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Abstract—One of the key factors for a given application to 
take advantage of cloud computing is the ability to scale in an 
efficient, fast and reliable way. In centralized multi-party video 
conferencing, dynamically scaling a running conversation is a 
complex problem. In this paper we propose a methodology to 
divide the Multipoint Control Unit (the video conferencing server) 
into more simple units, broadcasters. Each broadcaster receives 
the media from a participant, processes it and forwards it to 
the rest. These broadcasters can be distributed among a group 
of CPUs. By using this methodology, video conferencing systems 
can scale in a more granular way, improving the deployment. 

íTeywwds-multimedia, videoconference, mcu, cloud 

I. INTRODUCTION 

The surge of Cloud Computing systems has allowed de­
velopers to improve scalability on traditional services. They 
facilitate deployment of these services to companies that could 
not afford it before due to the high costs of other traditional 
infrastructures by charging only for the resources used. 

Almost at the same time, video conferencing systems have 
rapidly evolved to be available as part of web pages instead of 
stand-alone native applications. Hence, users now can easily 
communicate with others who are viewing the same web pages 
from their web browsers. Different technologies, like Adobe 
Flash1 and, more recently, HTML52 and WebRTC [1] have 
allowed this evolution towards the web. 

The convergence of these developments has enabled new 
types of systems that offer videoconference as a Cloud service. 
Taking advantage of cloud technologies, they can adapt to 
large variations in the number of users. This is particularly 
important in videoconference between multiple participants. 
Here, communication usually occurs in virtual rooms, con­
ceptual places in the Internet where users can, at least, see 
and listen to the others in the same room. 

Traditionally videoconference systems have been developed 
around a central device, called MCU (Multipoint Control 
Unit). MCUs have been used for years in these systems to 
address signalling and real-time transport of user's video and 
audio contents. However, they can also support advanced func­
tionality like recording, video and audio transcoding, video 
composition and audio mixing. Actually, MCUs commonly 
serve many virtual rooms with multiple users in each of 

1http://get adobe.com/es/flashplayer/ 
2http://dev. w3.org/html5/spec/ 

them. Hence, Cloud videoconference services should focus on 
solving the problem of adapting the number of MCUs to a 
varying number of users. 

In this paper we first establish a common ground by defining 
several concepts and topics related with MCUs, virtual video-
conference rooms, and the different layers that take part during 
the communication. Then we introduce the main problem that 
many MCU developers face when implementing a scalable 
service. From there, we describe our solution, primarily based 
on dividing the MCU into components that run different tasks. 
This tasks are designed so they can run in a logically isolated 
way. Once we have this isolated tasks, we can distribute them 
among different virtual machines. 

We have focused the solution in the most illustrative exam­
ple, which is the scenario where the MCU forwards each video 
and audio stream from every user to the rest of participants 
in the same room. The main task in this case is to copy 
every packet and send it to all participants. And we have also 
defined the component that is responsible for running this task 
within the MCU: OneToMany processor. Our solution divides 
a MCU into multiple OneToMany components, one per audio 
and video stream that need to be sent to the users. Moreover, 
we define the details we need to take into account for different 
communication layers as well as general considerations to 
manage all the components in this system. 

We also describe the limits and challenges that we identify 
in this solution. We provide solutions for these challenges, 
based on reducing the server's boot time, increasing the 
scalability of MCUs for an unlimited number of users and 
commenting how we can apply similar solutions to other 
kind of tasks performed by the MCU such as recording, or 
transcoding. 

The paper is structured as follows: in Section II we in­
troduce similar solutions and the limits they presented that 
prevented us from using them to scale MCUs in the Cloud. 
In Section III we define the scenario and problem described 
previously, and then in Section IV we propose a novel solution 
based on dividing the MCU into tasks that can be isolated. 
Finally, in Section V we comment the main conclusions that 
we obtained from this work and our proposal for future works. 
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II. RELATED WORK 

Since the term Cloud Computing was coined and its char­
acteristics enunciated, there has been plenty of studies on 
how to take different kind of applications to the Cloud. In 
[2] the authors provide a definition on Cloud computing and 
also identify the main obstacles and opportunities for growth, 
the ability to scale quickly is among them. Our objective 
is to apply the principles described in this work to the 
videoconference world. 

The illusion of infinite computational process and band­
width that the Cloud provides is very attractive for deploying 
complex video conferencing services. These services, usually 
rely on MCUs to interconnect clients avoiding peer-to-peer 
scenarios, especially when the number of participants starts to 
grow. The capabilities of deploying new MCUs on demand is 
highly sought after. 

Several works have tried to take advantage of the capabili­
ties the Cloud provides. In [3] the authors provide a general 
overview on video conferencing services in the Cloud. By 
designing the conference like as service oriented architecture, 
the final consumer application is separated from the video 
conference provider. Conferencing services are offered by 
request in a similar way infrastructure is offered in the Cloud. 
We build on top of that idea. In [4] the authors present 
an implementation that adheres to some of the principles 
described in the previous work. While in these works the 
general idea on how to deploy videoconferencing systems 
in the Cloud is clear, it is not specified how to react to 
the variations in demand. We provide a solution for those 
variations. 

In [5], the authors present a video conferencing system 
using a protocol that takes advantage of intra-Cloud networks 
to forward traffic among peers. However, they do not rely 
on a distributed MCU, so traditional MCU operations like 
recording or transcoding are not supported at this point. In 
the architecture we present, recording and transcoding are 
contemplated. 

The authors of [6] use Cloud deployed surrogates to assist 
in mobile video conferencing by unloading some of the 
more CPU intensive tasks such as transcoding, being able to 
exchange media streams among them. The focus of the work 
is not to replicate the capabilities of a MCU but to improve the 
experience of multi-party mobile users, so it does not provide 
a solution to the scalability of MCUs as such. 

III. SCENARIO AND PROBLEM DESCRIPTION 

Video conferencing with multiple participants has tradition­
ally been facilitated by MCUs, as opposed to peer-to-peer 
solutions. The lack of availability of IP Multicast [7] for 
end-users impairs the use of p2p for multi-party real time 
communications as the amount of participants dictates the 
amount of upload bandwidth needed. In such cases, MCU-
based application level multicast is used. The centralized 
architecture means there is a bottleneck in the server side but, 
on the other hand, the clients can save upload bandwidth as 
they do not have to send one stream to each participant. 
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Fig. 1. MCU terms 

New technologies provide video conferencing through web 
browsers. This enables a new, more dynamic way of commu­
nicating but also imposes a great task to MCU deployments as 
the traditional dedicated infrastructures are not tailored to meet 
the fast changes in demand associated with web applications. 
However, the architecture presented in this paper is general 
and does not only apply to web-based conferencing,. 

The possibilities of Cloud Computing enable video con­
ference providers to deploy as many MCUs as needed for a 
particular demand. However, the design of those MCUs can 
be optimized to avoid wasting Cloud resources. 

First, we will define the general scenario. The final objec­
tive is to establish a multi-party video conference where an 
undefined number of users send and receive real time audio 
and video. These clients will not connect directly, all the traffic 
will go through a MCU. 

A. Context 

The following terms will be used throughout this paper. 
These are illustrated in Fig.l: 

• Participant: A device that takes part in a video con­
ference. It can receive and send multimedia streams. In 
general it will represent the final users of the system. 

• Room: A conceptual environment where participants go 
to make their multimedia streams available and receive 
data from others. In general, we will say participants 
publish and subscribe to streams. The scope where these 
publications are visible is the room. 

• MCU: A software device that hosts one or more rooms. 
It physically receives the media streams from the partic­
ipants and is able to forward those streams to the others. 

While there are many ways to design and implement and 
MCU, such as the ones seen in [8], in this paper we will focus 
on a pure forwarding MCU. That is, the MCU receives packets 
from each participants and forwards them to the rest, without 
performing any advanced operations in the streams themselves 
like composing or mixing. Only the essential operations for 
transmitting the media will be performed. 

Furthermore, in the scope of this paper we well assume all 
the participants in a room subscribe to all the available media 
streams. 

In the described scenario, the MCU acts in three different 
levels: 



• Signaling: The MCU implements the required protocols 
that enable the negotiation required to establish the direct 
communication with the participants. 

• Media: The MCU is able to send and receive media 
streams using the video and audio codecs and protocols 
used by the participants. These protocols are negotiated 
during the signaling phase. 

• Control: The room concept is implemented in the MCU, 
allowing participants to publish and subscribe to media 
streams in that scope. This implies keeping a list of the 
participants in each room and being able to notify them 
when this list changes. 

B. Scalability 

In the server side, the MCU is the minimum complete piece 
of software that can be deployed and run on a node. Thus, it 
acts as the deployment unit when taken to a data center or a 
Cloud provider. That is, we will get more video conferencing 
capacity by adding more MCU nodes to the system. 

In a public Cloud or a private data centre scenario we can 
set up architectures such as the one described in [9] to balance 
the load of rooms among the different running MCUs, or event 
start and shutdown MCUs on demand. In software terms, it is 
a process that is run on every server we want to have. As such, 
the amount of participants that can be handled by an MCU is 
limited by the hardware it is installed on and the bandwidth 
available to it. When we limit the amount of participants in 
one room we can estimate the resources needed for each room 
and plan accordingly. 

However, if rooms get bigger, it can be deduced how being 
limited by the MCU as a unit will be a problem. For each 
participant in a room size N, the MCU receives 1 stream and 
forwards it iV — 1 times. In total, there are N2 connections to 
the MCU at the same time. When the next participant comes, it 
publishes its stream, that is received by all the others (1 + N), 
and it subscribes to the available streams (N connections) so 
we have 2N + 1 new connections, (N + l ) 2 in total. That is, 
the connections grow quadratically. The amount of processing 
power, memory and bandwidth needed is directly proportional 
to the number of active connections an MCU is maintaining. 
Thus, the amount of participants that an MCU can handle is 
much lower when they are arranged in big rooms. 

To show the implications of the number of connections in 
the overall load in the system, we have performed tests in our 
open source WebRTC MCU 3. This experiment was performed 
in a small instance in Amazon EC2 4, roughly equivalent to 
1GHz Intel Xeon family processor. 

We reproduce the scenario detailed above. One conference 
rooms where all participants subscribe to all the streams and 
optimize the quality of the streams by maximizing the used 
bandwidth. 

The clients provided 3 Mbps of traffic combining audio and 
video streams, for a very high quality video conference. The 
result can be seen in Figure 2 

3 www.lynckia.com/licode 
4http://aws.amazon.com/ec2/ 
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Fig. 3. Room as broadcasters 

As we can see, the increase in CPU is very significant 
for each participant that joins the session. While the MCU 
is only copying and forwarding packets, the high CPU load 
is explained by the use of SRTP [10]. Each packet has to be 
decrypted and encrypted again to be transmitted to each of 
the participants as each one of the connection has its own 
encryption keys. This, combined with the very high bit-rate of 
the media, is very CPU intensive. A bigger Amazon instance 
would, obviously, allow for more users in the same conference, 
however, the problem persists. 

If the size of the conference is not known beforehand we 
can be limited by the CPU when a participant arrives making it 
impossible to further increase the number. Besides, allocating 
lowly populated MCUs in powerful machines can be a waste 
of resources. 

In the following subsections, we propose a mechanism that 
allows to distribute a single room into several MCUs, allowing 
us a more granular control of the scalability in the system. We 
will do this by separating the media layer of the MCU from 
the control layer and dividing the media processing into more 
simple units. 

IV. D O T M 

To be able to divide the MCU into smaller components, we 
go back to the basics of the tasks the MCU has to perform. 

A room is a scope where participants can publish and 
subscribe to real-time streams. Each of these rooms can be 
seen as described in Figure 3, a set of broadcasters that take 
the input from one participant and forward it to the rest 
of the room. Thus, in a room with three participants, there 
will be three broadcasters with two subscribers each. These 
broadcasters are fully independent and do not have to know 

http://www.lynckia.com/licode
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of the existence of the others. However, the total delay from 
and to the participants is in the same rage of hundreds of 
milliseconds to make the communication viable. 

An MCU is a set of rooms, thus, we can build a full MCU 
with these smaller units. From that simple idea we divide the 
MCU into this broadcasters, we are going to call OneToManys 
(OTMs). Conceptually, these OTMs are subdivisions of the 
MCU and can be run anywhere, even on different infrastruc­
tures. The main difference is their smaller footprint, they only 
forward packets from one client. 

This atomic unit provides the name for the solution. The 
full architecture is named distributed OTMs (dOTM) as it is 
built by an array of distributed units. 

In the following subsections we will detail this separation by 
going through the three layers of the MCU: media, signaling 
and control. 

A. System Description 

1) Media layer: The media layer is the most intuitive. We 
will implement the logic for forwarding packets into separate 
processes. The processes can be started individually and will 
be in charge of receiving a stream from a single participant, 
copying the packets and forwarding them to the subscribed 
participants. 

In the example seen in Section III, a room with N par­
ticipants can be understood as N OTMs each with N — 1 
subscribers. If a new participant joins, a new OTM is created 
for this new entry and all the rest of the participants will 
subscribe to it, while the rest of the OTMs will have one 
new subscriber. So, while in the global picture the amount of 
connections still grows in a quadratic progression, each OTM's 
connections grow linearly. 

Being OTMs independent processes that can be deployed 
individually on demand, we can distribute a full MCU across 
a set of servers. These servers can be located in any infras­
tructure and allocated dynamically. 

These nodes do not have to be equal so we can adequate 
the number of OTMs deployed in each machine depending on 
its capabilities achieving a more efficient use of the available 
resources. As opposed to a fully centralized MCU, where a 
single node has to be able to process a full room. 

2) Signaling layer: In the fully centralized scenario there 
is a single access point for every participant in a room. 
Now, potentially, each participant would have to negotiate the 
connection details to a different server node in order to publish 
and subscribe to the media streams. We will assign the problem 
of directing the participants to the OTMs to the Control Layer. 
A full signalling stack has to be implemented in each OTM 
so the media negotiation can take place. 

For instance, when a client wants to subscribe to a stream, 
the control layer will know which deployed OTM is able to 
provide that stream. The client will be informed of the IP of 
that OTM so it can begin the actual signalling to establish the 
media session directly. 
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3) Control Layer: In order to establish a conference, the 
OTMs have to be deployed intelligently according to the 
resources available, the logical rooms have to be distributed in 
this OTMs and participants have to be able to find the OTMs 
that are supposed to broadcast their streams and provide them 
with the other participants media. 

To solve this problems, we introduce a new component in 
the system that will emulate the control layer of the centralized 
MCU, the Controller. This new unit takes over three main 
tasks: 

• Room Management. All the logic concerning rooms will 
be located here. A room will be a set of participants and 
their associated OTMs. 

• OTM Management. This includes starting and stopping 
OTMs remotely as well as monitoring their states. In 
case of any error in any of the OTMs, this layer would 
also react by starting another one and notifying all the 
involved participants. 

• Resource monitoring. This component also implements 
the monitoring of the available hardware and network 
resources in order to be able to efficiently allocate OTMs. 

In Figure 4 we can see the communication in the ar­
chitecture. The clients enter the system via the Controller. 
The Controller manages the OTM pool, starting and stopping 
OTMs as needed and redirects the clients to the right OTM to 
publish or subscribe to streams. 

This component is the new centralized entry point of the 
video conference system. Here we provide the behavior of the 
Controller when a new participant (Bob) joins a running room 
with N participants already communicating: 

1) Controller receives the petition to join the selected room 
from Bob. Controller adds bob as a participant in the 
room. 

2) A new OTM is launched by OTM in an available server. 
This new OTM will be in charge of forwarding Bob's 
stream to the other participants. 

3) Controller provides Bob with the access point to the 
new OTM, once the signaling is successful, Bob starts 
sending media to the distributed MCU. 



4) The rest of the participants are notified of the new OTM. 
Each of them join the OTM as a new subscribers. Once 
the signaling is over, all the participants receive Bob's 
media. 

5) Controller provides Bob with the list of all the OTMs 
running in the room. Bob joins each of them a sub­
scriber. 

This new centralized unit presents a new bottleneck in 
our architecture as it is a central component that will re­
ceive requests from all the client. However, as opposed to 
the real-time communication oriented MCU, the controller 
is request-response oriented. Techniques valid for request-
response servers (such as http servers) can be applied here 
and should be studied. 

B. Deployment considerations 

dOTM is designed to be deployed within a private or public 
Cloud infrastructure. The Controller acts as the single entry 
point and is aware of the resources available in the system. 
It is also able to start or stop VMs in order to allocate more 
OTMs. 

According to [11], Cloud virtual machines' startup time 
ranges from the 44 seconds to up to 800 seconds. This greatly 
impairs the ability of the Controller to start new OTMs on 
new machines on the fly as new participants want to join the 
video conferencing rooms. A waiting time of up to hundreds 
of seconds is not acceptable in any case. 

One possible solution to this scenario is to use predictions 
similar to those proposed for Cloud providers [12] to optimize 
the preallocation of VMs and OTMs while trying not to waste 
resources. However, the added granularity of dOTM provides 
easier allocation of new OTMs in the wasted CPU power of 
already running instances, compared to allocating full rooms. 

However, being OTMs single processes allow us to take 
advantage of systems like OSv 5 that aims to provide better 
performance for single applications on top of a hypervisor. 
This approach speeds up startup time enabling more dynamic 
OTMs distributions. 

C. OTM trees 

We have discussed the improvement is scalability from 
the centralized MCU to the distributed OTMs. However, the 
number of participants when using dOTM is still limited by the 
amount of connections a single OTM can handle, its fanout. 
Even though the growth in connections is linear (for each 
OTM), each new participant in the session implies a new 
subscriber to each running OTM. Enough participants will 
saturate the capacity of each single OTM separately. 

Broadcast trees can be used to avoid this problem. Here, 
each tree of OTMs would act as the distributor of one 
participants' stream to the others in a similar way as peer-
to-peer tree broadcast algorithms, except here, all the peers 
are in our infrastructure. 

In this case the limitation of the fanout of the OTMs would 
be set by each individual node running a OTM instance while 
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Fig. 5. Delay in OTM trees 

TABLE I 
DELAY IMPACT IN USER SATISFACTION 

Delay (ms) 
0- 200 
200 - 280 
280 - 390 
390 - 520 
> 520 

User Satisfaction 
Very satisfied 

Satisfied 
Some users dissatisfied 
Many users dissatisfied 

Nearly all users dissatisfied 

=0 
+ ETi 

¿=o 

the depth of the node would be given by the amount of delay 
that participants can tolerate. 

In [13], the International Telecommunication Union pro­
vides a recommendation for the total delay in voice commu­
nications over a network. It divides the delay in five levels as 
seen in Table I. 

Accordingly, we would be able to add layers to the tree as 
long as we make sure the delay is under the 500 milliseconds 
threshold. 

A brief study follows on how does this affect the depth of 
the OTMs trees. In this scenario, the delay of level n for a 
given subscriber participant is: 

LJn—-Lpub * J-sub * 

Where: 

• D is the total delay at level n. 
• Tpub is the transmission time from the publisher partici­

pant to the first OTM. 
• Tsub is the transmission time from the last OTM to the 

subscriber participant. 
• Ti is the delay from transmitting from OTM in level i to 

the OTM in level i + l. 
• Pi is the processing time for OTM in level i. 

In Figure 5 we can see a tree topology formed by OTMs 
and the delays associated with this distribution. 

This is common to all tree-based distribution architectures. 
However we can make some adjustments to optimize the delay 
in a OTM tree. 

The processing time in each OTM depends on the operations 
performed over the streams. In the case exposed in Section III, 
the packets needed to be decrypted and encrypted again for 
each of the participants. In a tree, the decrypting has to be 
done by the level 0 OTM and the encrypting is only needed 
in the last level just before sending the data to the participants. 

http://www.osv.io


The rest of the levels could perform minimal operations on the 
packets so the processing time would be greatly reduced. 

The transmission time among OTMs is given by the infras­
tructure where they are deployed. In a data center where all 
the nodes are connected in the same local network, we can 
assume the delay remains constant through the levels, so T¿ is 
a constant Totm and usually in the microseconds. 

The OTMs can also be deployed in different geographical 
locations affecting the allowed depth of the tree. However, 
as explained in [14], the intra-Cloud networks perform better 
than the regular Internet so, when there are trans-continental 
communications this approach can provide benefits in terms 
of quality of the communication. 

D. Advanced operations in the MCU 

Until now, we have focused this study to an MCU that only 
forwards packets without performing any operations to the 
streams themselves. However, the division into smaller units 
can also be applied to MCUs that perform more specific tasks. 
Here we will apply the dOTM architecture to three of the most 
important. 

1) Recording: Many video conferencing solutions offer the 
possibility to record the media streams of a given communi­
cation session. As the MCU is always receiving the published 
streams from all the participants it is often the device in charge 
of storing this streams. 

Even though dOTM is a distributed MCU, the Controller 
has information of all the streams that are going through the 
system. In order to record the video and audio of a participant 
we propose to implement a modified "participant" , recorder, 
that is able to subscribe to a OTM and store the contents of the 
stream. As a result, each of these recorders produce a media 
file containing the publication of one participant. 

However, instead of having all the recordings centralized as 
in a traditional MCU, the recorders can also be distributed 
in the available infrastructure. We propose using remotely 
mounted storage or Cloud storage solutions to save all the 
contents. 

The Controller unit is responsible for starting these 
recorders and attaching them to the OTMs that need to be 
recorded depending on the configuration of the room. Also, 
as part of the monitoring task of the Controller, it has to keep 
track of the available disk space for storage in case there is a 
limit in that area. 

2) Transcoding: MCUs are often used to change the char­
acteristics of the streams in a conference in order to better 
adapt to the network and client's capabilities. The most 
common scenario is when one or more of the participants 
have a higher quality connection to the conference than the 
others. In this case, the bit-rate of the stream sent by these 
participants can choke the connection of the lower-bandwidth 
ones. This causes dropped packets that degrade the quality of 
the experience and in some cases can even completely break 
the conference. To avoid this, transcoding-able MCUs operate 
on the high-quality streams to lower their bit-rate to sacrifice 

individual steam quality while improving the conference as a 
whole. 

With dOTM such mechanisms can also be implemented by 
modifying OTMs so that they can transcode the individual 
streams they are receiving before forwarding them to the other 
participants. 

The Controller unit has to be aware of the characteristics of 
the network connections of the participants and decide when 
to start a new transcoding OTM and then command the low 
bandwidth participants to subscribe to this new stream. Thus, 
we would not replicate the transcoding work. 

This does greatly increase the processing time for each 
stream as it has to be decoded and encoded again, that are 
expensive operations in terms of CPU. However, the ability 
to deploy it in individual instances in the Cloud helps us 
accommodate all this needed CPU power, at a cost. 

3) Gateways to other technologies: Conferencing gateways 
such as the one in [15] are quite common in the video 
conferencing world. They allow the interconnection of two 
different video conferencing technologies with varying degrees 
of transparency. 

While the implementation details can change depending 
on the two technologies that are to be interconnected, we 
will address the most common concerns in this translation 
scenarios and apply them to dOTM when interconnecting two 
different technologies, A and B. 

• Control: The Controller has to be aware of the char­
acteristics of technologies A and B. Furthermore, the 
participants have to be identified by the technologies they 
are using. With this information the Controller can use the 
modifications listed above to interconnect participants. 

• Media: Usually different video conference technologies 
use different codecs. If that is the case, transcoding OTMs 
have to be used. The Controller has to set up the two type 
of transcoding OTMs, from the codecs in technology A 
to B and back. 

• Signaling: OTMs have to be adapted to understand sig­
nalling from technologies A and B, once the do, they can 
act transparently in both enviroments. 

This can be expanded to interconnect as many technologies 
as needed. The concept of room is in the Controller and is 
technology agnostic, as long as the technology supports multi­
party communications. The flexibility offered by the OTMs 
also translates here as the core of the implementation does 
not change with each technology, only the initial signalization 
and media negotiation. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented the problem of achiev­
ing multi-party video conferences with a large number of 
participants. We have seen how big conferences have high 
requisites in terms of CPU power. In order to address this, 
we have designed a mechanism to distribute MCUs so they 
can be deployed in data centers or in cloud providers to 
take advantage of more computing resources. The mechanism 
acts by distributing MCU servers, dividing them into more 



simple parts. These parts, called OneToManys (OTMs), act as 
broadcasters where each participant can publish a stream that 
will be received by the rest of the session. We have named 
the full solution distributed OneToManys or dOTM. 

The control logic of a centralized MCU is still present in a 
centralized control unit (Controller). The usual mechanisms 
used for scaling web servers can be applied to this Con­
troller. We have upgraded our proposal of distributed MCU 
by addressing more advanced problems such as recording and 
transcoding. Also, we have shown how, by forming trees, 
we can avoid the bottleneck imposed by the fanout of each 
individual OTM, being the total depth of the tree limited in 
the server side by the delay caused by the transmission delays 
among the different OTMs. 

Regarding future work, an statistical evaluation of the 
implementation of the solution will finish the validation of the 
proposed architecture. Also, the work need to be completed 
by designing the deployment of even more advanced MCU 
features such as video composing and audio mixing using 
OTMs. On the other hand, we have discussed the problem of 
scaling up a conference by adding more OTMs. The problem 
of scaling down is also interesting. Given the granularity 
dOTM provides when deploying, if a conferencing room is 
divided among many different computing nodes, fragmentation 
may take place as resources are freed. A methodology to 
deploy and mechanisms to rearrange OTMs on the fly should 
be investigated. 
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