Online Optimization for Low-Latency
Computational Caching in Fog Networks

Gilsoo Leef, Walid Saadf, and Mehdi Bennis*
T Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA, Emails: {gilsoolee, walids } @vt.edu.
 Centre for Wireless Communications, University of Oulu, Finland, Email: bennis @ee.oulu.fi.

Abstract—Enabling effective computation for emerging ap-
plications such as augmented reality or virtual reality via fog
computing requires processing data with low latency. In this
paper, a novel computational caching framework is proposed
to minimize fog latency by storing and reusing intermediate
computation results (IRs). Using this proposed paradigm, a fog
node can store IRs from previous computations and can also
download IRs from neighboring nodes at the expense of addi-
tional transmission latency. However, due to the unpredictable
arrival of the future computational operations and the limited
memory size of the fog node, it is challenging to properly
maintain the set of stored IRs. Thus, under uncertainty of
future computation, the goal of the proposed framework is
to minimize the sum of the transmission and computational
latency by selecting the IRs to be downloaded and stored. To
solve the problem, an online computational caching algorithm
is developed to enable the fog node to schedule, download,
and manage IRs compute arriving operations. Competitive
analysis is used to derive the upper bound of the competitive
ratio for the online algorithm. Simulation results show that
the total latency can be reduced up to 26.8% by leveraging
the computational caching method when compared to the case
without computational caching.

I. INTRODUCTION

Emerging 5G applications such as augmented reality (AR)
and virtual reality (VR) require ultra low latency transmission
and computation [1]. The latency requirements of these
applications cannot be accomplished by using traditional
cloud computing due to the round-trip delay needed to reach
the cloud [2], [3]. Thus, fog computing is proposed as an
extension of cloud computing in which end-user devices,
called fog nodes, perform key functions such as storing and
computing data at the network edge [4]. Leveraging the
physical proximity of fog nodes and pooling their resources
allows for low-latency computation.

In particular, exploiting the caching capabilities of fog
nodes is deemed as an essential step to improve system
throughput and reduce the latency [5]-[10]. For instance,
a case study that uses real measurement data in [5] shows
that a fog caching architecture in vehicular networks can
reduce the distance traveled by the data in the network. To
show the impact of both caching and fronthaul on latency,
the authors in [6] provide an information-theoretic latency
analysis in fog radio access network with edge caching and
cloud processing. Meanwhile, the work in [7] introduces a
coding technique to reduce the latency of computation and
bandwidth consumption, when data is redundantly stored
in the network. The authors in [8] study the problem of

This research was supported by the U.S. National Science Foundation
under Grants CNS-1460333 and IIS-1633363, by the Office of Naval
Research (ONR) under Grant N0O0014-15-1-2709, and by NOKIA donation
on fog (FOGGY project).

caching for optimizing the users’ quality of experience using
unmanned aerial vehicles [11]. In [9], the authors study
a distributed cluster formation of fog nodes with caching
capability while maximizing a system throughput. Moreover,
the authors in [10] investigate the problem of maximizing
the minimum delivery rate of requested content in a cache-
enabled fog network while considering the fronthaul capacity
and power constraint.

In all of these existing works on caching for fog computing
[6]-[10], it is generally assumed that the operation of the
application running on the fog node has one corresponding
input data given by either a single file or a set of files.
Therefore, the goal is to gather all parts of the required
input data. Such a caching technique can be viewed as
data caching. However, for a given computational operation,
multiple files can possibly be used for processing. Among the
many possible input files, the operation can select a specific
file as input. When each input file represents the intermediate
computational result (IR) of an operation, storing a partial set
of the possible input files can be seen as caching IRs, or more
formally computational caching'. We therefore propose the
paradigm of computational caching as a technique to reduce
the computational latency at a fog node. Moreover, existing
works such as [6] and [8] assume that information on the
requested operation is completely known. However, in prac-
tice, a user can randomly use any application and arbitrarily
request an operation in the application. Thus, the requested
operation changes instantaneously and, hence, the sequential
arrival of operations can be uncertain. Consequently, unlike
the existing literature [6]-[10] that considers data caching,
under prior knowledge on user and application behavior, our
goal is to design an online approach to enable an online
computational caching framework, under uncertainty, while
minimizing the transmission and computational latency.

The main contribution of this paper is a novel framework
for online computational caching in a fog network. This
framework allows a given fog node to download the neces-
sary IR from a neighboring fog node and use the downloaded
or stored IR for computations by selecting the most suitable
input in the presence of uncertainty on the arrival order of
the user’s operation. We formulate an online computational
caching problem whose objective is to minimize the sum
of the transmission and computational latency. To solve this
problem, we propose an online computational caching algo-
rithm. Then, we derive a competitive ratio of the formulated

Note that computational caching here is different from the original notion
of computational caching used in [12] in which computer networks cache the
act of computation, i.e., they store the trajectories that are encountered during
the execution of a software’s instructions, and apply it in new contexts.

online problem. In addition, we propose a bandwidth allo-
cation scheme to achieve a desired target competitive ratio.
Simulation results show that the proposed online algorithm
minimizes the latency while achieving a performance that
is near-optimal compared to an offline solution that has full
information on all input arrivals.

II. SYSTEM MODEL

Consider a fog network that consists of a fog node ¢ and a
set J of J neighboring fog nodes as shown in Fig. 1. Fog
node ¢ is running a set K of K applications that require
high computational resources. For instance, when fog node
1 is running an AR or VR application supporting six degree
of freedom videos, it must process a huge volume of input
data that includes video clips at different angles. While using
application k € IC, the user of fog node ¢ may want to change
the angle of view or watch video scenes related to specific
persons. We assume that each application k& has L = |L]
different commands. The user’s specific input command is
indexed by | € £. When command [is executed by using
application k, the computational operation is denoted by ay, ;.

To compute operation vy, ; at time ¢, the required input of
the operation will be Blit()t),l(" When ay,; is computed, this
yields an IR 7y ;. oy can correspond to the operation that
is used to find a relevant image or video data about a certain
location by using application k. Also, there will be another
operation oy, -, " > 1, that is used to find the image or video
about a more specific location. These two operations «y,; and
ay, v yield outputs 7y ; and 7, -, respectively. Then, 7 ; can
be seen as the result including the broader information, and
Ty, can be the result including the information about the
more specific requirement. Therefore, «;, ;7 can be computed
by having IR r;; as an input. In other words, if r;; is
stored in fog node ¢, then this IR can be reused for other
operation g/, I > . We also define ¢ as the raw data
that can be used to compute operation cy, ;, for notational
simplicity, even though the raw data is not an IR. In the
VR example, 7y,0 can correspond to the raw video data that
includes all degree angles of videos.

Fog node ¢ can store (cache) a different set of IRs in
its memory (e.g., RAM, flash memory, or others). The set
of cached IRs of fog node ¢ at time ¢ is denoted by
Rgt). We assume that 7,9 > 131 > ... > 1 since the
operation indexed by a larger [includes information about
more specific requirements. If fog node ¢ can store up to
Mhax bits in its memory, its memory constraint will then be
ereng Til < Mmax.

Fog nodes compute their operations and cache the associ-
ated IRs. If fog node 7 must use, at time ¢, a certain IR that
is not cached in RZ(-t*l), it can download it over a wireless
link from a neighboring fog node j € J that has the IR.
The data rate needed to download this information using a
wireless link is R;? = Blog, (1 + g’éii‘z’j) where g;; is the
wireless channel gain between fog nodes i and j, Py ; is
the transmission power of fog node j, Ny is the noise power
spectral density, and B is the bandwidth. The downloaded
IR at time ¢ is denoted by u,(f()t)7l(t). Thus, if uff()t”(t) is

Stored IR
application 1,
operation 3)

A4
- Fog node 7
> O, 2|

Stored IR
(application 2, _ ¥
operation 1)

-

Iz arz I3

equence of operation

Fig. 1: Example of the computing system of a fog node 7 that

consists of six neighboring fog nodes. In this example, the user

request is operation o,3, so IR 71,1 or 71,2 can be used as input.

Since the memory of fog node ¢ is empty at the beginning, 712

can be downloaded from neighboring fog node j. After finishing

the computation, the output IR 77 3 is stored in the memory.
Table I: Summary of key notations

gl Computational operation of command [in application k.
Tkl IR obtained by computing o, ;1.

ﬁlf:t()t)‘l(t) Input is IR 7y (¢),1(+) when computing operation at time ¢.
ul0) 1(r) | Downloaded IR at time ¢ is IR T4(1) 1(1)-

RE” Set of stored IRs in the memory.

transmitted from fog node j to fog node i, the transmission

latency will be:
uz(ct()t) 1(t)
)= —@ (1
R;;

We assume that the computational latency is quadratically
increasing with the size of input ﬁkt(00" This assumption
can capture the fact that the time-complexity of an application
is O(n?) where n is the data size?. Also, the latency can be
scaled by the computational speed [13]. Thus, when input
Bét()t))l(£ is used, the computational latency at fog node 7 is
given by

*)
T (ugyy acey

(t) _ S () 2
Ci(Brgy i) = *< k(tu(t)) ; 2

c
where c¢ is the computation speed of the fog node, e.g.,
value proportional to CPU frequency, and & = 1 is the
unit computational price per bit. The computational latency
can decrease as the data size of B,it()t) 1) decreases and c¢
increases. Therefore, to compute operz{tion a1, instead of
using other inputs such that IB;(ct()t),z(t):Tk,l” I'<l —1, reusing
IR 75,;—1 can reduce the computational latency. Clearly,
when u,it()t))l(t) is downloaded from neighboring fog node j

and B,(f()t% 1) is used to compute the given operation oy, by
fog node i, the total latency can be defined by
fi(“ff()t),z(t)v 51(:(1),1(@) = ﬂi(u;t()t),z(t)) + Ci(ﬂl(ct()t),l(t))')
Our goal is to analyze how this system can exploit the IRs
stored in different fog nodes so as to minimize its latency.
ITI. PROBLEM FORMULATION
Our goal is to minimize the end-to-end latency by enabling

a fog node to properly choose the IR that must be used for
the computation of its operations. Since IRs stored in fog

2For instance, in signal processing or image processing, the discrete
Fourier transform can have quadratic time complexity O(n?).

node ¢ can be reused to compute future operations, storing
IRs that will be used in the near future is beneficial to
reduce the latency. However, in practice, the inputs of the
operations can be dynamically determined by the user, and,
thus, they cannot be anticipated. As a result, fog node ¢
is generally unable to know a priori what the future inputs
will be and, hence, optimizing the total latency becomes a
challenging problem. Since the memory size of fog node i is
limited, not all IRs can be stored. This limited memory has to
be properly managed by erasing and storing IRs depending
on the inputs. While considering unknown information on
future input, downloading a new IR and managing the stored
IRs at each time is essential to reduce the latency. Under
such uncertainty, determining the IR needed to compute the
current operation must also account for a prospective arrival
of future operations. In consequence, we introduce a novel
online optimization scheme that makes a sequential decision
for the online arrival of operations to minimize the latency
for computational caching.

We observe the system during a finite period of time
teT ={1,..,T}. At time t € T, one operation cv) ()
where k(t) € K and I(t) € L, YVt € T, arrives to fog
node i. Then, the sequence of operations that have arrived
during the observation period will be & £ (0,)L, =
(ak(l) 1)« s QR(8),1(t)r -+ = » OR(T), l(T)) For a sequence o,
the latency mmlmlzatlon problem becomes:

min Z 1 (0 10 By) @

s.t. Z Tt < Miax, ¥t € T, (5)
Tk,leREt)

Rz('t) c Rgt_n U {ugct()t),l(t)}’Vt €T, ©6)

B i =rrw ERYLL <11, VEET, (7)

where the time-varying vector of downloaded IRs is
u = [u(l)) aulh)] and the time-
k(1),0(1)> " 72 Th(8),1(¢)" " TR(T),U(T)
varying vector of the IRs used for computation is 3 =
it T
[l(c()l)l (1) ..,5k(t YOIEE Bé(%)l } The goal of (4) is to
minimize the sum of transmission and computational latency
during a finite time period. (5) constrains the sum of the
stored IRs at time ¢ within the limited memory size. (6)
shows that u,it()t) I is the downloaded IR from the network.
(7) states that any IR 7y, I" < [(t), can become input
Bk(t) 1) that is used to compute operation) i(¢) at time

t. IR 74),r must also be stored in the memory R(t)

In this problem, o; = ag(),i(+) is revealed to fog node ¢
at time ¢, and, then, fog node ¢ must determine ﬂ,(:&),l(t) =
T(t),r- To make a decision at time ¢, the previously stored

IRs in Rgtfl) can be used. Also, fog node ¢ can download
ug()t),l(t) from neighboring node 5 € J. For effective com-
putational caching, node ¢ can form a network in which all
IRs can be downloaded from neighbors. To form a network,
for example, fog nodes can exchange a beacon signal that
contains the information about the stored IR. Then, fog node
¢ can select the set of neighboring nodes such that each

neighbor has a different IR. By doing so, the network of fog

Algorithm 1 Computational Caching Algorithm

1 : while time ¢t < T

2 Operation au(y),i(¢) arrives.

3 if new application arrives,

4 mark all stored IRs as removable end if
5: if fog node ¢ has any IR that can be used,
6
7
8

Compute by using the best available stored IR.
elseif fog node ¢ does not have an available IR,
Download IR 7y ;) from fog node j* where
minje 7 ec Tij(rk(t”) S.L Tk(e),l € Rl < l(t).

9: Store the downloaded IR 7y ;- € Rgt .
10: Compute by using 7y ;-
11: end if

12: Store output ry(y) () in RE“.
13: end while

node ¢ can be formed. Hereinafter, we assume that network
formation is given using online approaches such as [14].

In this online computational caching problem, fog node
1 can reuse one of the stored IRs or download a new
IR. While reusing a stored IR can reduce the transmission
latency, the computational latency can increase unless IR
Tr(t),i(t)—1 Was already stored. On the other hand, if fog
node 7 decides to download IR 74 ;(1)—1, transmission
latency will be incurred, however, the computational latency
will be minimized since 7x))—1 is the IR having the
smallest size among those can be used to compute input
operation ;) i(¢)- Therefore, there is a tradeoff between
computational latency and transmission latency, and, thus,
choosing the appropriate IRs to compute the sequence under
uncertainty, is not trivial. Under such incomplete information,
finding the optimal solution of (4) in a conventional offline
manner is clearly not feasible and, therefore, an online
solution is needed.

IV. ONLINE COMPUTATIONAL CACHING

We propose an online computational caching algorithm
that schedules the IRs to minimize the total latency given
by (3). To reduce the computational latency, the stored IRs
are reused. However, since not all possible IRs can be stored
within a limited memory size, the fog node may download
IRs from neighboring nodes. In such a case, if the wireless
data rate is low, the transmission latency can become a
bottleneck in minimizing the total latency. Thus, to prevent a
large latency over the wireless links, we introduce an online
algorithm focusing on minimizing the transmission latency.

The online algorithm must also manage the limited size
of memory by evicting outdated IRs. For storing IRs, if the
memory does not have sufficient free space, then existing
IRs must be removed, to include the new data. Therefore,
the current decision to remove a certain IR can also affect
the set of the stored IRs in the future. Then, to manage the
stored IRs, we define two events in which all stored IRs are
marked so that the marked items can be evicted from the
memory.

The proposed online computational caching algorithm
shown in Algorithm 1 is a transmission-centric algorithm
that minimizes the use of wireless resources. Thus, if any

IR, ie., Ty, < I(t), is stored in Rgt), it is used to
compute oy, (y),(r) Without downloading other IRs. However,
if fog node ¢ does not have an IR to compute oy (1)
it downloads IR 74~ from neighboring node j* so as
to minimize the transmission latency T;(ry(+),;) such that

I < I(t). The downloaded IR is stored in ’RZ(-t) and used to
compute the operation. Then, the output of this operation
Tk(¢),i(¢) 1S stored in the memory.

In Algorithm 1, after computing the incoming operation
at each time or after downloading the IR, the output IR is
stored for possible future computation. To store the output
IR, fog node ¢ must have free memory space. If Rgt) does
not have enough space, some of the previously stored IRs
must be erased. To this end, we propose a modified marking
algorithm. In the so-called paging problem, a marking al-
gorithm is typically developed to evict a marked page from
the memory when eviction is necessary [15]. To exploit the
marking-and-eviction structure from marking algorithms, we
define two events to mark all stored IRs. The motivation
behind designing two events is to determine the stored IRs
that are unlikely to be used in the near future. The first
event is triggered when the application type is changed. For
instance, if the application at time ¢ — 1 is different from the
current application at ¢, all IRs in the memory are marked as
erasable. In the second event, all IRs are marked if the sum
of all unmarked IRs in the memory reaches or exceeds the
maximum memory capacity.

Once IRs are marked by the two events, the eviction
scheme will follow a least-recently-used (LRU) algorithm
[15]. LRU replaces an old page that is least recently used
if one empty slot for a new page is required. We propose
an IR eviction scheme (IRES) that gives priority to recently
used IRs. Similar to LRU, IRES removes the least-recently-
used IR from Rgt), but it only selects the IR that is marked
by the two proposed events. IRES is different from LRU in
that LRU replaces one page to store a page, but IRES will
repeatedly remove the marked IRs until enough free space
for a new IR is available.

Next, we analyze the online computational caching prob-
lem by using competitive analysis [15]. Competitive analysis
measures the performance of an online algorithm denoted
by ALG(o) by comparing it to the performance of an
ideal, offline optimal algorithm represented by OPT(o).
Then, a competitive ratio can be defined by I'(o) =
ALG(0)/OPT (o). While an online algorithm has infor-
mation only on the current and past input sequence of
operations, the offline optimal algorithm is ideal and knows
the entire input sequence o. For analysis, we divide the whole
input sequence o into multiple partitioned sequences using
two marking events. While the online algorithm processes
input sequence o, if one of two marking events is triggered
at time ¢’ and time t”, respectively, the partitioned sequence
6 will be defined as (oy,...,04/_1). By doing so, for an
online algorithm, any input sequence can be divided into
partitioned sequences. For notational simplicity, we omit the
index for the partitioned sequences. Then, we respectively
measure the minimum latency of the offline optimal al-

gorithm and the maximum latency of an online algorithm
during processing &. If the input operations are given by
&, the minimum latency achieved by the optimal offline
algorithm is denoted by OPT (). To derive a lower bound
for OPT (&), we find the lower bound of the transmission
and computational latencies, respectively. The lower bound
of the transmission latency can be zero if fog node ¢ does
not download any IRs. The minimum computational latency
is achieved by using the smallest size of IR for each input
operation in &. Therefore, OPT'(&) is at least larger than the
minimal comput/gtional latency to compute operations &, SO
OPT(6) > Ziz;l Ci(Tk),1()—1)- We denote the latency of
the online algorithm by ALG(¢&). To find the upper bound of
ALG(&), we consider the worst-case scenario in which node
1 does not have any IR. As an example of this worst case, if
the requests of applications arrive in a round-robin fashion,
any cached IR will be removed and can no longer be used.

Here, ALG (&) becomes at most the sum of the transmission
and computatio/rllal latency for all operations in &. Thus,
ALG(6) < v Tij(ruwyawy—1) + Cilrrg i —1)-

The competitive ratio with respect to o is upper bounded
by the largest competitive ratio of a partitioned sequence
denoted by &. Thus, the competitive ratio can be found
as follows:

Do) < max {T(5)}

{ (e D)0y i) 1) } ®

o Cilreayac—1)
where p; is defined by T (7r(t),1)=1) = PeCis(Tr(),1(6)—1)-

< max
o

A. Bandwidth allocation

From (8), we propose a wireless bandwidth allocation
scheme that yields a constant competitive ratio for problem
(4). Suppose that a target performance is predetermined by
p. Then, when fog node j transmits an IR to fog node i, the
bandwidth used by neighboring node j is the solution of:

95i P ¢
Blog, (1 " BNy) P& Tht)ut)—1 ®

If the maximum bandwidth that fog nodes can access is
Bihax, then 0 < B < By,.«. Since the left-hand side of (9)
corresponds to the data rate R%), the data rate is scaled by
p in (9). Now, we find the competitive ratio by using p.
Proposition 1. For a given p, if there exists B satisfying (9),
0< B < Bpax , then the competitive ratio becomes p+1.

Proof. From (8), by replacing p;, Vi € 7T, with p, the
competitive ratio of all partitions becomes p + 1, and it
provides the upper bound of the competitive ratio with respect
to o. O

This show how p can be a design parameter used to
adjust the competitive ratio. For any given p satisfying
Proposition 1, the competitive ratio is fixed as p + 1. Also,
from (9), the bandwidth allocation scheme results in a higher
data rate if computational speed c increases and the size of
stored IR 7y(4),(r)—1 decreases. The competitive ratio (8)
is derived from (4) without any assumption on the online
algorithms. Hence, this competitive ratio can be applied to
any online algorithm for our model.

Empirical CDF

16 T T T T T 25 T T 1
—&— No computational caching
~—&— Proposed algorithm

—&— No computational caching|
—&— Proposed algorithm

Optimal

N
S

w

Total latency [sec]
Total latency [sec]
o

Optimal 08l

\ 0.2

5
0.8 0.9 1 1.1 1.2 1.3 1.4 14 3 5
Maximum memory Mmax [bits] 108

Fig. 2: Total latency for different memory

sizes of fog node i. widths Bmax.

Table II: Simulation parameters.

Figure c [bps] Bmax Mmax
Fig. 2 | 30 x 10"® | 3 MHz | Variable
Fig. 3 | 30 x 10 | Variable | 90 Mbits
Fig. 4 | 5x 10 | 10 MHz | 90 Mbits
Table III: Computational latency in the case of Fig. 2.
No comp. caching | Proposed algorithm | Optimal
8.33 sec 5.38 sec 5.19 sec

V. SIMULATION RESULTS

For our simulations, we consider that a fog node is con-
nected to eight neighboring fog nodes uniformly distributed
within 50 m. As in [14], we set Py ; =20 dBm and the
power spectral density of the noise is -174 dBm/Hz. Also, the
channel gain is g;;=v; dj_i"’2 where d;; is the distance between
fog nodes 7 and j, v; = 1073, and 5 = 4. Each neighboring
fog node stores a different IR. Two applications are used by
the user with equal probability while the arrival of four opera-
tions at each time follows the Zipf distribution [9]. The size of
IRs is given by [Tk,07 Tk,1,Tk,25 Tk73]2[50, 30, 20, 10] Mbits,
Vke K. We set T=10, and all statistical results are averaged
over a large number of simulation runs. For comparison,
an exhaustive search with complete knowledge about the
inputs is used to find the optimal latency when IRES is used
for managing the memory policy. Other parameters are shown
in Table II.

In Fig. 2, we show the total latency defined in (4) for
different sizes of the fog node ’s memory with B = Bi,x.
Since the computational latency does not change significantly
along with M., the value averaged over different M.«
for each case is presented in Table III. From this figure, we
can first see that the proposed computational caching algo-
rithm decreases the latency. Compared to the case without
computational caching, the proposed algorithm can reduce
the latency by up to 26.8% at Mpmax = 90 Mbits. In the
case of no computational caching, the latency is reduced at
M,.x = 100 Mbits, since all raw data can be stored in
the memory. However, in computational caching, the latency
decreases as the memory size increases since all possible
IRs cannot be stored in M,,x. Also, Fig. 2 shows that the
gap between the proposed online and offline solutions, in
terms of the total latency, is 3% at M,.x = 80 Mbits. From
Fig. 2, we can also see that the total latency decreases as
the memory size increases since the transmission latency can

Bandwidth [Hz] «10°

Fig. 3: Total latency for different band-

0
1 1.02 1.04 106 1.08 1.1 112 114 116

ALG(c)/OPT(c)

10

Fig. 4: The CDF of the empirical competi-
tive ratio for the proposed online algorithm.

be reduced by caching more IRs in a larger size memory.
For instance, the latency decreases by 13.6% if M,ax in-
creases from 80 Mbits to 130 Mbits.

Fig. 3 shows the total latency for different maximum
accessible bandwidth when B = B,,,.. We first see that
the latency decreases with the increasing bandwidth used to
transmit IRs. For example, the proposed algorithm reduces
the latency by 57.4% by increasing Bp,,x from 1.4 MHz
to 10 MHz. Moreover, Fig. 3 shows that the total latency
resulting from the proposed algorithm and the offline sce-
nario are very close. This demonstrates the effectiveness
of the proposed online algorithm. Also, in Fig. 3, the
gap between the proposed online and offline solutions, in
terms of total latency, can be reduced by up to 1.7% at
Bnax = 10 MHz. Moreover, compared to the case without
computational caching, the total latency can be reduced by
up to 32.1% at By,.x = 10 MHz.

Fig. 4 shows the empirical competitive ratio for prob-
lem (4) with p = 1. The bandwidth B for each neighboring
fog node is calculated from (9). We can first see that 32.7% of
iterations achieve a competitive ratio of 1 which means that
the result of the online algorithm coincides with the offline
optimal solution of (4). Fig. 4 also shows that the empirical
competitive ratio in the worst case is shown to be 1.157. From
Fig. 4, we can also see that the empirical competitive ratio is
less than the upper bound p+1 = 2 from Proposition 1. Thus,
the results from Fig. 4 show that Algorithm 1 can effectively
select the input IR, in an online manner, while minimizing
latency.

VI. CONCLUSION

In this paper, we have proposed a novel framework for
online computational caching in a fog network that allows
the optimization of the selection of the input IR under
uncertainty on the arrival order of the user’s operation. We
have formulated an online computational caching problem to
minimize the transmission latency and computational latency.
The proposed online algorithm schedules the IRs to compute
each of the sequentially arriving operations while managing
the stored IRs in the memory. We have also shown an upper
bound of the competitive ratio for the formulated online
problem. Simulation results have shown that the proposed
online computational caching algorithm is effective in reduc-
ing latency.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

M. S. EIBamby, M. Bennis, and W. Saad, “Proactive edge computing in
latency-constrained fog networks,” in Proc. 26th European Conference
on Networks and Communications (EuCnC), Oulu, Finland, May 2017,
pp. 1-6.

Cisco, “Fog computing and the Internet of Things: Extend the cloud
to where the things are,” Cisco white paper, 2015.

M. Chen, W. Saad, and C. Yin, “Resource management for wireless
virtual reality: Machine learning meets multi-attribute utility,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Singapore, Dec. 2017.

M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
854-864, Dec. 2016.

F. Malandrino, C. Chiasserini, and S. Kirkpatrick, “The price of fog:
A data-driven study on caching architectures in vehicular networks,”
in Proc. Ist Int. Workshop on Internet of Veh. and Veh. of Internet,
Paderborn, Germany, July 2016, pp. 37-42.

R. Tandon and O. Simeone, “Cloud-aided wireless networks with edge
caching: Fundamental latency trade-offs in fog radio access networks,”
in Proc. IEEE Int. Symp. on Inform. Theory, Barcelona, Spain, July
2016, pp. 2029-2033.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed
fog computing,” IEEE Commun. Mag., vol. 55, no. 4, pp. 34—40, April
2017.

M. Chen, M. Mozaftari, W. Saad, C. Yin, M. Debbah, and C. S. Hong,
“Caching in the sky: Proactive deployment of cache-enabled unmanned
aerial vehicles for optimized quality-of-experience,” IEEE J. Sel. Areas
in Commun., vol. 35, no. 5, pp. 1046-1061, May 2017.

Y. Sun, T. Dang, and J. Zhou, “User scheduling and cluster formation
in fog computing based radio access networks,” in Proc. IEEE Int.
Conference on Ubiquitous Wireless Broadband, Nanjing, China, Oct.
2016, pp. 1-4.

S.-H. Park, O. Simeone, and S. Shamai, “Joint cloud and edge
processing for latency minimization in fog radio access networks,”
in Proc. IEEE 17th Int. Workshop on Signal Process. Adv. in Wireless
Commun., Edinburgh, UK, July 2016, pp. 1-5.

M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial
vehicle with underlaid device-to-device communications: Performance
and tradeoffs,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp.
3949-3963, Jun. 2016.

A. Waterland, E. Angelino, E. D. Cubuk, E. Kaxiras, R. P. Adams,
J. Appavoo, and M. Seltzer, “Computational caches,” in Proc. 6th Int.
Systems and Storage Conference, Haifa, Israel, 2013, pp. 1-7.

Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and CPU time
allocation for mobile edge computing,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Washington DC, USA, Dec. 2016.

G. Lee, W. Saad, and M. Bennis, “An online secretary framework for
fog network formation with minimal latency,” in Proc. IEEE Int. Conf.
on Commun. (ICC), Paris, France, May 2017, pp. 1-6.

A. Borodin and R. El-Yaniv, Online computation and competitive
analysis. Cambridge University Press, 2005.

