
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementing an Edge-Fog-Cloud architecture

for stream data management

Lilian Hernandez
People in Motion Lab

 University of New Brunswick
Fredericton, NB, Canada

lhernand@unb.ca

Hung Cao
People in Motion Lab

 University of New Brunswick
Fredericton, NB, Canada

hcao3@unb.ca

Monica Wachowicz
People in Motion Lab

University of New Brunswick
Fredericton, NB, Canada

monicaw@unb.ca

Abstract— The Internet of Moving Things (IoMT) requires

support for a data life cycle process ranging from sorting, cleaning

and monitoring data streams to more complex tasks such as

querying, aggregation, and analytics. Current solutions for stream

data management in IoMT have been focused on partial aspects of

a data life cycle process, with special emphasis on sensor networks.

This paper aims to address this problem by developing streaming

data life cycle process that incorporates an edge/fog/cloud

architecture that is needed for handling heterogeneous, streaming

and geographically-dispersed IoMT devices. We propose a 3-tier

architecture to support an instant intra-layer communication that

establishes a stream data flow in real-time to respond to immediate

data life cycle tasks in the system. Communication and process are

thus the defining factors in the design of our stream data

management solution for IoMT. We describe and evaluate our

prototype implementation using real-time transit data feeds.

Preliminary results are showing the advantages of running data life

cycle tasks for reducing the volume of data streams that are

redundant and should not be transported to the cloud.

Keywords—stream data life cycle, edge computing, cloud

computing, fog computing, Internet of Moving Things

I. INTRODUCTION

One of the main concerns in the era of the Internet of
Moving Things (IoMT) is the risk of overflowing a system due
to billions of IoMT devices generating a huge volume of data
streams that need to be sent out to the cloud for processing and
analytic tasks. Recent studies [1–7] have demonstrated the
importance of combining edge and cloud computing in stream
data management to address the issues of speed of execution,
accuracy, bandwidth cost and privacy. In contrast, [2] points
out that fog computing should also be considered as an
extension (not a replacement) of cloud computing mainly
because fog computing can run processing and analytics that
clean and aggregate the data streams before sending them up to
the cloud. Some experiments of combining fog and cloud
computing in smart cities [8], smart factories [9], and dairy
farming [10] are showing the optimization of streaming
workflows and cost-minimization for stream big data
processing in geographically distributed datacenters.

This paper proposes a 3-tier architecture for combining
edge, fog and cloud computing that is needed to provide the
means for a data life cycle over transit data feeds that can

reinforce a data flow from things to the cloud, passing through
edge and fog nodes. To the best of our knowledge, an edge-
fog-cloud architecture has not yet been proposed in the
research literature. Moreover, very few is known on suitable
data life cycle approaches for IoMT [17].

Our research challenge is two-fold:

- how to handle the complexity of the data life cycle not
only because of the increasing data rates, but also
because of the need for adopting an efficient and
transparent exchange of data between edge nodes and
fog nodes that will allow numerous feedback loops and
re-running of workflow tasks;

- how to automate and improve workflow tasks
performed on IoMT data streams (e.g. control flow,
monitoring, and task sequence) in conjunction with
computational tasks on the same data streams (e.g.
capture, querying, pre-processing). Currently, data life
cycle approaches are based on sequences of tasks that
are programmed independently, making them
unsuitable for IoMT.

The main scientific contributions of our paper are:

- development of an end-to-end architecture by
combining edge, fog and cloud computing for IoMT
data-intense applications;

- development of a data life cycle approach to capture
the dynamicity of IoMT data, i.e. the fact that they are
produced incrementally, regenerated, modified or
temporarily unavailable.

Our objective is to provide a formal 3-tier architecture to
facilitate IoMT data flows based on an agnostic execution
model which enables data life cycle management.

The remaining of this paper is organized as follows.
Section 2 introduces the concept of streaming data life cycle
and propose a formal model that allows to expose an end-to-
end life cycle across heterogeuous architecture levels. Section
3 describes the 3-tier architecture. Its implementation and the
preliminary results of an experiment using transit data feeds

are described in Section 3. Section 4 concludes the paper by
sharing our future research work.

II. STREAMING DATA CYCLE MODEL

The approach we propose follows the inherit goal of data
life cycles which is to integrate the data flow from things, to
the edge nodes, to the fog nodes, and finally to the cloud using
an execution model that allows code execution of each
workflow task. On the one hand, the execution model allows
to describe a task sequence and data dependency such as
explicit/implicit control flow in real-time or running
continuous queries on IoT data streams. On the other hand,
once the data life cycle is known and formally defined in the
execution model, the workflow tasks are executed such as for
automation of tiered storage; processing at any tier of the
architecture; coordination between DSL links for IoMT data
flows; monitoring task completion and data production; and so
forth. Table I describes the main phases of our streaming data
cycle model.

TABLE I. THE PROPOSED IOMT DATA CYCLE MODEL

Phases Objectives

Data Flow DSL links

Execution Model

Task Sequence

&

Data Dependency

Control Flow Explicit/Implicit.

Monitoring

Task Completion

&

Data Dependency

The data streams enter an edge node after being acquired
by an IoMT device, or created from some other data already

present in the edge layer. They leave the edge layer when they

are moved to the fog layer. Between these two points in time,
the data progress through a series of different tasks of the
workflow, such as data storage, data leverage, data acquisition,
data control, etc. The tasks are not necessarily sequential since
data does not have to pass through all the tasks. The 3-tier
architecture is explained in the next section.

III. SYSTEM ARCHITECTURE

We propose an end-to-end architecture based on the main

characteristics of IoMT data streams as described by [16]:

- Each tuple in a stream arrives online.

- A system has no control over the order in which a

tuple arrives within a data stream or across data

streams.
- Data streams are potentially unbounded in size.

They consist of a sequence of out-of-order tuples
containing attributes such as:

T1 = (S1, x1, y1, t1)
where

S1: is a set of attributes containing information about each
IoMT device.

x1, y1, t1: is the geographical location of an IoMT device at the
timestamp t.

A. The 3-tier layer architecture

The overall architecture consists of the following layers:
edge layer, fog layer, and cloud layer (Figure 1). The edge
layer contains an edge node and it is in charge to acquire the
tuples coming from the IoMT devices. The fog layer is formed
by fog nodes and it is where the streaming data cycle model is
executed. Finally, the cloud layer is where the data center is
located. The communication among these three layers is
performed by two principal components: the message broker
and the distributed service links (DSL).

Fig. 1. Overview of our three-tier system architecture

The message broker decouples communication between
the edge nodes and the fog nodes for invoking services to
retrieve the data stream packages over a fixed time frequency,
for example, every 5 minutes, 1 hour or a day. Moreover, it
performs message aggregation, decomposing messages into
multiple messages and sending them from the fog layer to the
cloud. The message broker can also perform an instant intra-
layer communication that allows them to establish data flows
that can share data within the system. In this way the edge
nodes handle the transportation of heterogeneous, streaming
and geographically-dispersed IoMT data streams. In contrast,
the fog nodes are designed to support a real-time data life
cycle model.

B. The streaming data workflow

Six components are designed to support the workflow
tasks of our data life cycle model. The components are: the
system administrator, system monitor, data flow engine,
message broker, communication links, and the stream database
(Figure2). Based on these components, the system is enabled
to treat IoMT data as data flows to communicate, process and
transport data from end devices to the cloud.

Each task requires a specific data flow with unique
purposes that can be either performing data acquisition, data
processing, or data storage. One advantage of our proposed
data life cycle process is the decision of having placed a fog
node within a data stream management that can offer the
possibility of starting the data life cycle process at anytime,
instead of starting it only when the data streams have reached
the cloud.

Fig. 2 Overview of the main tasks performed by the system components

The processing task is designed for removing errors and
inconsistencies from the data streams stored in the stream
database. Guaranteeing data quality for continuous and high
volume of data streams is a nontrivial task, and performing
this task automatically is even more challenging because the
high data rate [11]. The Data Flow Engine is used to
implement the processing task for handling (1) missing tuples,
(2) duplicated tuples, (3) missing attribute values, (4)

redundant attributes, and (5) wrong attribute values. Running
the processing task at a fog node reduces the volume of data
streams that need to be transported to the cloud.

The acquisition task at a fog node runs in a similar way as
the MapReduce function in Hadoop. It sorts out the incoming
tuples according to any attribute value of a tuple or a
timestamp as soon as the tuples arrive at the fog node. It is
important to mention that in our system architecture, the
stream database is a fundamental to support the real-time data
life cycle, whereas MapReduce is used to support the batch
processing cycle in the cloud.

The cloud is an appropriate batch processing environment
for large scale of data streams. An example of this use case is
when it is required a strong resource to process a vast amount
of data streams. Then, the cloud successfully provides the
underlying infrastructure, platforms, and several services; such
as pools of server, distributed storages, and networking
resources, to distributed data processing among platforms. In
addition, cloud computing models are supported to accelerate
the potential of large-scale data processing functions that are
needed to lead fully satisfied big data stream processing tasks.
Therefore, the cloud computing environments are not limited
to only offer flexibility and efficiency for accessing data
streams; they also provide a high-performance computing
power to analyze, and efficiently process data streams under
cost-effective needs.

The real-time data life cycle takes place every time the
tuples are sent from the IoMT devices to the edge node, and
then they flow through the 3-tier architecture from the edge
node to the cloud passing by the fog node as an intermediate
node. The life cycle consists of six tasks defined as data
transportation, data processing, data acquisition, data storage,
data leverage, and data control. Figure 2 illustrates the relation
between each task of the data life cycle, and the respectively
system component within our system prototype.

The real-time data life cycle tasks and the way they work
together with the system components to accomplish common
functions can be described as follows: All tuples reach the
edge node from the IoMT devices via HTTP or TCP/IP
protocol. Every time a tuple arrives to the edge layer a set of
tuples is formed as a sequence. Once the tuples are within the
edge layer, they are sent (data transportation – message
broker) to the fog layer by the edge node and received (data
acquisition – DSL links) by the fog node. In order to process
the tuples and perform preliminary analytics (data processing
– data flow engine) the fog node controls the sets of tuples
(data control – system monitor and administrator) by retaining
(data storage – stream database) and retrieving (data leverage
– stream database) the set of tuples continuously. Finally, the
set of tuples that deserve to reach the cloud are retrieve (data
leverage – stream database) and sent (data transportation –
message broker) to the fog node to the cluster.

IV. SYSTEM IMPLEMENTATION AND RESULTS

For our experiment we have selected transit feed data from
the CODIAC transit network for Greater Moncton area (Figure
3). The network consists of 21 bus routes operating from
Monday to Saturday, some of which provide evening and

Sunday services. Every bus in the transit network has installed
a GPS receiver for collecting its location every 5 seconds. The
set of attributes in a tuple are listed in Table II.

TABLE II. TUPLE ATTRIBUTES

Attribute Description

1. vlr_id
The ID of the data point in the

vehicle location reports table.

2. route_id_vlr
The route ID in the vehicle

location reports table.

3. route_name The route name.

4. route_id_rta
The route ID in the route transit

authority table.

5. route_nickname The abbreviation of the route.

6. trip_id_br The trip ID in the bid route table.

7. transit_authority

_service_time_id

Transit authority service time ID.

8. trip_id_tta Transit authority trip ID.

9. trip_start Start time of the trip.

10. trip_finish Finish time of the trip.

11. vehicle_id_vab Vehicle ID.

12. vehicle_id_vlr
Vehicle ID in the vehicle locations

reports table.

13. vehicle_id_vlr_ta Descriptive name of the bus.

14. bdescription Bus description.

15. lat Latitude.

16. lng Longitude.

17. timestamp Timestamp of the data point.

In this experiment, the edge node known as Cisco IR829
Industrial Integrated Services Router is envisaged to be
installed in the future on the top of buses that form the tested
transit system. It has an Intel Atom Processor C2308 (1M
Cache, 1.25 GHz) Dual Core X86 64bit, 2GB DDR3 memory,
8MB SPI Bootflash, 8GB (4GB usable) eMMC bulk flash, and
multimode 3G and 4G LTE wireless WAN and IEEE
802.11a/b/g/n WLAN connections. Because of it is resistant to

shock, vibration, dust, humidity, and water spray, and a wide
temperature range (-40°C to +60°C and type-tested at +85°C
for 16 hours) [19], this type of router accomplishes the
requirements of our system prototype. Besides, this edge node
comes with two operating system: a Cisco IOS system that runs
a standard Cisco IOS package which handles all the routing,
switching, and networking; and a guest operating system IOx
running on a virtual machine.

Regarding the fog node, we suggest that in the future
implementation of our system prototype, one fog node will be
installed per bus terminal. The proposed fog node distribution
is shown on the map inset in Figure 3. Current commercial
systems for deploying data life cycle models using fog nodes
are presented in Table III. They are the Edge Fog Fabric (EFF)
Cisco platform [13], the Segment platform [14] offered by
Segment Company, the IBM Watson IoT platform for edge
analytics [15], and the Axon Predict platform produced by
Greenwave System [16]. We have selected the EFF Cisco
platform for our implementation because this platform supports
block-programming for fostering experimentation. By using
this programming style, we are able to control the effects of a
data life cycle model by observing the content of a data stream
(input) and the results (outputs) of any task. However, more
research is needed to evaluate other platforms in the future.

Figure 4 shows the dashboard of the EFF Cisco Platform
running over Ubuntu 16.4 OS at the fog layer. The Server (fog
node) specifications to fulfill are: to have free 4GB or more
per CPU, to have previously installed the following package of
libssl1.0.0 Version: 1.0.2g-1ubuntu4.6, and libicu55 Version:
55.1-7ubuntu0.1, and to obtain superuser (root) permissions or
sudo access to complete the installation of the Cisco Platform.

Our execution model consists of four programming blocks
as highlighted in Figure 4. The first block is implemented for
performing the data acquisition task where the data stream

 Fig. 3. Overview of the transit network used for the experiement.

packages are transformed into CSV files. The second block
represents the creation of a unique identifier number (ID) for
each tuple arriving from the pulled data streams. The third
block is performing both data cleaning and data sorting tasks,
as well as supporting local notifications such as alarm
messages.

The tuples were sorted by <route_id_rta, trip_id_br,
timestamp>. We have implemented two alarm messages for
missing tuples and duplicated tuples. Finally, the fourth block
creates data tables. All data tables are stored temporally in the
Stream database [18].

TABLE III. COMMERCIAL PLATFORMS FOR FOG COMPUTING

Data life

cycle tasks

EFF

(Cisco)

Segment

(Segment)

IBM Watson

(IBM)

Axon Predict

(Greenwave

Systems)

Local

Notification
Yes Yes Yes Yes.

Processing Yes. No Yes Yes

Aquisition DSL Java API Java API

Yes.

The method is

not specified.

Storage Yes Yes Yes Yes

Leverage Yes Yes Yes Yes

Data Control Yes Yes Yes Yes

The tuples were sorted by <route_id_rta, trip_id_br,
timestamp>. We have implemented two alarm messages for
missing tuples and duplicated tuples. Finally, the fourth block

creates data tables. All data tables are stored temporally in the
Stream database [18].

There were 65,097,658 tuples stored in the Stream
database for a period of one year of streaming data from June
1st 2016 to May 25th 2017 from the edge nodes. After
performing the data processing tasks at the fog layer,
38,653,787 tuples were deleted. The resulting data table
consists of only 26,443,871 tuples which were then
transported to the cloud. Table IV illustrates the statistics of
one day (April 15th 2017) from the one year experiement. In
this case, 24,740 tuples have arrived in the cloud belonging to
16 bus routes that were running on that day.

Although tuples from 478 trips were expected to arrive in
the cloud, tuples from only 104 trips have actually arrived due
to the data processing. These prelimanary results reveal the
importance of fog computing in assuring the quality of data
streams sent to the cloud, despite the drawback of deliverying
a limited number of tuples for further analytics in the cloud.

In our proposed system, a Hadoop cluster includes a
master node and a server node that will be deployed using the
Compute Canada West Cloud. The large scale of data streams
will be historically accumulated, and stored in the distributed
file system of this cluster. It is worth to indicate that the
Hadoop cloud resources are resilient and can be easily scaled
up to afford the continuous growth of data streams on the
cloud. Besides, it is important to mention that the high
availability of the Hadoop cluster is preserved because the
data streams are chunked into different partitions, and
replicated through different nodes inside the cluster. The
MapReduce programing model implemented in our cluster
will handle the batch processing tasks in which tuples of data
streams with the same key are mapped; whereas computing,
and analyzing tasks are executed in the reduce phase in a
parallel manner.

Fig. 4 Overview of the execution model

TABLE IV. OVERVIEW OF PRELIMINARY RESULTS

Bus Route

Number of

scheduled

trips

Number of performed

trips whose tuples

reached the cloud

(%)

50 31 2 6.45

51 65 6 9.23

52 65 5 7.69

60 31 2 6.45

61 32 19 59.38

62 31 19 61.29

63 32 3 9.38

64 32 19 59.38

65 31 19 61.29

70 13 1 7.69

71 14 2 14.29

80 13 1 7.69

81 13 1 7.69

93 22 1 4.55

94 32 3 9.38

95 21 1 4.76

V. FUTURE RESEARCH WORK

Our research work has proposed an agnostic model for
streaming data life cycles in IoMT. Our experimental results
show the potential of performing stream data management
based on an end to end system architecture to leverage different
resources, and make IoMT data available at real-time.
Currently. our system supports one source of data streams,
however, we plan to extend the edge layer to include sensors in
order to monitor for example, weather conditions, humidity, air
quality, and passenger ridership. Moreover, we would also like
to explore the use of a temporary storage at the edge; firstly by
defining where, how, and for how long to store the real-time
and delayed IoMT data streams. Finally, we would like to
announce that EFF has recently been integrated to Kinetic
Cisco platform to fulfill overall IoMT solutions. Therefore, our
future research work also considers to use, and migrate to this
newest platform.

ACKNOWLEDGMENTS

This research was fully supported by the NSERC/CISCO
Industrial Research Chair in Real-time Mobility Analytics. The
authors are grateful to CODIAC Transit for providing the data
streams used in this study, and Compute Canada for hosting
one virtual machine that was used for the implementation of the
cloud layer. Finally, we would like to thank Rimot for their
support in fog node configuration.

REFERENCES

[1] Gonzalez, N.M., Goya, W.A., de Fatima Pereira, R., Langona, K.,
Silva, E.A., de Brito Carvalho, T.C.M., Miers, C.C., Mångs, J.E. and

Sefidcon, "Fog computing: Data analytics and cloud distributed
processing on the network edges." Computer Science Society (SCCC),

2016 35th International Conference of the Chilean. IEEE, 2016.

[2] Bakshi, Kapil. "Big data analytics approach for network core and
edge applications." Aerospace Conference, 2016 IEEE. IEEE, 2016.

[3] Mushunuri, V., Kattepur, A., Rath, H.K. and Simha, A., "Resource

optimization in fog enabled IoT deployments." Fog and Mobile Edge
Computing (FMEC), 2017 Second International Conference on.

IEEE, 2017.

[4] Gebre-Amlak, H., Lee, S., Jabbari, A.M., Chen, Y., Choi, B.Y.,
Huang, C.T. and Song, S., "MIST: Mobility-inspired software-defined

fog system." Consumer Electronics (ICCE), 2017 IEEE International

Conference on. IEEE, 2017.

[5] Alam, K., Ahmad, R. and Ko, K., "Enabling Far-Edge Analytics:

Performance Profiling of Frequent Pattern Mining Algorithms." IEEE
Access (2017).

[6] Liyanage, M., Chang, C. and Srirama, S.N., "mePaaS: mobile-

embedded platform as a service for distributing fog computing to
edge nodes." Parallel and Distributed Computing, Applications and

Technologies (PDCAT), 2016 17th International Conference on.
IEEE, 2016.

[7] Etemad, M., Aazam, M. and St-Hilaire, M., "Using DEVS for

modeling and simulating a Fog Computing environment." Computing,
Networking and Communications (ICNC), 2017 International

Conference on. IEEE, 2017.

[8] Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., and Yang, Q., "A
hierarchical distributed fog computing architecture for big data

analysis in smart cities." Proceedings of the ASE BigData &
SocialInformatics 2015. ACM, 2015.

[9] De Brito, M.S., Hoque, S., Steinke, R. and Willner, A., "Towards

programmable fog nodes in smart factories." Foundations and
Applications of Self* Systems, IEEE International Workshops on.

IEEE, 2016.

[10] Bhargava, K., Ivanov, S., Donnelly, W. and Kulatunga, C., "Using
Edge Analytics to Improve Data Collection in Precision Dairy

Farming." Local Computer Networks Workshops (LCN Workshops),
2016 IEEE 41st Conference on. IEEE, 2016.

[11] Cao, H., Wachowicz, M., and Cha, S., "Developing an edge analytics
platform for analyzing real-time transit data streams." arXiv preprint

arXiv:1705.08449 (2017).

[12] Cao, H., and Wachowicz, M, Cao, Hung, and Monica Wachowicz.
"The design of a streaming analytical workflow for processing

massive transit feeds." arXiv preprint arXiv:1706.04722 (2017).

[13] Cisco white paper, “The Cisco edge analytics fabric system: A new
approch for enabling hyperdistributed implementations”, Cisco

public. (pp. 1–22), 2017.

[14] https://segment.com/catalog

[15] https://www.ibm.com/internet-of-things/

[16] https://greenwavesystems.com/solutions/axon-predict-edge-analytics/

[17] Gama, J, and Gaber, M.M. eds. Learning from data streams:

processing techniques in sensor networks. Springer Science &
Business Media, (pp. 25–50), 2007.

[18] Cisco, “The Cisco parstream manual”, Cisco public, Version 4.4.3,

(pp. 16–33), 2017.

[19] Cisco 829 Industrial Integrated Services Routers Data Sheet: 2016.
http://www.cisco.com/c/en/us/products/collateral/routers/829-

industrial-router/datasheet-c78-734981.html. Accessed: 2017-04-21.

