1709.07558v1 [cs.DC] 22 Sep 2017

arxXiv

FogStore: Toward a Distributed Data Store
for Fog Computing

Ruben Mayer
Institute of Parallel and Distributed Systems
University of Stuttgart, Germany
Email: ruben.mayer @ipvs.uni-stuttgart.de

Abstract—Stateful applications and virtualized network func-
tions (VNFs) can benefit from state externalization to increase
their reliability, scalability, and inter-operability. To keep and
share the externalized state, distributed data stores (DDSs) are a
powerful tool allowing for the management of classical trade-offs
in consistency, availability and partitioning tolerance. With the
advent of Fog and Edge Computing, stateful applications and
VNFs are pushed from the data centers toward the network
edge. This poses new challenges on DDSs that are tailored
to a deployment in Cloud data centers. In this paper, we
propose two novel design goals for DDSs that are tailored
to Fog Computing: (1) Fog-aware replica placement, and (2)
context-sensitive differential consistency. To realize those design
goals on top of existing DDSs, we propose the FogStore system.
FogStore manages the needed adaptations in replica placement
and consistency management transparently, so that existing DDSs
can be plugged into the system. To show the benefits of FogStore,
we perform a set of evaluations using the Yahoo Cloud Serving
Benchmark.

Index Terms—Distributed Data Store, Fog Computing, Con-
sistency

I. INTRODUCTION

Large-scale distributed applications gain increasing impor-
tance in almost every aspect of life. Beyond traditional appli-
cations, via Network Function Virtualization (NFV), network
functions transform from dedicated hardware middleboxes to
large-scale distributed applications. Fueled by the develop-
ments in Software-defined Networking (SDN), Virtualized
Network Functions (VNFs) are increasingly prevailing. Most
of the applications, SDN controllers, and VNFs are stateful
[14], [16]. Statefulness poses challenges on failure recovery
and state sharing of applications [4], [18].

As an increasing trend, applications and VNFs are being
deployed in Cloud data centers, which offer virtually unlimited
resources, high availability, and reduced administration com-
plexity. The recent trend of Fog Computing [13], [8], [17]
foresees nodes with computational and storage capabilities
to be placed close to the edge of the network. The network
of Fog nodes builds a computational continuum between the
end users’ devices and the Cloud data centers. Different from
Cloud Computing, Fog nodes are not necessarily deployed in

This work was funded in part by DFG grant RO 1086/19-1 (PRECEPT),
an NSF CPS program Award #1446801, GTRIs IRAD program, and a gift
from Microsoft Corp.

Harshit Gupta, Enrique Saurez, Umakishore Ramachandran

Georgia Institute of Technology
Atlanta, Georgia, USA
Email: {harshitg, esaurez, rama} @ gatech.edu

data centers; instead, hardened routers, cellular access points,
and smart home gateways also participate in the computational
continuum. When Fog nodes are deployed at the edge of the
network, they can exploit the locality of clients, applications,
and data, resulting in reduced latency and network load. The
ongoing trend will push many applications and VNFs out from
the central Cloud data centers toward the Fog.

Stateful applications benefit from state externalization, i.e.,
exposing their internal state to other applications, for failure
recovery and state sharing [4], [18]. Replicating and shar-
ing state between different processes is a complex endeavor
with many challenges and pitfalls, e.g., keeping consistency
between the replicas and supporting concurrent read and write
access. Hence, to manage externalized state, highly available
distributed data stores (DDSs) are often employed. A DDS
keeps multiple replicas of the stored data records on different
physical nodes. In doing so, DDSs handle the complex trade-
off between consistency, availability, latency and partitioning
tolerance [3], [1], [19]. To benefit from Fog Computing, DDSs
must be pushed from the Cloud to the Fog infrastructure.

However, the design of current DDSs—that are designed for
Cloud data centers—builds on assumptions that do not hold
true for Fog Computing. First, the replica placement strategies
employ data center failure models, i.e., mask failures that
typically happen in a data center. For that reason, rack-aware
placement algorithms, that avoid placing multiple replicas of
the same data on the same server rack, are predominant.
However, such a placement is not generally applicable to Fog
Computing, where we assume a more heterogeneous infras-
tructure that does not always provide classical server racks.
Second, current DDSs do not take into account context, espe-
cially, locality of the clients; instead, all clients are provided
with the globally same read and write consistency guarantees.
The assumption of uniform consistency requirements does not
always hold true for Fog Computing applications. Instead, we
observe, that often, the context, e.g., the location, of clients
and data determines the consistency requirements.

To tackle the shortcomings of existing DDSs with re-
gard to Fog Computing, in this paper, we propose a Fog-
enabled DDS abstraction—called FogStore—that implements
two novel design goals: Fog-aware replica placement and
context-sensitive differential consistency. FogStore manages
the needed adaptations in replica placement and consistency

(©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

This is the authors’ version of the work. The definite version is published in Proceedings of 2017 IEEE Fog World Congress (FWC *17).



Cloud

Edge Cloud
... FogTierl
MW}@ Fog Tier N

00 e =

Sources / Sinks

Fig. 1. The Fog continuum provides a hierarchical network of nodes with
computational and storage capabilities.

management transparently, so that existing made-for-cloud
DDSs can be plugged into the system. Further, we evaluate the
impact of the design goals of FogStore on the overall system
performance based on a data store benchmark.

II. SYSTEM MODEL

Here, we introduce a system model of Fog Computing
infrastructure along with an application and DDS model.

A. Fog Computing Model

Fog Computing describes a computational continuum be-
tween the traditional cloud data centers and the data sources
and sinks [8], [17]. It consists of an orchestrated set of Fog
nodes that are typically hierarchically organized in multiple
tiers [13], [20], as depicted in Figure [I| In the computational
continuum of Fog Computing, a Fog node is a distinct host
that provides computational and storage capabilities (denoted
as the Fog platform) and runs a software stack for deployment
of applications and management and interaction between Fog
nodes (denoted as the Fog software) [8]. The computational
and storage capabilities of the Fog platforms can be hetero-
geneous. The Fog software provides an abstraction layer for
the deployment of applications and services on the Fog node
using virtualization technology such as containers.

In this paper, we assume that Fog nodes can fail according
to the fail-recovery model, where an arbitrary number of nodes
may fail and restart at any time. The connection between Fog
nodes can be interrupted or delayed. Hence, sets of Fog nodes
can become temporarily incapable of communicating with
each other, i.e., temporary network partitioning is possible.

B. Application and Data Store Model

We assume stateful applications that have an inherent local-
ity of their data sources and sinks, meaning that data sources
and sinks are located in the same physical region. Further, we
assume that the applications can expose their internal state to
a DDS and read state stored in a DDS for failure recovery and
state sharing between different application instances.

Multiple instances of a DDS are deployed across the Fog
Computing continuum. The data to be stored is replicated
across the DDS instances—the copies of a specific data record
are referred to as replicas. In doing so, the DDS faces the
problem of partitioning the data, placing the replicas of the
data partitions on the available DDS instances, and keeping
consistency between the replicas.

aw,

Source: (c) Google Maps

Fig. 2. Differential consistency: only cars close to the traffic lights (within
the red circle) need to read consistent data about the traffic light state.

We assume that the DDS is able to support individual
consistency levels for each single read or write operation on the
data. A consistency level specifies how many of the replicas of
a data set need to be retrieved or updated until the operation
is reported as completed to the querying client. For instance,
a read consistency level ONE returns a read result to the client
when the data has been retrieved from one single replica,
whereas a write consistency level QUORUM would return a
write query as successful to the client only after a majority of
data replicas has been updated. Modern DDSs, such as Apache
Cassandra [[15], allow for a fine-grained specification of the
consistency level on each single (read or write) operation.

III. FOGSTORE

To overcome the shortcomings of existing Cloud DDSs
with regard to Fog Computing, we propose the FogStore
system. FogStore allows for plugging in existing made-for-
Cloud DDSs, extending them with Fog-aware replica place-
ment strategies and context-sensitive differential consistency
capabilities that exploit client and data locality in Fog Com-
puting. In the following, we explain the design goals and
algorithms of FogStore in more detail.

A. Design Goals

1) Fog-aware Replica Placement: For Cloud data centers,
the placement problem has been tackled by rack-aware place-
ment strategies that avoid to place multiple replicas of the same
data in the same server rack. However, in Fog Computing,
we do not assume that a placement in server rack is always
appropriate or possible. The failures that can happen in Fog
Computing are different from Cloud Computing. For instance,
network partitioning can become a large problem in Fog
Computing. While a Cloud data center is usually connected via
redundant links to the rest of the network, in Fog Computing,
whole groups of Fog nodes can be connected to the rest of the
network over a single link—which might even be a wireless
link. Instead of mainly focusing on server racks as the standard
failure group (i.e., a group of nodes failing together because
of the same technical reason), a placement strategy for Fog
Computing must also take into account the network topology
and heterogeneity of the Fog nodes.

Another common assumption of Cloud Computing is that
the latency between different nodes of a Cloud data cen-
ter is negligible. Typically, a customer of a Cloud service



Query API

create(key, value, data context)
DDS

read(key, client context) instance

d

“ <p{update(key, value,
client context, data context) Consistency

Mapper

client g

delete(key, client context) H ~,
translated

query

begin, commit, abort, rollback

“ < Consistency API
domain
expert

Fog Node

Fig. 3. FogStore architecture.

does not have full control over the placement of her virtual
machines in the physical infrastructure. Contrary to that, in
Fog Computing, latency between Fog nodes is a first-class
citizen; the placement of replicas in a Fog infrastructure plays a
major role in the DDS performance, as also our evaluations in
Section [[V| confirm. A Fog-enabled replica placement strategy
should optimize the placement for achieving minimal latency
in between the replicas and between the replicas and the data
sources and sinks (i.e., the clients).

2) Context-Sensitive Differential Consistency: In Cloud
Computing, a common assumption is that clients of a DDS
are geo-distributed, concurrently accessing the same data
from different locations around the globe. Hence, each client
gets provided with the same consistency guarantees on its
(write and read) operations on the DDS. Contrary to that,
in Fog Computing, different clients accessing the distributed
data store often have an individual context. This context can
influence their requirements on consistency. FogStore allows to
exploit context, in particular location, by providing a mapping
from a client’s context to the consistency level of the client’s
query. To illustrate this, we discuss an example of differential
consistency, using location context, in the following.

In a situation-aware application, multiple autonomous cars
read the state of a traffic light on a specific road junction
(cf. Figure [2). The cars need strong read consistency when
they are close to the junction (i.e., within the red circle): No
two cars should read contradicting traffic light status from
different DDS nodes. This means that each car has to read
the status from all nodes, and use the freshest one to make
its decision. However, cars further away from the junction
might use the traffic light status for non-critical operations
such as to adjust their speed in order to save energy or to
update the estimated arrival time in their navigation system.
Two different cars further away from a given traffic light may
read contradicting traffic light status without inducing safety
risks. Hence, those cars can read from one local node, making
the response faster and reducing the load on the Fog nodes.

In the following, we describe how the architecture of
FogStore supports the proposed Fog-aware design goals.

B. Architecture and Algorithms

FogStore is an extension to existing DDSs that allows
for their seamless integration into a Fog Computing envi-
ronment. Each instance of the DDS, deployed on a Fog
node, is plugged into an instance of FogStore. The FogStore

instance receives the clients’ queries and translates them to
DDS queries, implementing Fog-aware replica placement and
context-sensitive differential consistency. FogStore consists of
three main components, as depicted in Figure [3} (1) A Query
API to receive the create, read, update, delete and transac-
tional queries from the DDS clients, enriched with context
information. (2) A Consistency API to receive specifications
of consistency regions from a domain expert who knows how
client context influences the consistency requirements. (3) A
Consistency Mapper that, based on the specifications in the
Consistency API, automatically maps an incoming query to an
appropriate consistency level and issues a corresponding query
in the plugged-in DDS. Replica placement is also handled in
this component.

1) Query API: Queries are sent by the clients to the Query
API of FogStore. Based on the consistency levels specified
in the Consistency API, the queries are translated by the
Consistency Mapper and forwarded to the underlying DDS.

create (key, value, data context) — creates a
new key and value. Replicas of the data record are placed on
the Fog nodes by the Consistency Mapper according to the
placement algorithm.

read (key, client context)
associated with the key from the DDS.

update (key, value, client context, data
context) — updates the given key with a new value. By
setting the field data context in the query, the data
context can be updated, e.g., when the data source has moved
to a different location. The updated data context is taken into
account by the Consistency Mapper in all future queries.

delete (key, client context) - deletes the key
from the distributed data store.

— retrieves the value

tx begin, commit, abort, rollback - allows

for integrating transactional support.

Algorithm 1 FogStore Consistency Mapper

1: DDS localDDS > links to closest DDS node
2: procedure MAPANDEXECUTEQUERY(query, key, client_ctx)
3: consistencyRegion <—

4 ConsistencyAPl.get Region(key, client_ctx)

5 consistencyLevel <

6: ConsistencyAPI.get Leve1(consistencyRegion)

7 translatedQuery < translate(localDDS.type, query, consisten-
cyLevel)

8: localDDS.execute(translatedQuery)

9: end procedure

Algorithm 2 FogStore Replica Placement Algorithm

1: procedure PLACEMENT(data_key,
fog_topology, replication_factor)

2 closestFogNode <— findClosest (fog_topology, data_location)

3 replicaNodes.add (closestFogNode)

4: while replicaNodes.size < replication_factor do

5 find nearest neighbor of closestFogNode that is not in same failure

data_location,  failure_groups,

group
6 add it to the replicaNodes

7: end while

8 setDataStoreMapping (key, replicaNodes)
9: end procedure




2) Consistency API: In the Consistency API, a domain
expert specifies the mapping between data context, client
context, and consistency level of the different kind of queries.
For location context, which is a major class of context in
Fog Computing, the Consistency API provides an easy-to-
use abstraction, called consistency regions. Note, that beyond
location context, other types of (application-specific) context
can be extended to the user’s needs. In the following, we
describe the concept of consistency regions in more detail.

Consistency regions provide information about the consis-
tency levels needed in specific geographical regions around
the data location. Those specifications are usually application-
specific, i.e., each application using FogStore can have in-
dividual consistency regions specified. For instance, in the
traffic application described in Section [[II-A2] the consistency
regions would be specified as: “Read from ALL replicas when
client is located around 500 meters from the data location (i.e.,
the traffic light location), else read from ONE replica”.

3) Consistency Mapper: The Consistency Mapper compo-
nent uses the consistency regions specified in the Consistency
API in order to translate client queries to the Query API into
queries to the connected DDS. In doing so, an adapter to the
connected DDS has to be provided, such that the consistency
levels specified in the Consistency API can be translated
according to the query language and consistency capabilities
of the DDS.

a) Consistency Mapping Algorithm: Algorithm [I] lists
the consistency mapping algorithm. First, the consistency
region is determined based on the client’s context (line 3).
Then, the consistency level of that region is determined (line
5). Finally, the query and its consistency level are translated
into the appropriate query language of the underlying DDS
and executed (lines 7-8).

b) Replica Placement Algorithm: Whenever a new data
record is inserted into the DDS (create is called in the Query
API), the record and its replicas will be placed on the DDS
instances according to a placement algorithm.

The Fog-aware replica placement algorithm applied in Fog-
Store is centered around the definition of failure groups. A
failure group is a group of nodes that will fail for the same
technical reason (e.g., a local power outage). This can be a
group of nodes on a rack, but also a group of nodes that
would be disconnected or partitioned because they access the
Fog continuum via the same physical link. The concrete setup
of failure groups is configured by a domain expert who knows
the physical conditions of the Fog continuum. In FogStore, the
domain expert can group arbitrary Fog nodes in failure groups
and provide them to the placement algorithm.

Algorithm [J] lists the replica placement algorithm. The
algorithm takes into account the location of the data, the failure
groups and the Fog topology, and the required replication
factor (line 1). It searches for the closest Fog node to the data
in the Fog topology (line 2) to place the first replica (line 3).
The further replicas are placed on the closest nodes of the first
replica that are not in the same failure group (lines 4-7). When
all replicas are placed, the mapping of replicas to Fog nodes

is enforced on the data store (line 8). The distance between
Fog nodes can be determined via network coordinates [10].

IV. EVALUATIONS

We perform micro benchmarks that indicate how latency
between replicas and different consistency levels influence the
read and write latency in a distributed data store. We hasten to
add that these are preliminary results simply to illustrate the
concept of FogStore and the impact of its design goals.

A. Evaluation Setup

We deploy the MaxiNet network emulator [22] on a 64
vCPU virtual machine with 128 GB of RAM and Ubuntu
16.04.2 LTS, using the OpenStack platform. The underlying
hardware is a Supermicro X8OBN server with 8 x 10 Core
Xeon E7 8870@2.2GHz CPUs and 1 TB RAM.

In general, the Fog nodes at a given level of the network
hierarchy are assumed to form a peer-to-peer network with
sufficient redundancy in connectivity to ward off link failures,
node isolation, and network partitioning. However, for the
purposes of carrying out controlled experiments, the Fog
Computing environment we deploy for our experimental study
consists of 6 Fog nodes in a star topology with a switch
in the middle. This topology reflects 6 different Fog nodes
deployed at different locations at the network edge, which
are interconnected via a backbone network represented by the
central switch. We decided to use this simplification of real
network topologies, because it allows for a straight-forward
parameterization to simulate different physical distances be-
tween Fog nodes. The first 5 Fog nodes host instances of
Apache Cassandra 3.10; the 6th Fog node hosts a Yahoo
Cloud Serving Benchmark (YCSB) [9] adapter, serving as the
“client” that poses queries on the DDS. We use the YCSB-
D (“read latest”) core workload that fits well with the traffic
scenario from Section All evaluation runs employ a
replication factor of 5, i.e., each data set is replicated on each
Cassandra node.

In the evaluations, we use 3 different network latency
settings, reflecting different placement qualities. In the low
network latency setting, the latency between the switch and
Cassandra nodes is 4, 5, 6, 7 and 8 ms. In the medium network
latency setting, the latency between the switch and Cassandra
nodes is 8, 10, 12, 14 and 16 ms. In the high network latency
setting, the latency between the switch and Cassandra nodes
is 12, 15, 18, 21 and 24 ms. The latency between YCSB node
and switch is 1 ms in all settings.

In each of the network settings, we run the YCSB-D
workload with different consistency levels for read and write
consistency. (1) Consistency level ONE: read/write from one
replica. (2) TWO: read/write from two replicas. (3) QUORUM:
read/write from a majority (i.e., three) of replicas. (4) ALL:
read/write from all five replicas.

B. Results and Discussion

The results of the benchmarks are depicted in Figure 4| The
stacked bars represent the percentiles of latency measured per



T L — T T T T T T
MIN - 50th D 95th

25th . 75th = 99th-P.
g 200
c
> 150
3
c
2 100
S
50
%Nq?\zx\ Q~’\'<z:®<&~g\ Q‘\«@QX\ %NQ'QQX\
R: ONE R: TWO R: QUORUM R: ALL

N s RS RS o R

W: ONE W:TWO  W:QUORUM W: ALL

Fig. 4. Read and Write latency on Cassandra for different consistency levels at Low, Medium and High network latency.

operation: minimal latency, 25th, 50th, 75th, 95th and 99th
percentile. We divided the latency measurements into read
latency and write latency. When measuring read latency, the
consistency level for writes was fixed to ONE; when measuring
write latency, the consistency level for reads was fixed to ONE.

There are two main results. First, the biggest difference
in latency is between consistency level ONE and any other
level. The latency difference between consistency level ONE
and TWO is much higher than the difference between TWO
and QUORUM or ALL. Further, consistency level ONE does not
suffer from high latency penalties when the latency between
Fog nodes is higher. This is because consistency level ONE
does not need coordination between multiple replica nodes,
hence, avoiding additional round trips in the network. The
coordinator that receives a query can directly execute it locally
and return the result to the client.

Second, we see that already small changes in network la-
tency have a high impact on the latencies in higher consistency
levels. This is because of the required coordination between
replicas, which implies additional network round trips.

From the preliminary studies, we can make some important
observations. First, the most beneficial consistency decisions in
context-sensitive differential consistency are between consis-
tency level ONE and any other high consistency level. Second,
if high consistency levels must be enforced, it is particularly
important to place the replicas close to each other.

This fits well to the design goals of FogStore. First, the
Fog-aware replica placement algorithm treats network latency
as a first-class citizen, so that replicas will be placed as
close as possible to each other and to the clients. Second,
the context-sensitive differential consistency allows for fast
responses when clients can deal with reduced consistency in
their current context.

V. RELATED WORK

Highly specialized state management protocols can allow
for high throughput and low latency, e.g., in VNFs [18],
[4]]. However, a customized state management for each single
application is error-prone and hinders state sharing between
multiple different applications. Instead, it is often more prac-
ticable to use existing general-purpose distributed data stores.
This proposition is in line with a recent industry experience
paper from Davie et al. [11]], where the authors achieve infer-
operability between different SDN controllers by employing
an external data base.

DDSs operate in a trade-off between availability, consis-
tency, latency, and partitioning tolerance. The CAP theorem
[3] states that in times of network partitions, the data store
can choose between data consistency and availability, while
the PACELC theorem [1] extends CAP, pointing out a trade-
off between consistency and latency in times when the network
is not partitioned. Regarding transactional consistency, the
available data stores either provide strict ACID properties, or
BASE (Basically Available, Soft state, Eventually consistent)
[19] properties.

Chun et al. [7] address the question of how many replicas
of a data record are needed to survive a given failure rate
of disks by modeling disk failure and data replication as a
birth-death process. The replication degree is an important
question to be considered in FogStore as well; however, it
is questionable whether failures in a Fog architecture can be
modeled in the same way as disk failures in a data center.
Doceur and Wattenhofer [12] place a given number of replicas
on nodes such that the data availability is maximized; however,
they do not take into account communication latency, which is
a crucial factor in Fog Computing. The latency-aware replica
placement algorithm proposed by Szymaniak et al. [21] is
based on the assumption that placing more replicas in a
heavily-loaded network region improves the access latency
for a large number of clients. This does not apply to Fog
Computing scenarios where the locality of clients and data
plays a prominent role.

There are approaches to adapt the consistency level of DDSs
based on different performance metrics. Harmony [3] is a
system that adapts consistency levels based on the probability
of stale reads. The Bismar system [6] employs monetary
cost as a performance metric for adapting consistency levels.
Aslan and Matrawy [2]] propose a framework that implements
tunable consistency based on arbitrary performance goals of
the application. Different from FogStore, all of these systems
do not take into account the context of data and clients and
only provide a global consistency setting that treats all client
requests as a black box.

VI. CONCLUSION

Distributed data stores are an important building block for
stateful applications and VNFs. Pushing the data stores to the
Fog Computing continuum requires to devise new placement
strategies. Further, the context-awareness of Fog Computing
scenarios can be utilized in adapting the consistency level



to the data and client context. To this end, we propose the
FogStore system that provides a Fog-aware replica placement
algorithm and context-sensitive differential consistency.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

REFERENCES

Daniel Abadi. Consistency tradeoffs in modern distributed database
system design: Cap is only part of the story. Computer, 45(2):37-42,
Feb 2012.

Mohamed Aslan and Ashraf Matrawy. Adaptive consistency for dis-
tributed sdn controllers. In 2016 17th International Telecommunications
Network Strategy and Planning Symposium (Networks), pages 150-157,
Sept 2016.

Eric A Brewer. Towards robust distributed systems. In PODC, volume 7,
2000.

Eleonora Cau, Marius Corici, Paolo Bellavista, Luca Foschini, Giuseppe
Carella, Andy Edmonds, and Thomas Michael Bohnert. Efficient
exploitation of mobile edge computing for virtualized 5g in epc archi-
tectures. In 2016 4th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), pages 100-109,
March 2016.

Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Maria S
Pérez. Harmony: Towards automated self-adaptive consistency in cloud
storage. In 2012 IEEE International Conference on Cluster Computing,
pages 293-301, Sept 2012.

Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Maria S
Pérez. Consistency in the cloud: When money does matter! In 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, pages 352-359, May 2013.

Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim
‘Weatherspoon, M. Frans Kaashoek, John Kubiatowicz, and Robert
Morris. Efficient replica maintenance for distributed storage systems.
In Proceedings of the 3rd Conference on Networked Systems Design &
Implementation - Volume 3, NSDI'06, pages 44, Berkeley, CA, USA,
2006. USENIX Association.

OpenFog Consortium. OpenFog Reference Architecture. https://www.
openfogconsortium.org/ra/, 2017. [Online; accessed 05-Sep-2017].
Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143-154, New York, NY, USA, 2010. ACM.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi:
A decentralized network coordinate system. In Proceedings of the 2004
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’04, pages 15-26, New
York, NY, USA, 2004. ACM.

Bruce Davie, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado,
Natasha Gude, Amar Padmanabhan, Tim Petty, Kenneth Duda, and
Anupam Chanda. A database approach to sdn control plane design.
SIGCOMM Comput. Commun. Rev., 47(1):15-26, January 2017.

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

John R Douceur and Roger P Wattenhofer. Competitive hill-climbing
strategies for replica placement in a distributed file system. In Inter-
national Symposium on Distributed Computing, pages 48—62. Springer,
Berlin, Heidelberg, 2001.

Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ot-
tenwilder, and Boris Koldehofe. Mobile fog: A programming model
for large-scale applications on the internet of things. In Proceedings
of the second ACM SIGCOMM workshop on Mobile cloud computing,
pages 15-20. ACM, 2013.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling,
Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki
Inoue, Takayuki Hama, and Scott Shenker. Onix: A distributed control
platform for large-scale production networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 351-364, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35-40, April
2010.

Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and
Anja Feldmann. Logically centralized?: State distribution trade-offs in
software defined networks. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, HotSDN 12, pages 1-6, New
York, NY, USA, 2012. ACM.

Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ra-
machandran. The fog makes sense: Enabling social sensing services with
limited internet connectivity. In Proceedings of the 2Nd International
Workshop on Social Sensing, SocialSens’17, pages 61-66, New York,
NY, USA, 2017. ACM.

Manuel Peuster and Holger Karl. E-state: Distributed state manage-
ment in elastic network function deployments. In 2016 IEEE NetSoft
Conference and Workshops (NetSoft), pages 6—10, June 2016.

Dan Pritchett. Base: An acid alternative. Queue, 6(3):48-55, May 2008.
Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachan-
dran, and Beate Ottenwilder. Incremental deployment and migration
of geo-distributed situation awareness applications in the fog. In
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, DEBS ’16, pages 258-269, New York, NY,
USA, 2016. ACM.

Michal Szymaniak, Guillaume Pierre, and Maarten Van Steen. Latency-
driven replica placement. IPSJ Digital Courier, 2:561-572, 2006.
Philip Wette, Martin Drixler, Arne Schwabe, Felix Wallaschek, Moham-
mad Hassan Zahraee, and Holger Karl. Maxinet: Distributed emulation
of software-defined networks. In 2014 IFIP Networking Conference,
pages 1-9, June 2014.


https://www.openfogconsortium.org/ra/
https://www.openfogconsortium.org/ra/

	I Introduction
	II System Model
	II-A Fog Computing Model
	II-B Application and Data Store Model

	III FogStore
	III-A Design Goals
	III-A1 Fog-aware Replica Placement
	III-A2 Context-Sensitive Differential Consistency

	III-B Architecture and Algorithms
	III-B1 Query API
	III-B2 Consistency API
	III-B3 Consistency Mapper


	IV Evaluations
	IV-A Evaluation Setup
	IV-B Results and Discussion

	V Related Work
	VI Conclusion
	References

