
dOTM: A mechanism for distributing centralized
multi-party video conferencing in the cloud

Pedro Rodríguez, Alvaro Alonso, Joaquín Salvachua, Javier Cervino

Abstract—One of the key factors for a given application to
take advantage of cloud computing is the ability to scale in an
efficient, fast and reliable way. In centralized multi-party video
conferencing, dynamically scaling a running conversation is a
complex problem. In this paper we propose a methodology to
divide the Multipoint Control Unit (the video conferencing server)
into more simple units, broadcasters. Each broadcaster receives
the media from a participant, processes it and forwards it to
the rest. These broadcasters can be distributed among a group
of CPUs. By using this methodology, video conferencing systems
can scale in a more granular way, improving the deployment.

íTeywwds-multimedia, videoconference, mcu, cloud

I. INTRODUCTION

The surge of Cloud Computing systems has allowed de­
velopers to improve scalability on traditional services. They
facilitate deployment of these services to companies that could
not afford it before due to the high costs of other traditional
infrastructures by charging only for the resources used.

Almost at the same time, video conferencing systems have
rapidly evolved to be available as part of web pages instead of
stand-alone native applications. Hence, users now can easily
communicate with others who are viewing the same web pages
from their web browsers. Different technologies, like Adobe
Flash1 and, more recently, HTML52 and WebRTC [1] have
allowed this evolution towards the web.

The convergence of these developments has enabled new
types of systems that offer videoconference as a Cloud service.
Taking advantage of cloud technologies, they can adapt to
large variations in the number of users. This is particularly
important in videoconference between multiple participants.
Here, communication usually occurs in virtual rooms, con­
ceptual places in the Internet where users can, at least, see
and listen to the others in the same room.

Traditionally videoconference systems have been developed
around a central device, called MCU (Multipoint Control
Unit). MCUs have been used for years in these systems to
address signalling and real-time transport of user's video and
audio contents. However, they can also support advanced func­
tionality like recording, video and audio transcoding, video
composition and audio mixing. Actually, MCUs commonly
serve many virtual rooms with multiple users in each of

1http://get adobe.com/es/flashplayer/
2http://dev. w3.org/html5/spec/

them. Hence, Cloud videoconference services should focus on
solving the problem of adapting the number of MCUs to a
varying number of users.

In this paper we first establish a common ground by defining
several concepts and topics related with MCUs, virtual video-
conference rooms, and the different layers that take part during
the communication. Then we introduce the main problem that
many MCU developers face when implementing a scalable
service. From there, we describe our solution, primarily based
on dividing the MCU into components that run different tasks.
This tasks are designed so they can run in a logically isolated
way. Once we have this isolated tasks, we can distribute them
among different virtual machines.

We have focused the solution in the most illustrative exam­
ple, which is the scenario where the MCU forwards each video
and audio stream from every user to the rest of participants
in the same room. The main task in this case is to copy
every packet and send it to all participants. And we have also
defined the component that is responsible for running this task
within the MCU: OneToMany processor. Our solution divides
a MCU into multiple OneToMany components, one per audio
and video stream that need to be sent to the users. Moreover,
we define the details we need to take into account for different
communication layers as well as general considerations to
manage all the components in this system.

We also describe the limits and challenges that we identify
in this solution. We provide solutions for these challenges,
based on reducing the server's boot time, increasing the
scalability of MCUs for an unlimited number of users and
commenting how we can apply similar solutions to other
kind of tasks performed by the MCU such as recording, or
transcoding.

The paper is structured as follows: in Section II we in­
troduce similar solutions and the limits they presented that
prevented us from using them to scale MCUs in the Cloud.
In Section III we define the scenario and problem described
previously, and then in Section IV we propose a novel solution
based on dividing the MCU into tasks that can be isolated.
Finally, in Section V we comment the main conclusions that
we obtained from this work and our proposal for future works.

http://get
http://adobe.com/es/flashplayer/
http://dev
http://w3.org/html5/spec/

II. RELATED WORK

Since the term Cloud Computing was coined and its char­
acteristics enunciated, there has been plenty of studies on
how to take different kind of applications to the Cloud. In
[2] the authors provide a definition on Cloud computing and
also identify the main obstacles and opportunities for growth,
the ability to scale quickly is among them. Our objective
is to apply the principles described in this work to the
videoconference world.

The illusion of infinite computational process and band­
width that the Cloud provides is very attractive for deploying
complex video conferencing services. These services, usually
rely on MCUs to interconnect clients avoiding peer-to-peer
scenarios, especially when the number of participants starts to
grow. The capabilities of deploying new MCUs on demand is
highly sought after.

Several works have tried to take advantage of the capabili­
ties the Cloud provides. In [3] the authors provide a general
overview on video conferencing services in the Cloud. By
designing the conference like as service oriented architecture,
the final consumer application is separated from the video
conference provider. Conferencing services are offered by
request in a similar way infrastructure is offered in the Cloud.
We build on top of that idea. In [4] the authors present
an implementation that adheres to some of the principles
described in the previous work. While in these works the
general idea on how to deploy videoconferencing systems
in the Cloud is clear, it is not specified how to react to
the variations in demand. We provide a solution for those
variations.

In [5], the authors present a video conferencing system
using a protocol that takes advantage of intra-Cloud networks
to forward traffic among peers. However, they do not rely
on a distributed MCU, so traditional MCU operations like
recording or transcoding are not supported at this point. In
the architecture we present, recording and transcoding are
contemplated.

The authors of [6] use Cloud deployed surrogates to assist
in mobile video conferencing by unloading some of the
more CPU intensive tasks such as transcoding, being able to
exchange media streams among them. The focus of the work
is not to replicate the capabilities of a MCU but to improve the
experience of multi-party mobile users, so it does not provide
a solution to the scalability of MCUs as such.

III. SCENARIO AND PROBLEM DESCRIPTION

Video conferencing with multiple participants has tradition­
ally been facilitated by MCUs, as opposed to peer-to-peer
solutions. The lack of availability of IP Multicast [7] for
end-users impairs the use of p2p for multi-party real time
communications as the amount of participants dictates the
amount of upload bandwidth needed. In such cases, MCU-
based application level multicast is used. The centralized
architecture means there is a bottleneck in the server side but,
on the other hand, the clients can save upload bandwidth as
they do not have to send one stream to each participant.

MCU

ROOM

< • • i

ROOM

j i 4f < • • I < • < r ' •

o o ooo
PARTICIPANTS

Fig. 1. MCU terms

New technologies provide video conferencing through web
browsers. This enables a new, more dynamic way of commu­
nicating but also imposes a great task to MCU deployments as
the traditional dedicated infrastructures are not tailored to meet
the fast changes in demand associated with web applications.
However, the architecture presented in this paper is general
and does not only apply to web-based conferencing,.

The possibilities of Cloud Computing enable video con­
ference providers to deploy as many MCUs as needed for a
particular demand. However, the design of those MCUs can
be optimized to avoid wasting Cloud resources.

First, we will define the general scenario. The final objec­
tive is to establish a multi-party video conference where an
undefined number of users send and receive real time audio
and video. These clients will not connect directly, all the traffic
will go through a MCU.

A. Context

The following terms will be used throughout this paper.
These are illustrated in Fig.l:

• Participant: A device that takes part in a video con­
ference. It can receive and send multimedia streams. In
general it will represent the final users of the system.

• Room: A conceptual environment where participants go
to make their multimedia streams available and receive
data from others. In general, we will say participants
publish and subscribe to streams. The scope where these
publications are visible is the room.

• MCU: A software device that hosts one or more rooms.
It physically receives the media streams from the partic­
ipants and is able to forward those streams to the others.

While there are many ways to design and implement and
MCU, such as the ones seen in [8], in this paper we will focus
on a pure forwarding MCU. That is, the MCU receives packets
from each participants and forwards them to the rest, without
performing any advanced operations in the streams themselves
like composing or mixing. Only the essential operations for
transmitting the media will be performed.

Furthermore, in the scope of this paper we well assume all
the participants in a room subscribe to all the available media
streams.

In the described scenario, the MCU acts in three different
levels:

• Signaling: The MCU implements the required protocols
that enable the negotiation required to establish the direct
communication with the participants.

• Media: The MCU is able to send and receive media
streams using the video and audio codecs and protocols
used by the participants. These protocols are negotiated
during the signaling phase.

• Control: The room concept is implemented in the MCU,
allowing participants to publish and subscribe to media
streams in that scope. This implies keeping a list of the
participants in each room and being able to notify them
when this list changes.

B. Scalability

In the server side, the MCU is the minimum complete piece
of software that can be deployed and run on a node. Thus, it
acts as the deployment unit when taken to a data center or a
Cloud provider. That is, we will get more video conferencing
capacity by adding more MCU nodes to the system.

In a public Cloud or a private data centre scenario we can
set up architectures such as the one described in [9] to balance
the load of rooms among the different running MCUs, or event
start and shutdown MCUs on demand. In software terms, it is
a process that is run on every server we want to have. As such,
the amount of participants that can be handled by an MCU is
limited by the hardware it is installed on and the bandwidth
available to it. When we limit the amount of participants in
one room we can estimate the resources needed for each room
and plan accordingly.

However, if rooms get bigger, it can be deduced how being
limited by the MCU as a unit will be a problem. For each
participant in a room size N, the MCU receives 1 stream and
forwards it iV — 1 times. In total, there are N2 connections to
the MCU at the same time. When the next participant comes, it
publishes its stream, that is received by all the others (1 + N),
and it subscribes to the available streams (N connections) so
we have 2N + 1 new connections, (N + l) 2 in total. That is,
the connections grow quadratically. The amount of processing
power, memory and bandwidth needed is directly proportional
to the number of active connections an MCU is maintaining.
Thus, the amount of participants that an MCU can handle is
much lower when they are arranged in big rooms.

To show the implications of the number of connections in
the overall load in the system, we have performed tests in our
open source WebRTC MCU 3. This experiment was performed
in a small instance in Amazon EC2 4, roughly equivalent to
1GHz Intel Xeon family processor.

We reproduce the scenario detailed above. One conference
rooms where all participants subscribe to all the streams and
optimize the quality of the streams by maximizing the used
bandwidth.

The clients provided 3 Mbps of traffic combining audio and
video streams, for a very high quality video conference. The
result can be seen in Figure 2

3 www.lynckia.com/licode
4http://aws.amazon.com/ec2/

3 4
Users

Fig. 2. CPU Usage per Participant

Q Participants
(^ Participant B

C \) Participant C

ROOM

—K T

1
A A

iíóóóó?
A

Fig. 3. Room as broadcasters

As we can see, the increase in CPU is very significant
for each participant that joins the session. While the MCU
is only copying and forwarding packets, the high CPU load
is explained by the use of SRTP [10]. Each packet has to be
decrypted and encrypted again to be transmitted to each of
the participants as each one of the connection has its own
encryption keys. This, combined with the very high bit-rate of
the media, is very CPU intensive. A bigger Amazon instance
would, obviously, allow for more users in the same conference,
however, the problem persists.

If the size of the conference is not known beforehand we
can be limited by the CPU when a participant arrives making it
impossible to further increase the number. Besides, allocating
lowly populated MCUs in powerful machines can be a waste
of resources.

In the following subsections, we propose a mechanism that
allows to distribute a single room into several MCUs, allowing
us a more granular control of the scalability in the system. We
will do this by separating the media layer of the MCU from
the control layer and dividing the media processing into more
simple units.

IV. D O T M

To be able to divide the MCU into smaller components, we
go back to the basics of the tasks the MCU has to perform.

A room is a scope where participants can publish and
subscribe to real-time streams. Each of these rooms can be
seen as described in Figure 3, a set of broadcasters that take
the input from one participant and forward it to the rest
of the room. Thus, in a room with three participants, there
will be three broadcasters with two subscribers each. These
broadcasters are fully independent and do not have to know

http://www.lynckia.com/licode
http://aws.amazon.com/ec2/

of the existence of the others. However, the total delay from
and to the participants is in the same rage of hundreds of
milliseconds to make the communication viable.

An MCU is a set of rooms, thus, we can build a full MCU
with these smaller units. From that simple idea we divide the
MCU into this broadcasters, we are going to call OneToManys
(OTMs). Conceptually, these OTMs are subdivisions of the
MCU and can be run anywhere, even on different infrastruc­
tures. The main difference is their smaller footprint, they only
forward packets from one client.

This atomic unit provides the name for the solution. The
full architecture is named distributed OTMs (dOTM) as it is
built by an array of distributed units.

In the following subsections we will detail this separation by
going through the three layers of the MCU: media, signaling
and control.

A. System Description

1) Media layer: The media layer is the most intuitive. We
will implement the logic for forwarding packets into separate
processes. The processes can be started individually and will
be in charge of receiving a stream from a single participant,
copying the packets and forwarding them to the subscribed
participants.

In the example seen in Section III, a room with N par­
ticipants can be understood as N OTMs each with N — 1
subscribers. If a new participant joins, a new OTM is created
for this new entry and all the rest of the participants will
subscribe to it, while the rest of the OTMs will have one
new subscriber. So, while in the global picture the amount of
connections still grows in a quadratic progression, each OTM's
connections grow linearly.

Being OTMs independent processes that can be deployed
individually on demand, we can distribute a full MCU across
a set of servers. These servers can be located in any infras­
tructure and allocated dynamically.

These nodes do not have to be equal so we can adequate
the number of OTMs deployed in each machine depending on
its capabilities achieving a more efficient use of the available
resources. As opposed to a fully centralized MCU, where a
single node has to be able to process a full room.

2) Signaling layer: In the fully centralized scenario there
is a single access point for every participant in a room.
Now, potentially, each participant would have to negotiate the
connection details to a different server node in order to publish
and subscribe to the media streams. We will assign the problem
of directing the participants to the OTMs to the Control Layer.
A full signalling stack has to be implemented in each OTM
so the media negotiation can take place.

For instance, when a client wants to subscribe to a stream,
the control layer will know which deployed OTM is able to
provide that stream. The client will be informed of the IP of
that OTM so it can begin the actual signalling to establish the
media session directly.

Controller

A

-r

A A
OTM pool

A

)

A

• Control
Management

^ ^ = Media

Fig. 4. Control, Media and signaling

3) Control Layer: In order to establish a conference, the
OTMs have to be deployed intelligently according to the
resources available, the logical rooms have to be distributed in
this OTMs and participants have to be able to find the OTMs
that are supposed to broadcast their streams and provide them
with the other participants media.

To solve this problems, we introduce a new component in
the system that will emulate the control layer of the centralized
MCU, the Controller. This new unit takes over three main
tasks:

• Room Management. All the logic concerning rooms will
be located here. A room will be a set of participants and
their associated OTMs.

• OTM Management. This includes starting and stopping
OTMs remotely as well as monitoring their states. In
case of any error in any of the OTMs, this layer would
also react by starting another one and notifying all the
involved participants.

• Resource monitoring. This component also implements
the monitoring of the available hardware and network
resources in order to be able to efficiently allocate OTMs.

In Figure 4 we can see the communication in the ar­
chitecture. The clients enter the system via the Controller.
The Controller manages the OTM pool, starting and stopping
OTMs as needed and redirects the clients to the right OTM to
publish or subscribe to streams.

This component is the new centralized entry point of the
video conference system. Here we provide the behavior of the
Controller when a new participant (Bob) joins a running room
with N participants already communicating:

1) Controller receives the petition to join the selected room
from Bob. Controller adds bob as a participant in the
room.

2) A new OTM is launched by OTM in an available server.
This new OTM will be in charge of forwarding Bob's
stream to the other participants.

3) Controller provides Bob with the access point to the
new OTM, once the signaling is successful, Bob starts
sending media to the distributed MCU.

4) The rest of the participants are notified of the new OTM.
Each of them join the OTM as a new subscribers. Once
the signaling is over, all the participants receive Bob's
media.

5) Controller provides Bob with the list of all the OTMs
running in the room. Bob joins each of them a sub­
scriber.

This new centralized unit presents a new bottleneck in
our architecture as it is a central component that will re­
ceive requests from all the client. However, as opposed to
the real-time communication oriented MCU, the controller
is request-response oriented. Techniques valid for request-
response servers (such as http servers) can be applied here
and should be studied.

B. Deployment considerations

dOTM is designed to be deployed within a private or public
Cloud infrastructure. The Controller acts as the single entry
point and is aware of the resources available in the system.
It is also able to start or stop VMs in order to allocate more
OTMs.

According to [11], Cloud virtual machines' startup time
ranges from the 44 seconds to up to 800 seconds. This greatly
impairs the ability of the Controller to start new OTMs on
new machines on the fly as new participants want to join the
video conferencing rooms. A waiting time of up to hundreds
of seconds is not acceptable in any case.

One possible solution to this scenario is to use predictions
similar to those proposed for Cloud providers [12] to optimize
the preallocation of VMs and OTMs while trying not to waste
resources. However, the added granularity of dOTM provides
easier allocation of new OTMs in the wasted CPU power of
already running instances, compared to allocating full rooms.

However, being OTMs single processes allow us to take
advantage of systems like OSv 5 that aims to provide better
performance for single applications on top of a hypervisor.
This approach speeds up startup time enabling more dynamic
OTMs distributions.

C. OTM trees

We have discussed the improvement is scalability from
the centralized MCU to the distributed OTMs. However, the
number of participants when using dOTM is still limited by the
amount of connections a single OTM can handle, its fanout.
Even though the growth in connections is linear (for each
OTM), each new participant in the session implies a new
subscriber to each running OTM. Enough participants will
saturate the capacity of each single OTM separately.

Broadcast trees can be used to avoid this problem. Here,
each tree of OTMs would act as the distributor of one
participants' stream to the others in a similar way as peer-
to-peer tree broadcast algorithms, except here, all the peers
are in our infrastructure.

In this case the limitation of the fanout of the OTMs would
be set by each individual node running a OTM instance while

5www.osv.io

Fig. 5. Delay in OTM trees

TABLE I
DELAY IMPACT IN USER SATISFACTION

Delay (ms)
0- 200
200 - 280
280 - 390
390 - 520
> 520

User Satisfaction
Very satisfied

Satisfied
Some users dissatisfied
Many users dissatisfied

Nearly all users dissatisfied

=0
+ ETi

¿=o

the depth of the node would be given by the amount of delay
that participants can tolerate.

In [13], the International Telecommunication Union pro­
vides a recommendation for the total delay in voice commu­
nications over a network. It divides the delay in five levels as
seen in Table I.

Accordingly, we would be able to add layers to the tree as
long as we make sure the delay is under the 500 milliseconds
threshold.

A brief study follows on how does this affect the depth of
the OTMs trees. In this scenario, the delay of level n for a
given subscriber participant is:

LJn—-Lpub * J-sub *

Where:

• D is the total delay at level n.
• Tpub is the transmission time from the publisher partici­

pant to the first OTM.
• Tsub is the transmission time from the last OTM to the

subscriber participant.
• Ti is the delay from transmitting from OTM in level i to

the OTM in level i + l.
• Pi is the processing time for OTM in level i.

In Figure 5 we can see a tree topology formed by OTMs
and the delays associated with this distribution.

This is common to all tree-based distribution architectures.
However we can make some adjustments to optimize the delay
in a OTM tree.

The processing time in each OTM depends on the operations
performed over the streams. In the case exposed in Section III,
the packets needed to be decrypted and encrypted again for
each of the participants. In a tree, the decrypting has to be
done by the level 0 OTM and the encrypting is only needed
in the last level just before sending the data to the participants.

http://www.osv.io

The rest of the levels could perform minimal operations on the
packets so the processing time would be greatly reduced.

The transmission time among OTMs is given by the infras­
tructure where they are deployed. In a data center where all
the nodes are connected in the same local network, we can
assume the delay remains constant through the levels, so T¿ is
a constant Totm and usually in the microseconds.

The OTMs can also be deployed in different geographical
locations affecting the allowed depth of the tree. However,
as explained in [14], the intra-Cloud networks perform better
than the regular Internet so, when there are trans-continental
communications this approach can provide benefits in terms
of quality of the communication.

D. Advanced operations in the MCU

Until now, we have focused this study to an MCU that only
forwards packets without performing any operations to the
streams themselves. However, the division into smaller units
can also be applied to MCUs that perform more specific tasks.
Here we will apply the dOTM architecture to three of the most
important.

1) Recording: Many video conferencing solutions offer the
possibility to record the media streams of a given communi­
cation session. As the MCU is always receiving the published
streams from all the participants it is often the device in charge
of storing this streams.

Even though dOTM is a distributed MCU, the Controller
has information of all the streams that are going through the
system. In order to record the video and audio of a participant
we propose to implement a modified "participant" , recorder,
that is able to subscribe to a OTM and store the contents of the
stream. As a result, each of these recorders produce a media
file containing the publication of one participant.

However, instead of having all the recordings centralized as
in a traditional MCU, the recorders can also be distributed
in the available infrastructure. We propose using remotely
mounted storage or Cloud storage solutions to save all the
contents.

The Controller unit is responsible for starting these
recorders and attaching them to the OTMs that need to be
recorded depending on the configuration of the room. Also,
as part of the monitoring task of the Controller, it has to keep
track of the available disk space for storage in case there is a
limit in that area.

2) Transcoding: MCUs are often used to change the char­
acteristics of the streams in a conference in order to better
adapt to the network and client's capabilities. The most
common scenario is when one or more of the participants
have a higher quality connection to the conference than the
others. In this case, the bit-rate of the stream sent by these
participants can choke the connection of the lower-bandwidth
ones. This causes dropped packets that degrade the quality of
the experience and in some cases can even completely break
the conference. To avoid this, transcoding-able MCUs operate
on the high-quality streams to lower their bit-rate to sacrifice

individual steam quality while improving the conference as a
whole.

With dOTM such mechanisms can also be implemented by
modifying OTMs so that they can transcode the individual
streams they are receiving before forwarding them to the other
participants.

The Controller unit has to be aware of the characteristics of
the network connections of the participants and decide when
to start a new transcoding OTM and then command the low
bandwidth participants to subscribe to this new stream. Thus,
we would not replicate the transcoding work.

This does greatly increase the processing time for each
stream as it has to be decoded and encoded again, that are
expensive operations in terms of CPU. However, the ability
to deploy it in individual instances in the Cloud helps us
accommodate all this needed CPU power, at a cost.

3) Gateways to other technologies: Conferencing gateways
such as the one in [15] are quite common in the video
conferencing world. They allow the interconnection of two
different video conferencing technologies with varying degrees
of transparency.

While the implementation details can change depending
on the two technologies that are to be interconnected, we
will address the most common concerns in this translation
scenarios and apply them to dOTM when interconnecting two
different technologies, A and B.

• Control: The Controller has to be aware of the char­
acteristics of technologies A and B. Furthermore, the
participants have to be identified by the technologies they
are using. With this information the Controller can use the
modifications listed above to interconnect participants.

• Media: Usually different video conference technologies
use different codecs. If that is the case, transcoding OTMs
have to be used. The Controller has to set up the two type
of transcoding OTMs, from the codecs in technology A
to B and back.

• Signaling: OTMs have to be adapted to understand sig­
nalling from technologies A and B, once the do, they can
act transparently in both enviroments.

This can be expanded to interconnect as many technologies
as needed. The concept of room is in the Controller and is
technology agnostic, as long as the technology supports multi­
party communications. The flexibility offered by the OTMs
also translates here as the core of the implementation does
not change with each technology, only the initial signalization
and media negotiation.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the problem of achiev­
ing multi-party video conferences with a large number of
participants. We have seen how big conferences have high
requisites in terms of CPU power. In order to address this,
we have designed a mechanism to distribute MCUs so they
can be deployed in data centers or in cloud providers to
take advantage of more computing resources. The mechanism
acts by distributing MCU servers, dividing them into more

simple parts. These parts, called OneToManys (OTMs), act as
broadcasters where each participant can publish a stream that
will be received by the rest of the session. We have named
the full solution distributed OneToManys or dOTM.

The control logic of a centralized MCU is still present in a
centralized control unit (Controller). The usual mechanisms
used for scaling web servers can be applied to this Con­
troller. We have upgraded our proposal of distributed MCU
by addressing more advanced problems such as recording and
transcoding. Also, we have shown how, by forming trees,
we can avoid the bottleneck imposed by the fanout of each
individual OTM, being the total depth of the tree limited in
the server side by the delay caused by the transmission delays
among the different OTMs.

Regarding future work, an statistical evaluation of the
implementation of the solution will finish the validation of the
proposed architecture. Also, the work need to be completed
by designing the deployment of even more advanced MCU
features such as video composing and audio mixing using
OTMs. On the other hand, we have discussed the problem of
scaling up a conference by adding more OTMs. The problem
of scaling down is also interesting. Given the granularity
dOTM provides when deploying, if a conferencing room is
divided among many different computing nodes, fragmentation
may take place as resources are freed. A methodology to
deploy and mechanisms to rearrange OTMs on the fly should
be investigated.

REFERENCES

[1] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, "Webrtc
1.0: Real-time communication between browsers," August 2012.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., "A view of cloud
computing," Communications of the ACM, vol. 53, no. 4, pp. 50-58,
2010.

[3] J. Li, R. Guo, and X. Zhang, "Study on service-oriented cloud con­
ferencing," in Computer Science and Information Technology (ICCSIT),

2010 3rd IEEE International Conference on, vol. 6. JEEE, 2010, pp.
21-25.

[4] P. Rodriguez, D. Gallego, J. Cervino, F. Escribano, J. Quemada, and
J. Salvachua, "Vaas: Videoconference as a service," in Collaborative
Computing: Networking, Applications and Worksharing, 2009. Collab-
orateCom 2009. 5th International Conference on, nov. 2009.

[5] Y. Feng, B. Li, and B. Li, "Airlift: Video conferencing as a cloud service
using inter-datacenter networks," in Network Protocols (ICNP), 2012
20th IEEE International Conference on. IEEE, 2012, pp. 1-11.

[6] Y. Wu, C. Wu, B. Li, and F. Lau, "vskyconf: Cloud-assisted multi-party
mobile video conferencing," arXiv preprint arXiv: 1303.6076, 2013.

[7] S. E. Deering, "Host extensions for ip multicasting," Internet RFC 1112,
August 1989.

[8] M. Willebeek-LeMair, D. D. Kandlur, and Z.-Y Shae, "On multipoint
control units for videoconferencing," in Local Computer Networks, 1994.
Proceedings., 19th Conference on. IEEE, 1994, pp. 356-364.

[9] P. Rodriguez, D. Gallego, J. Cervino, F. Escribano, J. Quemada, and
J. Salvachua, "Vaas: Videoconference as a service," in Collaborative
Computing: Networking, Applications and Worksharing, 2009. Collab-
orateCom 2009. 5th International Conference on. IEEE, 2009, pp.
1-11.

[10] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, "The
Secure Real-time Transport Protocol (SRTP)," RFC 3711 (Proposed
Standard), Internet Engineering Task Force, March 2004, updated by
RFC 5506. [Online]. Available: http://www.ietf.org/rfc/rfc3711.txt

[11] M. Mao and M. Humphrey, "A performance study on the vm startup
time in the cloud," in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012, pp. 423-430.

[12] Y Jiang, C.-s. Perng, T. Li, and R. Chang, "Asap: A self-adaptive
prediction system for instant cloud resource demand provisioning," in
Data Mining (ICDM), 2011 IEEE 11th International Conference on.
IEEE, 2011, pp. 1104-1109.

[13] T. S. S. of ITU., ITU-T Recommendation G.114: Transmission
Systems and Media : General Recommendations on the Transmission
Quality for an Entire International Telephone Connection : One-Way
Transmission Time. International Telecommunication Union, 1994.
[Online]. Available: http://books.google.es/books?id=eQ9RHwAACAAJ

[14] J. Cervino, P. Rodríguez, I. Trajkovska, A. Mozo, and J. Salvachua,
"Testing a cloud provider network for hybrid p2p and cloud streaming
architectures," in Cloud Computing (CLOUD), 2011 IEEE International
Conference on. IEEE, 2011, pp. 356-363.

[15] J.-M. Ho, J.-C. Hu, and P. Steenkiste, "A conference gateway supporting
interoperability between sip and h.323," in Proceedings of the Ninth
ACM International Conference on Multimedia, ser. MULTIMEDIA '01.
New York, NY, USA: ACM, 2001, pp. 421-430. [Online]. Available:
http://doi.acm.org/10.1145/500141.500204

http://www.ietf.org/rfc/rfc3711.txt
http://books.google.es/books?id=eQ9RHwAACAAJ
http://doi.acm.org/10.1145/500141.500204

