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Abstract— The Internet of Moving Things (IoMT) requires 

support for a data life cycle process ranging from sorting, cleaning 

and monitoring data streams to more complex tasks such as 

querying, aggregation, and analytics. Current solutions for stream 

data management in IoMT have been focused on partial aspects of 

a data life cycle process, with special emphasis on sensor networks. 

This paper aims to address this problem by developing streaming 

data life cycle process that incorporates an edge/fog/cloud 

architecture that is needed for handling heterogeneous, streaming 

and geographically-dispersed IoMT devices. We propose a 3-tier 

architecture to support an instant intra-layer communication that 

establishes a stream data flow in real-time to respond to immediate 

data life cycle tasks in the system. Communication and process are 

thus the defining factors in the design of our stream data 

management solution for IoMT. We describe and evaluate our 

prototype implementation using real-time transit data feeds. 

Preliminary results are showing the advantages of running data life 

cycle tasks for reducing the volume of data streams that are 

redundant and should not be transported to the cloud. 

Keywords—stream data life cycle, edge computing, cloud 

computing, fog computing, Internet of Moving Things 

I. INTRODUCTION 

One of the main concerns in the era of the Internet of 
Moving Things (IoMT) is the risk of overflowing a system due 
to billions of IoMT devices generating a huge volume of data 
streams that need to be sent out to the cloud for processing and 
analytic tasks. Recent studies [1–7] have demonstrated the 
importance of combining edge and cloud computing in stream 
data management to address the issues of speed of execution, 
accuracy, bandwidth cost and privacy. In contrast, [2] points 
out that fog computing should also be considered as an 
extension (not a replacement) of cloud computing mainly 
because fog computing can run processing and analytics that 
clean and aggregate the data streams before sending them up to 
the cloud. Some experiments of combining fog and cloud 
computing in smart cities [8], smart factories [9], and dairy 
farming [10] are showing the optimization of streaming 
workflows and cost-minimization for stream big data 
processing in geographically distributed datacenters.  

This paper proposes a 3-tier architecture for combining 
edge, fog and cloud computing that is needed to provide the 
means for a data life cycle over transit data feeds that can 

reinforce a data flow from things to the cloud, passing through 
edge and fog nodes. To the best of our knowledge, an edge-
fog-cloud architecture has not yet been proposed in the 
research literature. Moreover, very few is known on suitable 
data life cycle approaches for IoMT [17].  

Our research challenge is two-fold:  

- how to handle the complexity of the data life cycle not 
only because of the increasing data rates, but also 
because of the need for adopting an efficient and 
transparent exchange of data between edge nodes and 
fog nodes that will allow numerous feedback loops and 
re-running of workflow tasks; 

- how to automate and improve workflow tasks 
performed on IoMT data streams (e.g. control flow, 
monitoring, and task sequence) in conjunction with 
computational tasks on the same data streams (e.g. 
capture, querying, pre-processing). Currently, data life 
cycle approaches are based on sequences of tasks that 
are programmed independently, making them 
unsuitable for IoMT.  

The main scientific contributions of our paper are: 

- development of an end-to-end architecture by 
combining edge, fog and cloud computing for IoMT 
data-intense applications;  

- development of a data life cycle approach to capture 
the dynamicity of IoMT data, i.e. the fact that they are 
produced incrementally, regenerated, modified or 
temporarily unavailable. 

Our objective is to provide a formal 3-tier architecture to 
facilitate IoMT data flows based on an agnostic execution 
model which enables data life cycle management. 

The remaining of this paper is organized as follows. 
Section 2 introduces the concept of streaming data life cycle 
and propose a formal model that allows to expose an end-to-
end life cycle across heterogeuous architecture levels.  Section 
3 describes the 3-tier architecture. Its implementation and the 
preliminary results of an experiment using transit data feeds 



are described in Section 3. Section 4 concludes the paper by 
sharing our future research work. 

II. STREAMING DATA CYCLE MODEL 

The approach we propose follows the inherit goal of data 
life cycles which is to integrate the data flow from things, to 
the edge nodes, to the fog nodes, and finally to the cloud using 
an execution model that allows code execution of each 
workflow task. On the one hand, the execution model allows 
to describe a task sequence and data dependency such as 
explicit/implicit control flow in real-time or running 
continuous queries on IoT data streams. On the other hand, 
once the data life cycle is known and formally defined in the 
execution model, the workflow tasks are executed such as for 
automation of tiered storage; processing at any tier of the 
architecture; coordination between DSL links for IoMT data 
flows; monitoring task completion and data production; and so 
forth. Table I describes the main phases of our streaming data 
cycle model. 

TABLE I.  THE PROPOSED IOMT DATA CYCLE MODEL 

Phases Objectives 

Data Flow DSL links 

Execution Model 

Task Sequence  

& 

Data Dependency 

Control Flow Explicit/Implicit. 

Monitoring 

Task Completion  

& 

Data Dependency 

  

The data streams enter an edge node after being acquired 
by an IoMT device, or created from some other data already 

present in the edge layer. They leave the edge layer when they 

are moved to the fog layer. Between these two points in time, 
the data progress through a series of different tasks of the 
workflow, such as data storage, data leverage, data acquisition, 
data control, etc. The tasks are not necessarily sequential since 
data does not have to pass through all the tasks. The 3-tier 
architecture is explained in the next section. 

III. SYSTEM ARCHITECTURE 

We propose an end-to-end architecture based on the main 

characteristics of IoMT data streams as described by [16]:  

- Each tuple in a stream arrives online. 

- A system has no control over the order in which a 

tuple arrives within a data stream or across data 

streams.  
- Data streams are potentially unbounded in size. 

They consist of a sequence of out-of-order tuples 
containing attributes such as:  

T1 = (S1, x1, y1, t1) 
where  

S1: is a set of attributes containing information about each 
IoMT device. 

x1, y1, t1:   is the geographical location of an IoMT device at the 
timestamp t.  

 

A. The 3-tier layer architecture 

The overall architecture consists of the following layers: 
edge layer, fog layer, and cloud layer (Figure 1). The edge 
layer contains an edge node and it is in charge to acquire the 
tuples coming from the IoMT devices. The fog layer is formed 
by fog nodes and it is where the streaming data cycle model is 
executed. Finally, the cloud layer is where the data center is 
located. The communication among these three layers is 
performed by two principal components: the message broker 
and the distributed service links (DSL).  

Fig. 1. Overview of our three-tier system architecture 

 



The message broker decouples communication between 
the edge nodes and the fog nodes for invoking services to 
retrieve the data stream packages over a fixed time frequency, 
for example, every 5 minutes, 1 hour or a day. Moreover, it 
performs message aggregation, decomposing messages into 
multiple messages and sending them from the fog layer to the 
cloud.  The message broker can also perform an instant intra-
layer communication that allows them to establish data flows 
that can share data within the system. In this way the edge 
nodes handle the transportation of heterogeneous, streaming 
and geographically-dispersed IoMT data streams. In contrast, 
the fog nodes are designed to support a real-time data life 
cycle model. 

B. The streaming data workflow 

Six components are designed to support the workflow 
tasks of our data life cycle model. The components are: the 
system administrator, system monitor, data flow engine, 
message broker, communication links, and the stream database 
(Figure2). Based on these components, the system is enabled 
to treat IoMT data as data flows to communicate, process and 
transport data from end devices to the cloud.  

Each task requires a specific data flow with unique 
purposes that can be either performing data acquisition, data 
processing, or data storage. One advantage of our proposed 
data life cycle process is the decision of having placed a fog 
node within a data stream management that can offer the 
possibility of starting the data life cycle process at anytime, 
instead of starting it only when the data streams have reached 
the cloud.  

 

 

Fig. 2 Overview of the main tasks performed by the system components 

 

The processing task is designed for removing errors and 
inconsistencies from the data streams stored in the stream 
database. Guaranteeing data quality for continuous and high 
volume of data streams is a nontrivial task, and performing 
this task automatically is even more challenging because the 
high data rate [11]. The Data Flow Engine is used to 
implement the processing task for handling (1) missing tuples, 
(2) duplicated tuples, (3) missing attribute values, (4) 

redundant attributes, and (5) wrong attribute values. Running 
the processing task at a fog node reduces the volume of data 
streams that need to be transported to the cloud. 

The acquisition task at a fog node runs in a similar way as 
the MapReduce function in Hadoop. It sorts out the incoming 
tuples according to any attribute value of a tuple or a 
timestamp as soon as the tuples arrive at the fog node. It is 
important to mention that in our system architecture, the 
stream database is a fundamental to support the real-time data 
life cycle, whereas MapReduce is used to support the batch 
processing cycle in the cloud.  

The cloud is an appropriate batch processing environment 
for large scale of data streams. An example of this use case is 
when it is required a strong resource to process a vast amount 
of data streams. Then, the cloud successfully provides the 
underlying infrastructure, platforms, and several services; such 
as pools of server, distributed storages, and networking 
resources, to distributed data processing among platforms. In 
addition, cloud computing models are supported to accelerate 
the potential of large-scale data processing functions that are 
needed to lead fully satisfied big data stream processing tasks. 
Therefore, the cloud computing environments are not limited 
to only offer flexibility and efficiency for accessing data 
streams; they also provide a high-performance computing 
power to analyze, and efficiently process data streams under 
cost-effective needs. 

The real-time data life cycle takes place every time the 
tuples are sent from the IoMT devices to the edge node, and 
then they flow through the 3-tier architecture from the edge 
node to the cloud passing by the fog node as an intermediate 
node. The life cycle consists of six tasks defined as data 
transportation, data processing, data acquisition, data storage, 
data leverage, and data control. Figure 2 illustrates the relation 
between each task of the data life cycle, and the respectively 
system component within our system prototype. 

The real-time data life cycle tasks and the way they work 
together with the system components to accomplish common 
functions can be described as follows: All tuples reach the 
edge node from the IoMT devices via HTTP or TCP/IP 
protocol. Every time a tuple arrives to the edge layer a set of 
tuples is formed as a sequence. Once the tuples are within the 
edge layer, they are sent (data transportation – message 
broker) to the fog layer by the edge node and received (data 
acquisition – DSL links) by the fog node. In order to process 
the tuples and perform preliminary analytics (data processing 
– data flow engine) the fog node controls the sets of tuples 
(data control – system monitor and administrator) by retaining 
(data storage – stream database) and retrieving (data leverage 
– stream database) the set of tuples continuously. Finally, the 
set of tuples that deserve to reach the cloud are retrieve (data 
leverage – stream database) and sent (data transportation – 
message broker) to the fog node to the cluster. 

IV. SYSTEM IMPLEMENTATION AND RESULTS 

For our experiment we have selected transit feed data from 
the CODIAC transit network for Greater Moncton area (Figure 
3). The network consists of 21 bus routes operating from 
Monday to Saturday, some of which provide evening and 



Sunday services. Every bus in the transit network has installed 
a GPS receiver for collecting its location every 5 seconds. The 
set of attributes in a tuple are listed in Table II. 

TABLE II.  TUPLE ATTRIBUTES  

Attribute Description 

1. vlr_id 
The ID of the data point in the 

vehicle location reports table. 

2. route_id_vlr 
The route ID in the vehicle 

location reports table. 

3. route_name The route name. 

4. route_id_rta 
The route ID in the route transit 

authority table. 

5. route_nickname The abbreviation of the route. 

6. trip_id_br The trip ID in the bid route table. 

7. transit_authority

_service_time_id 

Transit authority service time ID. 

8. trip_id_tta Transit authority trip ID. 

9. trip_start Start time of the trip. 

10. trip_finish Finish time of the trip. 

11. vehicle_id_vab Vehicle ID. 

12. vehicle_id_vlr 
Vehicle ID in the vehicle locations 

reports table. 

13. vehicle_id_vlr_ta Descriptive name of the bus. 

14. bdescription Bus description. 

15. lat Latitude. 

16. lng Longitude. 

17. timestamp Timestamp of the data point. 

 

In this experiment, the edge node known as Cisco IR829 
Industrial Integrated Services Router is envisaged to be 
installed in the future on the top of buses that form the tested 
transit system. It has an Intel Atom Processor C2308 (1M 
Cache, 1.25 GHz) Dual Core X86 64bit, 2GB DDR3 memory, 
8MB SPI Bootflash, 8GB (4GB usable) eMMC bulk flash, and 
multimode 3G and 4G LTE wireless WAN and IEEE 
802.11a/b/g/n WLAN connections. Because of it is resistant to 

shock, vibration, dust, humidity, and water spray, and a wide 
temperature range (-40°C to +60°C and type-tested at +85°C 
for 16 hours) [19], this type of router accomplishes the 
requirements of our system prototype. Besides, this edge node 
comes with two operating system: a Cisco IOS system that runs 
a standard Cisco IOS package which handles all the routing, 
switching, and networking; and a guest operating system IOx 
running on a virtual machine. 

Regarding the fog node, we suggest that in the future 
implementation of our system prototype, one fog node will be 
installed per bus terminal. The proposed fog node distribution 
is shown on the map inset in Figure 3. Current commercial 
systems for deploying data life cycle models using fog nodes 
are presented in Table III. They are the Edge Fog Fabric (EFF) 
Cisco platform [13], the Segment platform [14] offered by 
Segment Company, the IBM Watson IoT platform for edge 
analytics [15], and the Axon Predict platform produced by 
Greenwave System [16]. We have selected the EFF Cisco 
platform for our implementation because this platform supports 
block-programming for fostering experimentation. By using 
this programming style, we are able to control the effects of a 
data life cycle model by observing the content of a data stream 
(input) and the results (outputs) of any task. However, more 
research is needed to evaluate other platforms in the future. 

Figure 4 shows the dashboard of the EFF Cisco Platform 
running over Ubuntu 16.4 OS at the fog layer. The Server (fog 
node) specifications to fulfill are: to have free 4GB or more 
per CPU, to have previously installed the following package of 
libssl1.0.0 Version: 1.0.2g-1ubuntu4.6, and libicu55 Version: 
55.1-7ubuntu0.1, and to obtain superuser (root) permissions or 
sudo access to complete the installation of the Cisco Platform.  

Our execution model consists of four programming blocks 
as highlighted in Figure 4. The first block is implemented for 
performing the data acquisition task where the data stream 

                                                                 Fig. 3. Overview of the transit network used for the experiement.  

 



packages are transformed into CSV files. The second block 
represents the creation of a unique identifier number (ID) for 
each tuple arriving from the pulled data streams. The third 
block is performing both data cleaning and data sorting tasks, 
as well as supporting local notifications such as alarm 
messages. 

The tuples were sorted by <route_id_rta, trip_id_br, 
timestamp>. We have implemented two alarm messages for 
missing tuples and duplicated tuples. Finally, the fourth block 
creates data tables. All data tables are stored temporally in the 
Stream database [18].  

 

TABLE III.  COMMERCIAL PLATFORMS FOR FOG COMPUTING  

Data     life 

cycle tasks 

EFF 

(Cisco) 

Segment 

(Segment) 

IBM Watson 

(IBM) 

Axon Predict 

(Greenwave 

Systems) 

Local 

Notification 
Yes Yes Yes Yes. 

Processing Yes. No Yes Yes 

Aquisition DSL Java API Java API 

Yes. 

The method is 

not specified. 

Storage Yes Yes Yes Yes 

Leverage Yes Yes Yes Yes 

Data Control Yes Yes Yes Yes 

 

The tuples were sorted by <route_id_rta, trip_id_br, 
timestamp>. We have implemented two alarm messages for 
missing tuples and duplicated tuples. Finally, the fourth block 

creates data tables. All data tables are stored temporally in the 
Stream database [18].  

There were 65,097,658 tuples stored in the Stream 
database for a period of one year of streaming data from June 
1st 2016 to May 25th 2017 from the edge nodes. After 
performing the data processing tasks at the fog layer, 
38,653,787 tuples were deleted. The resulting data table 
consists of only 26,443,871 tuples which were then 
transported to the cloud. Table IV illustrates the statistics of 
one day (April 15th 2017) from the one year experiement. In 
this case, 24,740 tuples have arrived in the cloud belonging to 
16 bus routes that were running on that day. 

 

Although tuples from 478 trips were expected to arrive in 
the cloud, tuples from only 104 trips have actually arrived due 
to the data processing. These prelimanary results reveal the 
importance of fog computing in assuring the quality of data 
streams sent to the cloud, despite the drawback of deliverying 
a limited number of tuples for further analytics in the cloud. 

In our proposed system, a Hadoop cluster includes a 
master node and a server node that will be deployed using the 
Compute Canada West Cloud. The large scale of data streams 
will be historically accumulated, and stored in the distributed 
file system of this cluster. It is worth to indicate that the 
Hadoop cloud resources are resilient and can be easily scaled 
up to afford the continuous growth of data streams on the 
cloud. Besides, it is important to mention that the high 
availability of the Hadoop cluster is preserved because the 
data streams are chunked into different partitions, and 
replicated through different nodes inside the cluster. The 
MapReduce programing model implemented in our cluster 
will handle the batch processing tasks in which tuples of data 
streams with the same key are mapped; whereas computing, 
and analyzing tasks are executed in the reduce phase in a 
parallel manner. 

 

Fig. 4 Overview of the execution model 



TABLE IV.  OVERVIEW OF PRELIMINARY RESULTS 

Bus Route 

Number of 

scheduled 

trips 

Number of performed 

trips whose tuples 

reached the cloud 

(%) 

50 31 2 6.45 

51 65 6 9.23 

52 65 5 7.69 

60 31 2 6.45 

61 32 19 59.38 

62 31 19 61.29 

63 32 3 9.38 

64 32 19 59.38 

65 31 19 61.29 

70 13 1 7.69 

71 14 2 14.29 

80 13 1 7.69 

81 13 1 7.69 

93 22 1 4.55 

94 32 3 9.38 

95 21 1 4.76 

V. FUTURE RESEARCH WORK 

Our research work has proposed an agnostic model for 
streaming data life cycles in IoMT. Our experimental results 
show the potential of performing stream data management 
based on an end to end system architecture to leverage different 
resources, and make IoMT data available at real-time. 
Currently. our system supports one source of data streams, 
however, we plan to extend the edge layer to include sensors in 
order to monitor for example, weather conditions, humidity, air 
quality, and passenger ridership. Moreover, we would also like 
to explore the use of a temporary storage at the edge; firstly by 
defining where, how, and for how long to store the real-time 
and delayed IoMT data streams. Finally, we would like to 
announce that EFF has recently been integrated to Kinetic 
Cisco platform to fulfill overall IoMT solutions. Therefore, our 
future research work also considers to use, and migrate to this 
newest platform.  
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