fuzzy-rough sets that in such a combination,
fuzzy set theory and rough sets, fuzzy-rough sets not orkgrnels are employed as a special means to construct fuzzy
inherit the domain independence of rough sets, but alseaddrntolerance relations. The framework of fuzzy-rough sets is
the inability of rough sets in handling real-valued dataaiTh preserved, whilst a statistical perspective is used in rotale
is, fuzzy-rough sets provide a means to deal with discretevestigate the properties of kernels which may be suittdle
or real-valued noisy data (or a mixture of both) without thimtegration into fuzzy-rough sets. To demonstrate thatytil

need for user-supplied thresholding or domain informathsn

of the new kernel-based fuzzy-rough sets approach, a new

such, this technique can be applied to regression as wellfasm of nearest-neighbour classifier is proposed. This tyjpe

classification tasks. The only additional information rieed

classifier also employs a vaguely-quantified rough set nteasu

is in the form of fuzzy partitions for each feature which cafiL3], which is robust in the presence of noisy data.

be automatically derived from the data [4].

The remainder of this paper is structured as follows. The

Kernel methods [5] have the ability to deal with nontheoretical background is presented in Section 2 with atshor
linear models by mapping a given problem from the (loweview of existing methods. The proposed kernel-based/fuzz
dimensional) input space onto a new (higher-dimensionaugh set approach and the associated nearest neighbour
space via a non-linear transformation. The resulting tfrec algorithms are described in Section 3. The new kernel-based
of the classification task is then linearly separable. Fropfassifier is compared to others, with experimental results
another perspective, the kernel defines a similarity measghown in Section 4. Finally, section 5 concludes the paper
between two data objects and thus allows the utilisation with a short discussion of future work.

prior knowledge of the problem domain. More importantly,

Il. THEORETICAL BACKGROUND

the kernel provides all of the information about the rekativ o

positions of the inputs in the feature space so that the assdt Hybridisation of Rough Sets and Fuzzy Sets

ated learning algorithm is based only on the kernel function The work on rough set theory (RST)[2] provides a method-
Classification can be carried out without explicit use of thelogy that can be employed to extract knowledge from a



domain in a concise way: It is able to minimise informatioiere, I is a fuzzy implicator andl’ is a T-norm. Rp is the
loss whilst reducing the amount of knowledge involved. Ceffiazzy similarity relation induced by the subset of features
tral to rough set theory is the concept of indiscernibilitgt

I = (U, A) be an information system, whetgis a non-empty prp(@y) = Taep{tir, (2,y)}- ©)
set of finite objects (the universe) aidis a non-empty finite wr, (z,y) is the degree to which objecisandy are similar

set of attributes so that: U — V, for everya € A. V, is  for featurea, and may be defined in many ways, for example:
the set of values that attribute may take. For anyP? C A,

there exists an associated equivalence relafidiD (P): pr, (r,y) = 1-— latw) = aly)] (10)

|amam - amin|

) — e (o (20 = (@)~ 00)
IND(P) = {(z,y) € U* | Va € Pa(z) = a(y)}. (1) BRADY) = (a(z) — (a(z) —0q))
The partition generated b§V D(p) is denotedU/I N D(P) ((a(2) +0a) = a(y))) ,0) (11)
or abbreviated tdJ/P and is calculated as follows: ((a(z) + 0a) — a(x))
wheres,? is the variance of feature. As these relations do
U/IND(P)=®{a€ P:U/IND({a})} (2) not necessarily displa§-transitivity, fuzzy transitive closure

must be computed for each feature [9]. In other worfs,
transitivity is not required for fuzzy-rough sets. Insteadzzy
tolerance relations [11] can be employed to construct fuzzy
U/IND({a}) = {{z | a(z) =b, z € U} | be V,}  (3) rough sets [12]. This technique is adopted in this paper. also
Note that formulas (7) and (8) are quite sensitive to noisy
and, values, just like their crisp counterparts. Thus, the cphoé
vaguely-quantified rough set (VQRS) has been introduced in
[13]. Following this approach, given a pair of fuzzy quaeti§
(Qu, Q1), which are an increasing, 1] — [0, 1] mapping, the
lower and upper approximation of by R are defined by

where,

ARB={XNY |VX €AVY € BXNY £0}. (4)

If (x,y) € IND(P), then z and y are indiscernible

by attributes fromP. The equivalence classes of the P- Qu B |Rp(z,y) N X|
indiscernibility relation are denoted]r. Let X C U. X can Frpx () = Qu |Rp(x,y)]
be approximated using only the information containedPin .
by constructing the Pewer and Pupper approximations of P y%:mmm(uRP (@9), nx W) (12)
Xt “ Z HRp ((E, y)
yelU
PX ={z|[z]p C X} (5) Rp(z.5) N X|
A () — o (Br.y) 0 X]|
_ dexto = (FRml )
PX={a|ldpnX 70} ®) 5 min(yiny (7.). 1 (1)
— (S
The tuple(PX,PX) is called a rough set. =Qi | SRR ;o (13)
The process described above although useful can only yeUuRP Y

operate effectively on datasets containing discrete Baluq_
As most datasets contain real-valued attributes, a siNgec
judgement or threshold must therefore be employed in or
for RST to operate on such data. The imposition of such
subjective threshold is however, contrary to the concept
domain independence of RST. An appropriate way of handliﬁ
the problem of real-valued data is the use of fuzzy-rough s@. Fuzzy-rough Nearest Neighbour Algorithm

(FRS) [1]. FRS offer_s a hig.h.degree of flgxibility in enabling A number of techniques have been developed for building
the vagueness and imprecision present in real-valued dat%u%zy-rough nearest neighbour (FRNN) classifiers [15]][16

be modelled effectively. Based upon such techniques, an approach which utilises the

Definitions for the fuzzy lower and upper approximationﬁjZZy upper and lower approximations to determine class
can be found in [10], [14], where @&-transitive fuzzy simi- membership is proposed in [17]

larity relation is used to approximate a fuzzy concapt FRNN works by examining each of the decision classes in

he fuzzy set intersection is defined by thenorm min and
QF fuzzy set cardinality by the sigma-count operation. As a
important difference to (7) and (8), the VQRS approximagtion
0 not extend the classical rough set approximations, imsese
at whenX andR are crisp, (12) and (13) may still be fuzzy.

prpx () = inf (g, (,9), px () @) the_ training data in-turn. It computes the mer_nber_shlp ofsh te
y€eU object to the fuzzy lower and upper approximations of each
class. These values are then compared with the highesihexist
tapx (@) =sup T(ur, (2, y), nx (y))- (8) P ghesinex

yel values: i1 (y) and ua(y). If the approximation membership



values for the currently considered class are higher, tloéih bmethods with concepts from fuzzy-rough set theory, hava bee
w1 (y) and s (y) are assigned these values and the class lalpetsented in [6], [8]. In this approach, kerndi§x,y) are
is assigned to this test object. If not, the algorithm cams constrained such that they impose: a) reflexivity, b) synmymet
to iterate through all remaining decision classes. Clasdiin and c)T,,,-transitivity. Such kernels are employed to calculate
accuracy is calculated by comparing the output with theadctuhe degree to which objectsandy are similar for every fea-
class labels of the test objects. ture. The fuzzy lower and upper approximations in kerndlise
An extension of FRNN is vaguely quantified rough nearefiizzy-rough sets are defined by:
neighbour (FRNN-VQRS) [13] which employs (12) and (13), .
to determine class membership of test objects. The underlyi frex (@) = jrelufj Leos(Kp(2,y), pix (y) (18)
learning mechanism is very similar to that of FRNN. iz (&) = 5D Toos (K (2,4, 1 (4) (19)
C. Classes of Kernels in Statistics yel
In a kernel algorithm, a mapping from the original space Where, the implicator
to a possibly high-dimensional space is employed to change 1 a<b
the distribution of the data from nonline_ar problem to Iin_yea Leos = { ab+ /I —a)(1-02), a ; b
separable problem. By replacing the inner product with an ) )
appropriate kernel function, one can implicitly perform a Hoy\_/e_ver., as shown preymu_sly, in fuzzy-rough sefs,
nonlinear mapping to a high dimensional feature space withdransitivity is not necessarily displayed, and fuzzy tafere
increasing the number of parameters. Consider the casef@tions may be sufficient [12]. Moreover, as (9), the fuzzy
mapping am-dimensional feature space to ardimensional similarity relation induced by the subset of featureshould

feature space: be a combination byI-norm. Specifically, for kernelised
fuzzy-rough sets, it is:
¢:x— ¢(x), x€R", $(x)€R™ (14)
. Kp(z,y) = Tacp{pr, (z,9)}- (20)
A kernel denotes a functioA” such that for allx,y € R™:
In this case, the choice of a kernel function becomes
K(x,y) = ¢(x) - o(y). (15) limited. This is due to the fact that not many kernel funcsion

can be denoted by @-norm-based combination of reflexive

In statistics, symmetric positive definite functions aréech funci For inst the G ian k | lovedin 18
covariances. Hence, kernels are covariance-based incessely"ctioNs. For Instance, he Laussian kernel employe Iin [

. > .
From a statistics perspective, generally, two importaasses arEj [6] is workable, tﬁ,‘fause for= (21, 22,...,2) € R",
of kernels are: stationary kemels and non-stationary élern¥ = (V1 %2:--- n) €

[18]. The work in this paper focuses on stationary kernels. [x -yl - (zi — yi)?
Stationary kernelsk'(x,y) = Kgs(x —y) do not depend €Xp (‘7) = HeXP (‘T) (21)

on the data object values themselves, but only on the lag i=1

vector separating the two objectsandy. Isotropic stationary and because its product is stillZZ2norm. However, for most
kernels, which depend only on the norm of the lag vectdtgrnels, such as the rational quadratic kernel and the wave

are most commonly used. For isotropic stationary kernbkés, tkernel (see below), this property may not hold. In order to

covariance form is: address these problems, kernel-based fuzzy-rough sets are
proposed in this paper.
Keoo(%,y) = Kr(|x = yl)), (16) In geometry, the inner product of two vectors is the projec-
and the correlation form is tion of one onto another. Actually, the square of the norm
distance in Hilbert space can be expressed by the inner
Keor(X,y) = Kr(|Ix —yl[)/K1(0). (17) product. In this case, the inner product can measure the

A non-stationarykemel K (x,y) is one which depends _similarity between the images of two features by mapping

explicitly on the two data objects andy. Note that a special into a Hilbert space. Therefore, given a non-emptylsand a

kind of non-stationary kernel, called reducible kernel can kaEI functionk being reflexive, (that ig (z, z) = 1), for an
be reduced to a stationary kernel. arbitrary fuzzy concepk’, the lower and upper approximations
of a kernel-based fuzzy-rough set can be defined as:

IIl. KERNEL-BASED FUZZY-ROUGHNEARESTNEIGHBOUR

CLASSIFICATION prgs x (v) = Inf (e (2,9), px (y) (22)
A. Kernel-based Fuzzy-rough Sets 1R (z) = sup T (pxc, (2, 9), 1ix (). (23)
The relationship betweéh-transitivity and kernels has been yel
explored [7]. It has been shown that any kerkhel X x X — It is important to note that the framework of fuzzy-rough
[0,1], K(z,z) = 1 Va € X, is T..s-transitive, where sets remains intact using the definition described in thigepa

Teos(a,b) = max(ab — V1 —a?v/1 —10%,0). As an initial In other words, the kernel methods play a special role in
attempt, kernelised fuzzy-rough sets, which combine Kernmalculating the fuzzy tolerance relations. It is becauséhisf



. KFRNN(U,C.y)
fact that the termkernel-based fuzzy-rough sekFRS) is U, the training setC, the set of decision classes;

employed here rather thdwrnelised fuzzy-rough sets y, the object to be classified.
As well as fuzzy-rough sets, the corresponding the lower
and upper approximations of the kernel-based vaguely quan- (1) N « get Nearest Neighbo(y, k)

tified rough set (KVQRS) can be also be defined: g; %{gy) <C— 0, p2(y) < 0,Class — 0
€
X @ it (rrx () 2 (W) &&zr (1) 2 p2(y))
O () =0 (IR p (2, y)ﬂXl) (5)  Class — X
RiEx “\ |RE (z,y)] ©® ) = prxx ) p2() = pgE W)
ST min(ur, (2, ), px (y)) (7) output Class
=Qu | (4) _—
Z UK p (:C, y) Fig. 1. The kernel-based fuzzy-rough nearest neighbourittgn
yelU
o |RE (z,y) N X| The algorithm in Figure 1 can be further adapted to per-
H@X(I) =Q W form kernel-based vaguely quantified rough nearest neighbo
S min(ju, (2, 1), px (4)) (KFRNN-VQRS) classification, by replacingizx x (y) and
—Q yeu . (25) “RKX( ) with “RKX( ) andu ( ) respectlvely
> hkp(7,y) In statistics, the stationary property is often mathenadlgic

vey assumed to describe the ability of ensuring that a random

where, k. (z,y) is induced by the subset of featur®sand process maintains the same probabilistic characteristicis as

kernel functionk: mean, variance and autocorrelation. Typically, non-Gtetiy
and bifurcated regimes are always observed in the case of
e (2, y) = Taep{d(a(x)) - ¢a(y))} datasets with class imbalance [19]. Class imbalance occurs
=Taep{K(a(z),a(y)} = Tuepr{Ka(z,y)} when one or more classes are over or under represented as a

(26) total number of objects of the whole dataset. Thus, for ddsas
which suffer from class imbalance, the distribution of ahd t
imilarity between the objects may be non-stationary. From
is point of view, if a dataset is extremely imbalanced,uke

of non-stationary kernels would be more appropriate. Furth

N investigation would help to confirm this - see conclusion
« Gaussian kernelK'(x,y) = exp (—w) section for further discussion.

« Exponential kernelK (x,y) = exp (—w

As established previously, all isotropic stationary késne
in correlation form (17) are suitable for being integrate
into KFRS. A collection of certain commonly used isotropic
stationary kernels in correlation form are listed as fokow

IV. EXPERIMENTAL RESULTS

; ; 1 xyp® ) i . .
» Rational quadratic kemeK (x, y) @}YH x=yl>+0 This section presents an experimental evaluation of the pro

« Wave kernel:K (x,y) = oy sin(Z5%). posed algorithms (KFRNN-FRS and KFRNN-VQRS) using

It is worth noting that for specific non-stationary kernéhe  two different kernels: 1) an isotropic stationary kerneida
reflexivity holds also. For instance, the non-stationargnké 2) a non-stationary kernel. Nine benchmark datasets adatain
[18], from[20] are employed. These datasets are small-to-medium
IXI 4+ (IVIF = 11X = Y] in size, containing between 178 and 683 objects with feature

K(xy) = X[yl ’ (27) numbers ranging from 6 to 279.

is reflexive. This kernel is also reducible. TABLE |
EVALUATION DATASETS

B. Kernel-based Fuzzy-rough Nearest Neighbour Classifica- Dataset | Objects | Atirnbutes
tion Arrthythmia | 452 279
_ The present work initia_lly aims to _investigate the combina- S(ET;? g%g 193
tion of kernel methods with conventional fuzzy-rough netre Liver 345 6
neighbour approaches (FRNN and FRNN-VQRS) [17]. The Sonar 208 60
resulting combined learning algorithm is outlined in Figur. Water 2 390 38
As with FRNN, the rationale behind this algorithm is that the WV?/%ﬁLS fgg ii
the lower and the upper approximations of each decisiors clas Wisconsin 683 9

(calculated by means of the nearest neighbours of a testtobje
y) will provide helpful clues to predict the membership of a
test object to any given class. The complexity of this aldponi For the evaluation described herk,is set at an initial

is: O(|C| - 2|UJ). value of 10 for FRNN-VQRS and KFRNN-VQRS. For FRNN



the relation given in equation (10) is used. For the kernednd 2 forwater2 and 378 objects for class 1 and 12 objects

based methods, an exponential kernel (used as the isotrdpicclass 2 forwater3 It can be seen from the experimen-

stationary kernel), and the non-stationary kernel of (2@ atal results that the non-stationary kernel based appreache
employed. In the FRNN and KFRNN approaches, the KleeneensKkFRNN and nonsKkFRNN-VQRS, consistently achieved
Dienes T-norm is used to implement the implicator, whichthe highest classification accuracy and smallest RMSE over
is defined byI(z,y) = max(l — z,y). The FRNN-VQRS all other methods for these datasets. However, for the rest
and KFRNN-VQRS approaches are implemented with=  datasets which are not highly imbalanced, the differences

Q.06 and Q. = Q.2,1.0), according to the generalbetween the performance of two new approaches and existing
formula techniques are not that significant. In fact, Eiver andGlass
0, < a both of SKFRNN and sKFRNN-VQRS reached the highest
2(z—a)? o ; 5 < afB classification accuracy and smallest RMSE values.Hrenrt,
Quap(@)={ Por . ., ~ * . (28 SonarWineandWisconsinthe competitiveness of the kernel-
1- Bz 2 =TS B based fuzzy-rough nearest neighbour classifiers are ofwviou
1, <z Putting these results together, it is clear that the preserk

Stratified 10x 10-fold cross-validation (10-FCV) is em-helps to improve the quality of fuzzy-rough nearest neighibo
ployed for result validation. In 10-FCV, the original dasas classifiers.
is partitioned into 10 subsets. Of these 10 subsets, a single

subset is retained as the testing data for the model, and the _
remaining 9 subsets are used for training. The cross-vaiia  1© further evaluate the kernel-based fuzzy-rough tectesgu
process is then repeated 10 times (the number of folds). ThHeaired t-test Wlth significance level of 0.05 has been edrri
10 sets of results are then aggregated via averaging to modﬂUt- _The baseline references for the tests are thg results
a single model estimation. The advantage of 10-FCV ovBPtainable from FRNN and FRNN-VQRS classification, re-
random sub-sampling is that all objects are used for bo'iﬁectlvely. This is done in order to ensure that the afore_mgn
training and testing, and each object is used for testing ofloned results are not discovered by chance. The statistica
once per fold. The stratification of the data prior to its sion Significance results are shown in Table IV and V, where the
into folds ensures that each class label (as far as possiigPols V', and "’ indicate that the results are staielly

has equal representation in all folds, thus helping to ltev Pelter, worse, or have no statical significance.

bias/variance problems. In order to investigate the lef#ito ~ 1he results once again demonstrate that the kernel-based
of these models, the root mean squared error (RMSE) meas@pgroaches achieve best performances overallWater2

is used. The RMSE is the squared root of the variance of t@ter3 Heart and Arrythmia, etc. In particular, compared to
residuals. It indicates the absolute fit of a model to the ddt&NN, the non-stationary kernel-based methods are shown
and how close the observed data objects are to the molfe|be statistically better than the other methods for these
predicted values. Note that, RMSE is an absolute measl{gasets. Note however that no statistical differenceéoared

As the squared root of a variance, RMSE can be view&nongst all tested algorithms for ti@glass Liver, Wineand

as the standard deviation of the unexplained variance. towdisconsindatasets. Only a single dataseofay), do the
values of RMSE indicate better fit. RMSE is a good measuP&OPosed techniques occasionally return a result which is
of how accurately the model predicts the response, and iStgtistically worse than that attainable using FRNN. Thigym
generally accepted criterion for assessing fit, if the psepof Well be due to the use of the fuzzy quantifiers in FRNN-VQRS,
the resulting model is for prediction. In addition, conienal though further experimental evaluation is required in ortde
classification accuracy is also used to assess the perfoemaffrify this. For FRNN-VQRS, the kernel-based modification

Statistical Analysis

of learnt classifiers. leads to a statistically similar performance generall;FElNN
) and nonsKFRNN are better than FRNN-VQRS statistically
A. Performance Evaluation for the Glass and Sonar datasets, although worse for the

A comparison of the kernel-based and FRFS-based neardstythmia and Heart datasets. This may possibly be caused
neighbour techniques is shown in Tables Il and lll, whergy the existence of noisy data Arrythmia and Heart
sKFRNN and nonsKFRNN stand for stationary kernel-based
fuzzy-rough nearest neighbour and non-stationary kernel-
based fuzzy-rough nearest neighbour methods, respsctivel This paper has presented a new technique for the hybridi-
Correspondingly, stationary kernel-based vaguely gfiadti sation of fuzzy-rough sets and kernel methods, called kerne
rough nearest neighbour and non-stationary kernel-badsbsed fuzzy-rough sets (KFRS). In contrast to previous work
vaguely quantified rough nearest neighbour approaches #re7,,s-transitivity constraint is relaxed. The only remaining
denoted by skFRNN-VQRS and nonsKkFRNN-VQRS, respecenstraint which the proposed approach imposes is reftgxivi
tively. Whilst attempting to identify suitable kernels, the prop-

Note that thewWater2and Water3datasets, both suffer fromerties are analysed from statistics perspective. It has bee
class imbalance. In particular, the ratios of data betwedemonstrated that all isotropic stationary kernels in the ¢
different classes are: 312 objects to 78 objects for clagseselation form of (17) are suitable for use with the KFRS

V. CONCLUSION



TABLE Il
CoMPARISON BETWEENFRNN, SKFRNN, NONSKFRNN

FRNN sKFRNN nonsKFRNN
Dataset Accy. RMSE | Accy. RMSE | Accy. RMSE
Arrhythmia || 54.67 0.21 | 52.33 0.22 | 55.43 0.21
Glass 7354 029 | 76.24 0.28 | 73.21 0.29
Heart 76.63 0.43 | 76.59 0.42 | 73.00 0.43
Liver 62.81 0.50 | 63.70 0.49 | 61.06 0.49
Sonar 85.25 0.43 | 84.69 0.43 | 8595 043
Water 2 75.41 0.46 | 73.95 0.46 | 83.00 0.39
Water 3 67.87 0.40 | 65.79 0.39 | 75.77 0.34
Wine 97.47 0.20 | 98.15 0.21 | 96.12 0.21
Wisconsin || 96.38  0.19 | 96.65 0.20 | 96.65 0.20

TABLE Il
CoMPARISON BETWEENFRNN-VQRS SKFRNN-VQRS ,NONSKFRNN-VQRS

FRNN-VOQRS | sKFRNN-VQRS| nonsKFRNN-VQRS
Dataset Accy. RMSE | Accy. RMSE | Accy. RMSE

Arrhythmia || 60.40 0.21 | 59.42 0.21 | 62.13 0.20
Glass 68.95 0.27 | 74.08 0.26 | 66.57 0.29
Heart 82.19 0.35 | 8241 0.35 | 75.81 0.43

Liver 66.26 0.48 | 67.19 0.48 | 67.72 0.48
Sonar 79.38  0.37 | 80.83 0.36 | 75.98 0.41

Water 2 79.59 0.39 | 80.49 0.40 | 84.92 0.33
Water 3 73.18 0.37 | 72.67 0.38 | 80.26 0.31
Wine 97.14 0.10 | 96.97 0.12 | 94.22 0.15

Wisconsin || 96.69 0.16 | 96.16 0.17 | 96.81 0.15

TABLE IV
STATISTICAL SIGNIFICANCE USING PAIRED T-TEST FORFRNN

Dataset|| FRNN sKFRNN nonsKFRNN sKFRNN-VQRS nonsKFRNN-VQRS
Arrythmia - - - Y Y
Glass - - - -
Heart - - - v -
Liver - - - -

Sonar - - - *
Water2 - - v v
Water3 - - - v

Wine - - -

Wisconsin - - - - -

TABLE V
STATISTICAL SIGNIFICANCE USING PAIRED T-TEST FORFRNN-VQRS

Dataset|| FRNN-VQRS sKFRNN nonskKFRNN sKFRNN-VQRS nonskKFRNN-VQRS
Arrythmia - * * - -
Glass - v - - -
Heart - * - - -
Liver - - - - -
Sonar - - v - -
Water2 - - - - -
Water3 - - - - -
Wine - - - - -
Wisconsin - - - - -

approach. Two kernel-based fuzzy-rough set classifieragke  Topics for further investigation include the impact of the
based fuzzy-rough nearest neighbour (KFRNN) and kernehoice of kernel, connectives and quantifiers on performanc
based vaguely quantified rough nearest neighbour (KFRNHIso, (and as mentioned previously), the relationship leetw
VOQRS) have been introduced. The experimental results otke class imbalance of datasets and the statistical psopért

9 datasets, show that the new methods are effective, and tkexnels is a worthwhile avenue of exploration. Considering
they generally outperform the original techniques. hierarchical classification, another further extensionthis



work would be to examine how KFRS performs for the task
of feature selection [4].
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