
HAL Id: hal-01065528
https://hal.science/hal-01065528

Submitted on 18 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sustainable Quality of Service for real-time jobs in
Autonomous Computing Devices

Rola El Osta, Maryline Chetto

To cite this version:
Rola El Osta, Maryline Chetto. Sustainable Quality of Service for real-time jobs in Autonomous
Computing Devices. 2014 International Conference on Future Internet of Things and Cloud, Aug
2014, Barcelone, Spain. pp.453-457, �10.11.1109/FiCloud.2014.81�. �hal-01065528�

https://hal.science/hal-01065528
https://hal.archives-ouvertes.fr

Sustainable Quality of Service
for real-time jobs

in Autonomous Computing Devices

Rola El Osta, and Maryline Chetto

University of Nantes
IRCCyN, UMR CNRS 6597, 44321 Nantes, France

Email: firstname.lastname@irccyn.ec-nantes.fr

Abstract

Energy harvesting has emerged as an efficient way
for powering wireless devices in order to extend their
lifetime. In this paper a dynamic power manage-
ment strategy is described that guarantees the correct
execution of every feasible application for a given
energy harvester, energy storage unit and processor.
The so-called ED-H strategy was recently proved to be
optimal in that sense that ED-H optimizes the Quality
of Service defined as the ratio of deadline success
for the real-time jobs. We propose to describe this
novel strategy for dynamic power management and
scheduling.

Index Terms

Dynamic power management, uniprocessor device,
real-time scheduling, energy harvesting

1. Introduction

The lifetime of individual sensors in wireless sensor

networks (WSN) highly depends on batteries which

are limited because of size, weight and other phys-

ical requirements. In order to improve sustainability

of WSNs, an approach known as energy harvesting

consists in using rechargeable batteries or capacitors in

order to store the energy which is harvested from the

environment. Energy harvesting now permits sensors

to run for very long periods of time (even perpetually)

with no need for periodic battery replacement. This

is a particular attractive technology when battery re-

placement is impractical due to deployment conditions.

The energy can be drawn from various ambient sources

such as light, radio frequency, thermal gradients, mo-

tion movements [12], etc.

However, the design of a sensor node that uses energy

harvesting raises specific problems which are different

from those with the classical power sources [7]. The

first problem lies in that the environmental energy

sources do not provide constant power i.e. the har-

vested energy can vary significantly over time which

leads to either energy starvations or energy overflows.

The second problem is that the energy storage unit has

a finite capacity.

In this paper, we address the scheduling problem for a

single processor device that executes preemptible time

critical jobs. Each one has a certain energy requirement

and has to execute by a certain deadline. A job can be

the invocation of a periodic task or sporadic task or

it can be aperiodic , thus arriving at an unpredictable

time. The scheduling problem we have to deal with is

to guarantee all the timing requirements of the jobs by

suitably exploiting both the processor capacity and the

available ambient energy.

The aim of this paper is to describe a new strategy

which permits to decide when to execute a job and

which job to execute. The Earliest Deadline for

energy Harvesting systems scheduling algorithm,

ED-H for short, recently proved to be optimal [3], is

consequently for both dynamic power management of

the computing device and real-time scheduling of jobs.

Outline The remainder of the paper is organized

as follows. Related work and background materials on

scheduling and overload management are presented in

Section II and section III. In section IV, we present

the system model. Section V describes concepts and

the novel ED-H scheduler. Main results about ED-H

are summarized in section VI. Section VII focuses on

practical considerations.Section VIII gives concluding

remarks.

2014 International Conference on Future Internet of Things and Cloud

978-1-4799-4357-9/14 $31.00 © 2014 IEEE

DOI 10.1109/FiCloud.2014.81

453

2. Related work

In a Real-Time Energy Harvesting (RTEH) system,

it is sometimes preferable even necessary to let the

processor inactive and not to execute a ready job.

This is because energy starvation could prevent future

occurring jobs to meet their deadlines. Another key

consideration is that the system must operate with

energy neutrality, thus consuming only as much energy

as harvested [6].

The Lazy Scheduling algorithm, known as LSA, pro-

vides an optimal solution to the scheduling problem in

RTEH systems [11]. However, this algorithm assumes

that the energy demand of a job and its actual exe-

cution time behave proportionally. Such a scheduling

solution cannot be applied in most of systems where

instantaneous power consumed by jobs varies along

time depending on circuitry and devices required by

their execution. This observation has consequently

motivated our work on a more realistic energy model

considered hereafter.

Initially, we investigated the issue of scheduling peri-

odic task sets only in [4]. We presented an heuristic

called EDeg (Earliest Deadline with energy guarantee).

However we did not provide schedulability test and

formal performance evaluation for it. EDeg has been

compared to EDF (Earliest Deadline First) scheduler

through simulations. It makes a significant perfor-

mance enhancement in comparison to a classical non

idling and non clairvoyant scheduler such as EDF. In

[5], we also proposed an online scheduler called EH-

EDF which is another variant of EDF. EH-EDF is

non-clairvoyant but an idling scheduler that permits

the processor to stay inactive despite some pending

jobs. EH-EDF outperforms EDF due to its idling

capabilities. Research on fixed priority scheduling for

RTEH systems has been reported in [1]. An optimal

scheduler called PFPasap was proposed for periodic

task sets and a constant source power only.

3. Background Materials

Real-time scheduling theory mainly deals with fea-

sibility analysis and online priority driven scheduling

[8]. EDF is an online non-idling dynamic-priority

scheduling algorithm which at each instant chooses for

execution the job with the closest absolute deadline.

EDF is optimal for scheduling arbitrary collections of

independent jobs [9] with no energy limitations. The

jobs may result from invocations of periodic tasks,

invocations of sporadic tasks or they can be aperiodic

jobs. By virtue of its optimality, any feasible set of jobs

Figure 1. An Energy Harvesting System

is guaranteed to be successfully scheduled by EDF i.e.

all the deadlines will be met in the EDF schedule.

4. The system model

In that paper, our work focusses on a RTEH system

which comprises one processing module (PM), an

energy harvesting module (HM) and an energy storage

module (SM) (see Fig. 1). The energy consumption of

the PM is only due to dynamic switching energy and

the PM is supplied exclusively with energy generated

by the environmental source. The real-time jobs need

to be executed on the PM before their respective

deadline. Each job is characterized by four parameters

- arrival time, worst case execution time, worst case

energy requirement and deadline.

At every time t, the HM harvests energy from

the environment and converts it into electrical

power with instantaneous charging rate Pp(t).
The energy harvested in the time interval [t1, t2) is

Ep(t1, t2) =
∫ t2
t1

Pp(t)dt. We can predict the incoming

energy accurately for near future. We assume that the

electrical energy produced by the HM in any unit of

time never exceeds the energy consumed in that unit

of time.

Our system uses an energy storage energy unit (e.g.

super-capacitor or rechargeable battery) to continue

operation even when there is no energy to harvest.

Its nominal capacity C corresponds to the maximum

amount of energy (expressed in energy unit) that can

be stored at any time. The SM receives power from the

HM and delivers power to the PM. The stored energy

at any time t is denoted E(t). The SM does not leak

energy over time.

5. The ED-H power management strategy

In that section we describe the novel ED-H sched-

uler which was first presented and evaluated in [3].

Conventional EDF is a greedy scheduler since it exe-

cutes jobs as soon as possible and spends the stored

454

energy disregarding needs of future occurring jobs. In

that version of EDF called EDS (Earliest Deadline as

Soon as possible), the processor is never let inactive if

at least one job is awaiting for execution. If we assume

jobs to be scheduled according to the earliest deadline

rule, energy starvation on a job say τi can be only

caused by a job, say τj which executes before the

release of τi such that dj > di. Energy starvation of τi
caused by τj such that dj ≤ di could not be avoided.

It is obvious that clairvoyance on future jobs arrivals

and future energy production will help the online EDF

scheduler to anticipate possible energy starvation and

deadline violation. Consequently, the main idea of ED-

H is to authorize job executions only if no future

starvation can occur.

5.1. Slack energy concept

We introduce the static slack energy of τ that

represents the additional energy that could be

consumed from any instant while still satisfying

all the energy and timing constraints of τ . The

static slack energy of a job set τ is given by

SSEτ = min0≤t1<t2≤dMax
SSEτ (t1, t2).

We define the so-called preemption slack energy
for current time tc as the maximum energy that could

be consumed by the currently active job that still

guarantees the feasibility of higher priority jobs that

may preempt it.

Let us define the slack energy of a job τi at current

time tc as SEτi(tc) = E(tc) + Ep(tc, di) − g(tc, di)
where g(tc, di) refers to the energy demand between

tc and di. Clearly, SEτi(tc) represents the maximum

energy that could be consumed within [tc, di). If

there is some job τi such that SEτi(tc) = 0, then the

execution of any job with deadline after di between

tc and di will lead to energy starvation for τi.

Let d be the deadline of the active job at current time

tc. We define the preemption slack energy of a job set

τ at tc as PSEτ (tc) = mintc<ri<di<d SEτi(tc).

5.2. Slack time concept

Let us define the processor demand of a job set
τ on the time interval [t1, t2) as the total processing

requirement between t1 and t2, denoted by h(t1, t2).
Then, we can define the static slack time a job set τ
on the time interval [t1, t2) as follows: SSTτ (t1, t2) =
t2 − t1 − h(t1, t2). Clearly, SSTτ (t1, t2) represents

the longest time that could be made available within

Figure 2. ED-H: a scheduler and a dynamic power
manager

[t1, t2) after executing jobs of τ with release time at

or after t1 and deadline at or before t2.

The slack time of a job set τ at current time tc
is STτ (tc) = mindi>tc STτi(tc). The slack time

represents the maximum continuous processor time

that could be available from time tc while still

guaranteeing the deadlines of all the jobs.

Roughly speaking, ED-H will consist in permitting

the processor to be inactive if the slack time is positive.

In contrast the processor should imperatively start

executing any job when the slack time falls to zero. In

addition, a positive preemption slack energy signifies

that the currently active job can continue execution. In

contrast a null preemption slack energy imposes to stop

execution and start recharging the energy storage unit.

We are now prepared to describe the ED-H scheduling

algorithm (see Fig.2).

5.3. Scheduling framework

Let Lr(tc) be the list of uncompleted jobs ready for

execution at tc. The ED-H scheduling algorithm obeys

the following rules:

• Rule 1: The EDF priority order is used to select

the future running job in Lr(tc).
• Rule 2: The processor is imperatively idle in

[tc, tc + 1) if Lr(tc) = ∅.
• Rule 3: The processor is imperatively idle in

[tc, tc + 1) if Lr(tc) �= ∅ and either E(tc) = 0
or PSEτ (tc) = 0.

• Rule 4: The processor is imperatively busy in

[tc, tc + 1) if Lr(tc) �= ∅ and either E(tc) = C
or STτ (tc) = 0

• Rule 5: The processor can equally be idle or

busy if Lr(tc) �= ∅, 0 < E(tc) < C, STτ (tc) > 0
and PSEτ (tc) > 0.

The algorithm says that:

• the processor must be inactive if either the energy

storage unit is deplenished or executing any job

455

would prevent at least one future occurring job

from being executed timely because of energy

starvation i.e. the system has no preemption slack

energy at tc.

• the processor cannot be inactive if either the

energy storage unit is fully replenished or making

the processor idle would prevent at least one

job from being executed timely because of time

starvation i.e. the system has no slack time at tc.

• the scheduler may decide on the processor

state when the storage unit is neither full nor

empty and the system has both slack time and

preemption slack energy.

• we start charging the storage unit when, either it is

empty or there is not enough energy to guarantee

the feasible execution of all future occurring jobs.

6. Properties of ED-H

6.1. ED-H optimality

Theorem 1: The ED-H scheduling algorithm is op-

timal for the RTEH model.

Proof: see [3]

Optimality signifies that ED-H can produce a valid

schedule

• if there is no time interval with a length lower

than the processor demand

• and there is no time interval where the energy

demand is greater than the available energy.

6.2. ED-H schedulability test

Hereafter, we present a test for verifying that

a given job set can indeed meet its deadlines, be

given the capacity of the energy storage unit and the

profile of power drawn from the environment. We

give a necessary and sufficient condition for ED-H

schedulability. As ED-H is optimal, the condition is

also a feasibility condition.

Theorem 2: τ is feasible if and only if

SSTτ ≥ 0 and SSEτ ≥ 0 (1)

Proof: see [3]

The objective of feasibility checking is to predict

whether time and energy will be enough to meet the

timing requirements of all the jobs. In the design of

real-time systems composed of well known periodic

tasks with no energy limitations, we perform an off-

line check and we use an online algorithm to schedule

and dispatch the jobs at runtime. For RTEH systems,

the checking can be done off-line only when first

the jobs are instances of periodic tasks and second

the energy profile is precisely characterized for all

the application lifetime. In all other situations, the

schedulability checking should be realized at runtime

in dependence with the horizon of the prediction tech-

nique. This signifies that regularly, the schedulability

test is performed in order to verify that all the jobs

released on the next time window will be feasibly

scheduled. Otherwise, a decision must be made in

order to make the system feasible by discarding some

jobs and consequently get a lesser Quality of Service.

7. Implementation considerations

We wait from the real-time energy harvesting sys-

tem to achieve energy-neutral operation i.e. to use

the harvested energy at an appropriate rate such that

the system continues to operate perennially. As the

harvested energy availability varies with time in a non

deterministic manner, monitoring the residual capacity

is not sufficient. We need a sophisticated characteriza-

tion of the energy source. The ED-H scheduler not

only must track the generated energy, but also the

energy flow into and out of the storage unit to provide

an accurate estimate of the residual capacity. If the

ED-H scheduler as well as the schedulability test are

used for practical implementation, the first required

measurement is the amount of extracted environmental

energy, which is a technological difficulty. Nonethe-

less, various prediction models have been studied and

can be found in [10].

A slack computation algorithm is correct if it never

says that the system has slack when it has not, as

regards time or energy. Indeed, this may cause a job to

complete too late due to time or energy insufficiency.

Computations of slack time and slack energy by the

scheduler at runtime can use a static or dynamic ap-

proach depending on the processing load. If all the jobs

are issued from a periodic task set, the initial slacks of

all the jobs (known beforehand) can be computed off-

line based on the given parameters relating to time and

energy. It can be verified that the slacks are calculated

in O(n2) where n is the total number of jobs. The

scheduler just updates the slacks during runtime (see

[2]) for slack time computation). According to the

dynamic approach, the scheduler computes the slack

time and the slack energy at run time from scratch.

456

Dynamic computation of the slack time and the slack

energy present the advantage to reclaim processor time

or/and energy not used by the jobs. We keep track of

the cumulative unused processor time and unconsumed

energy. However, this leads to high runtime overheads.

8. Concluding remarks

In this work, we proposed a new general model

dedicated to energy harvesting real-time systems. We

studied first the problem of checking the feasibility

for such systems and second an optimal scheduling

strategy for the real-time jobs with processing and

energy requirements.

The ED-H scheduler is a semi-online variant of the

famous EDF scheduler. Similarly to LSA, the ED-H

power management strategy is optimal but it is more

flexible than LSA since the user may decide when

inserting idle periods for recharging the storage unit

(as long as slack time is available and no energy is

wasted because of energy overflow).

Such scheduler is highly flexible since it permits us to

schedule time critical jobs which are periodic, sporadic

or aperiodic ones.

Future work includes the adaptation of ED-H to new

generation processors with DVFS (Dynamic Voltage

Scaling) facilities.

References

[1] Y. Abdeddaim, Y. Chandarli, D.Masson. The Optimal-
ity of PFPasap Algorithm for Fixed-Priority Energy-
Harvesting Real-Time Systems, Proc. of 25th Euromicro
Conference on Real-Time Systems, 2013.

[2] H. Chetto, M. Chetto. Some Results of the Earliest
Deadline Scheduling Algorithm. IEEE Transactions on
Software Engineering, Volume 15, Issue 10, pp. 1261-
1270, 1989.

[3] M. Chetto. Optimal Scheduling for Real-Time Jobs in
Energy Harvesting Computing Systems. IEEE Trans-
actions on Emerging Topics in Computing, DOI:
10.1109/TETC.2013.2296537, 2014.

[4] H. El Ghor, M. Chetto, R. Hage Chehade. A real-
time scheduling framework for embedded systems with
environmental energy harvesting, Journal of Computers
and Electrical Engineering, Volume 37 Issue 4, pp. 498-
510, 2011.

[5] H. El Ghor, M. Chetto and R. Hage Chehade. “A
Nonclairvoyant Real-Time Scheduler for Ambient Har-
vesting Sensors”. International Journal of Distributed
Sensor Networks, Volume 2013, Article ID 732652, 11
pages, http://dx.doi.org/10.1155/2013/732652.

[6] A. Kansal, J. Hsu. Harvesting aware Power Manage-
ment for Sensor Networks, Proc. of ACM/IEEE Design
Automation Conference, pp. 651-656, 2006.

[7] A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava. Power
Management in Energy Harvesting Sensor Networks,
ACM Transactions on Embedded Computing Systems,
Vol. 6, No. 4, 2007.

[8] J. W. S. Liu. Real-Time Systems, Prentice Hall, 592
pages, 2000.

[9] C.-L. Liu, J.-W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. J.
of the Association for Computing Machinery, 20(1), pp.
46-61, 1973.

[10] S. Liu, J. Lu, Q. Wu, Q. Qiu. Harvesting-Aware Power
Management for Real-Time Systems with Renewable En-
ergy, IEEE Transactions on Very Large Scale Integration
Systems, pp. 1-14, 2011.

[11] C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time
scheduling for energy harvesting sensor nodes, Real-
Time Systems, Volume 37, Issue 3, pp. 233-260, 2007.

[12] S. Priya, D.-J. Inman. Energy Harvesting Technologies,
Springer-Verlag, New York (USA), 2009.

457

