Abstract:
Image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label are connected and meaningful, and share certain vis...Show MoreMetadata
Abstract:
Image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label are connected and meaningful, and share certain visual characteristics. Pixels in a region are similar with respect to some features or property, such as color, intensity, or texture. Adjacent regions may be significantly different with respect to the same characteristics. Therefore, it is difficult for a static (non-learning) segmentation technique to accurately segment different images with different characteristics. In this paper, an evolving fuzzy system is used to segment medical images. The system uses some training images to build an initial fuzzy system which then evolves online as new images are encountered. Each new image is segmented using the evolved fuzzy system and may contribute to updating the system. This process provides better segmentation results for new images compared to static paradigms. The average of segmentation accuracy for test images is calculated by comparing every segmented image with its gold standard image prepared manually by an expert.
Date of Conference: 27-30 June 2011
Date Added to IEEE Xplore: 01 September 2011
ISBN Information: