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Abstract—Cloud technology is moving towards more
distribution across multi-clouds and the inclusion of various
devices, as evident through IoT and network integration in the
context of edge cloud and fog computing. Generally, lightweight
virtualisation solutions are beneficial for this architectural setting
with smaller, but still virtualised devices to host application
and platform services, and the logistics required to manage
this. Containerisation is currently discussed as a lightweight
virtualisation solution. In addition to having benefits over
traditional virtual machines in the cloud in terms of size and
flexibility, containers are specifically relevant for platform
concerns typically dealt with Platform-as-a-Service (PaaS) clouds
such as application packaging and orchestration. For the edge
cloud environment, application and service orchestration can
help to manage and orchestrate applications through containers
as an application packaging mechanism. We review edge cloud
requirements and discuss the suitability container and cluster
technology of that arise from having to facilitate applications
through distributed multi-cloud platforms build from a range
of networked nodes ranging from data centres to small devices,
which we refer to here as edge cloud.
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I. INTRODUCTION

Cloud computing is moving from centralised, large-scale
data centres to a more distributed multi-cloud setting com-
prised of a network of larger and smaller virtualised infras-
tructure runtime nodes. Virtualising reaches the network and
allows Internet-of Things (IoT) infrastructures to be integrated.
These architectures and their setting are often referred to as
edge clouds, edge computing or fog computing [4]. As a chal-
lenge resulting from distribution, we need a more lightweight
solutions than the current virtual machine (VM)-based virtu-
alisation technology. Furthermore, as another challenge, the
orchestration of lightweight virtualised runtimes is needed.

Regarding the first challenge, the cloud relies on virtual-
isation techniques to achieve elasticity of large-scale shared
resources. Virtual machines (VMs) have been at the core
of the compute infrastructure layer providing virtualised op-
erating systems. We will investigate containers, which are
a lightweight virtualisation concept, i.e., less resource and
time consuming. VMs and containers are both virtualisation
techniques, but solve different problems. Containers are a
solution for more interoperable application packaging in the
cloud and should therefore address the PaaS concerns.
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Contrary to VMs, containers can be seen as more flexible
tools for packaging, delivering and orchestrating both software
infrastructure services and applications, i.e., tasks that are typ-
ically a PaaS (Platform-as-a-Service) focus. Containers built
on recent advances in virtualisation, allowing a more portable
way aiming at more interoperability [19] while still utilising
operating systems (OS) virtualisation principles. VMs on the
other hand are about hardware allocation and management
(machines turned on/off and provisioned). With them, there
is an laaS (Infrastructure-as-a-Service) focus on hardware
virtualisation. Containers as a replacement for VMs are only
a specific use case where the allocation of hardware resources
is done through containers by componentising workloads in-
between clouds. The basic ideas of containerisation are: (i) a
lightweight portable runtime, (ii) the capability to develop, test
and deploy applications to a large number of servers and (iii)
the capability to interconnect containers. Containers address
concerns at the cloud PaaS level. They also related to the IaaS
level through sharing and isolation aspects that exemplify the
evolution of OS and virtualisation technology.

Regarding the second challenge, for portable and interoper-
able software applications in a distributed cloud architecture,
we need a lightweight distribution of packaged applications
for deployment and management [6]. Again, the solution can
be containerisation, but would need to be extended to deal
with the orchestration needs. In order to assess the concerns
here, we look into managing clusters of containers and their
orchestration in a cloud setting.

This article reviews the suitability of container technology
for edge clouds and similar settings, starting with summarsing
the virtualisation principles behind containers and identify-
ing key technical requirements of edge cloud architectures.
The relevance of the new container technology for PaaS
cloud concerns with application packaging and orchestration
concerns shall be specifically investigated.This research shall
clarify how containers can change PaaS clouds as a platform
technology. As we consider distributed clouds, the resulting
requirements for application packaging and interoperable or-
chestration over clusters of containers are central. We discuss
what is needed to evolve PaaS technology further as a dis-
tributed cloud software platform resulting in a discussion of
achievements and limitations of the state-of-the-art. In order to
illustrate the technologies in question, we will refer to sample
technologies they exemplify technology trends. As part of this
investigation, we abstract concepts from various technology



platforms and condense them into sets of common principles,
supplemented by architecture frameworks that represent best
practice.

We start with a more detailed review of the architectural
setting in Section II and discuss the resulting virtualisation and
management needs to Section ITII. We then introduce container-
based virtualisation in Section IV. In Section V, we focus the
investigation on PaaS cloud concerns. Finally, clustering and
orchestration are discussed in Section VI, before ending with
some conclusions.

II. TowARDS EDGE CLOUDS

Cloud edge computing is pushing computing applications,
data, and services away from centralized cloud data centre
architectures to the edges of the underlying network [5]. The
objective is to allow analytics and knowledge generation ser-
vices to be placed at the source of the data. Cloud computing
at the edge of the network links into the internet of things
(IoT). The core cloud provides a globalised view; edge clouds
are responsible for localised views (to host services close to
or at endpoints of networks), on-device, private cloud like
infrastructures. We can classify distributed clouds into three
architectural models, ranging from tightly coupled to highly
dispersed ones:

e  Multi-datacentre clouds with multiple, but tightly cou-
pled data centers under control of the same provider.

e Loosely coupled multi-service clouds combine ser-
vices from different cloud providers.

e Decentralized edge clouds utilize edge resources to
provide data and compute resources in a highly dis-
persed manner.

A. Edge Cloud Technology Requirements

In order to support specifically the edge clouds, we need for
instance location-awareness and computation placement, repli-
cation, and recovery. For example, consider a content analysis
application that processes digital multimedia content hosted
throughout the Internet. Edge resources would be required for
both computation and data storage to address the wide data
distribution. The necessary edge resources could be dedicated
resources spread across content distribution networks.

Various virtualised resources exist in this setting that can
support edge clouds [15] — all programmable, but different
in size and type, such as nodes and edges (the latter are
actually nodes of the network itself). This results in different
resource restrictions calling for lightweightness with respect to
the virtualisation approach [23]. In centre and edge clouds, but
also the IoT objects linked to, compute and storage resources,
platform services and applications need to be managed, i.e.,
packaged, deployed and orchestrated, see Figure 1. For the
network, virtualisation capacity is required as well — cf. work
on software-defined networks (SDN). We need to support data
transfer between virtualised resources and to provide compute,
storage, network resources between end devices and traditional
cloud computing data centres.

e  Concrete requirements arising from this are location
awareness, low latency and mobility support to man-
age cloud end points with rich (virtualised) services.
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Fig. 1.

e  SDN-virtualised nodes and also virtualised edges and
connectors require a lightweight virtualisation technol-
ogy of efficiently deploy portable services at edges.

e This type of virtualised infrastructure might provide
end-user access and IoT links — through possibly pri-
vate edge clouds (which are technically miniclouds).

These need to be configured and updated in a secure way —
this particularly applies to the service management. We would
also need a development layer on top to provision and manage
applications on these infrastructures. Solutions here could
comprise common topology patterns, controlling application
lifecycle and an easy-to-use API. The right abstractions for
edge cloud oriented management at a typical PaaS layer would
be beneficial.

B. Architectural Principles

An architecture addressing the challenges can be organised
into layers (bottom to top):

e at the bottom a smart things network (smart sensors
network, wireless sensor and actuator networks, mo-
bile and ad-hoc networks — possibly with a MQTT
protocol on top with a pub/sub model),

e a field area network (such as 3/4G, LTE, WIFI) and
then the IP core infrastructure, and

e  avirtual compute/storage/network cloud with applica-
tions on top.

The operation and management of this architecture will
see service providers push out (i.e., deploy) service in suitable
application packages (such as containers) to clustered edge
clouds. While some solutions like Docker container architec-
tures for clouds exist [22], there is still a need for a topology
specification and a derived orchestration/choreography plans.
Existing solutions in this space include Kubernetes, but, as we
will see, leave some orchestration questions unanswered.

C. Challenges — Development and Operations

We assume the requirements to include multi-cloud de-
ployment (via lightweight application packaging, distribution
and support of topology specification and management. The
aim is to allow, in virtualised form, various services such as
security and analysis services deployed on these resources [9].
Specifically, the development of these architectures needs to



be supported through orchestration based on topology patterns
reflecting common and reference architectures.

Several technologies exist that might contribute to the
solution:

e  Application packaging through containerisation: Con-
tainers can be used to distribute service and appli-
cations (sometimes called appliances) to the edge.
Docker has already been used to do this (providing
plugins link to agents which could be Docker run-
times).

e  Programmability: Orchestration can be supported
through topology specification based on TOSCA
topology patterns [2]. Overall, service composition
(orchestration) needs to cover the whole life-cycle —
deploy, patch, shutdown. Operations are mapped to
cloud infrastructure management and a TOSCA engine
runs on top of here edge cloud infrastructure [3].

We now specifically look at edge clouds and fog computing
from a PaaS perspective taking lightweight application pack-
aging and topology specification into account.

III.  VIRTUALISATION PRINCIPLES

Virtualisation is an answer to the need for scheduling pro-
cesses as manageable container units. Processes and resources
in this context are at the operating systems level the file system,
memory or the network. We review these technology principles
in order to allow us to judge the capability of the technology
for edge clouds later on.
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Fig. 2. VM (left) and Container (right) Virtualisation Architecture.
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In the cloud as a virtualised architecture, virtual machines
(VMs) are the core virtualisation mechanism. We briefly
review the development of virtualisation over the years.

VMs have been improved over the years by enhancing
scheduling, packaging and resource access (security). VM
instances as guests use isolated large files on their host to
store their file system and to run a single, large process on
the host. Here, some concerns such as security are addressed
through isolation. However, limitations remain. For instance,
full guest OS images are needed for each VM in addition to
binaries and libraries necessary for the applications, which is
a space concern that means additional RAM and disk storage
requirements. It also causes performance issues as this is slow
on startup (boot), see Fig. 2. Furthermore, multi-tenant clouds
require the sharing of disk space and CPU. In a virtualised
environment, this has to managed such that the underlying
platform and infrastructure can be shared in a secure, but also
portable and interoperable way [18].

At the platform service level, packaging and application
management is an additional requirement. Containers can
match these requirements, but a more in-depth elicitation of
specific concerns is needed.

Container technology is a development that meets the
needs. A container is essentially a packaged self-contained,
ready-to-deploy set of parts of applications, that might even
include middleware and business logic in the form of binaries
and libraries to run the applications [21], see Fig. 2. A typical
example is a Web interface component with a Tomcat server.
Container tools like Docker are frameworks built around
container engines [22]. They make containers a portable way
to package applications to run in containers. In terms of a
tiered application, a container includes an application tier (or
node in a tier). Two challenges remain, however:

e  Managing dependencies between containers in multi-
tier applications is a problem that emerges. As dis-
cussed, an orchestration plan can describe compo-
nents, their dependencies and their lifecycle. A PaaS
cloud can then enact the workflows from the plan
through agents (which could be a container runtime
engine). Software platform services can support pack-
aging and deployment of applications from containers.

e The second challenge is to define, deploy and op-
erate cross-platform capable cloud services using a
lightweight virtualisation mechanism such as con-
tainers. There is also a need to transfer cloud de-
ployments between cloud providers in a distributed
context, which requires lightweight virtualised clusters
for container orchestration. Some PaaS are lightweight
virtualisation solutions in this sense.

IV. CONTAINER VIRTUALISATION FOR LIGHTWEIGHT
APPLICATION PACKAGING

The evolution of virtualisation has resulted in more
lightweight solutions. This is specifically relevant for appli-
cation packaging at a software platform and application level.
Recent virtualisation advances have improved multi-tenancy
capabilities, i.e., the capability to share a resource in a cloud.

A. LXC Linux and Docker Containers

Recent Linux distributions — part of the Linux container
project LXC — provide kernel mechanisms such as namespaces
and cgroups to isolate processes on a shared operating system
[21]. These are examples of OS virtualisation advances.

e  Namespace isolation allows groups of processes to be
separated. This ensures that they cannot see resources
in other groups. Different namespaces are the used for
process isolation, network interfaces, access to inter-
process communication, mount-points or for isolating
kernel and version identifiers.

e cgroups (control groups) manage and limit resource
access for process groups through limit enforcement,
accounting and isolation, e.g., limiting the memory
available to a specific container. This enables better
isolation between isolated applications on a host. This
restricts containers in multi-tenant host environments.



Control groups allow sharing available hardware re-
sources between containers and, if required, setting
up limits and constraints.

Containers are, as a consequence of these properties, virtu-
alisation techniques suitable for application management in
PaaS clouds. A container is represented by lightweight images
— VMs are also based on images, but full monolithic ones.
Processes running in a container are almost fully isolated. Con-
tainer images are the building blocks from which containers
are launched.

There is still an ongoing evolution of OS virtualisation
and containerisation, aiming at providing OS support through
standard APIs and tools for container management, network
management and making resource utilisation more visible and
manageable.

Docker is a container solution that builds on top of Linux
LXC techniques. Docker is the most popular container solution
at the moment and shall be used to illustrate containerisation.
A Docker image is made up of file systems layered over each
other, similar to the Linux virtualisation stack, using the LXC
mechanisms, see Fig. 3. A container-aware daemon, called
systemd, starts containers as application processes. It plays a
key role as the root of the user’s process tree.

e  Boot process: In a traditional Linux boot, the kernel
first mounts the root file system as read-only, before
checking its integrity. It then switches the rootfs vol-
ume to read-write mode. Docker mounts the rootfs as
read-only (as in a traditional Linux boot), but instead
of changing the file system to read-write mode, it uses
a union mount to add a writable file system on top of
the read-only file system.

e  Mounting: This allows multiple read-only file systems
to be stacked on top of each other. Using union mount,
several file systems can be mounted on top of each
other. This property can be used to create new images
by building on top of base images. Each of these
file system layers is a separate image loaded by the
container engine for execution.

e  Container: Only the top layer is writable, which is
the container itself. The container can have state and
is executable. It is a kind of directory for everything
needed for execution. While they are normally stateful,
containers can be made into stateless images to be
reused in more complex builds.

A typical layering could include, from top to bottom (Fig.
3), a writable container image for applications, an Apache
image and an Emacs image as sample platform components,
a Linux image (a distribution such as Ubuntu), and the rootfs
kernel image. Containers are based on layers composed from
individual images built on top of a base image that can be
extended. Complete Docker images form portable application
containers. They are also building blocks for application stacks.
This approach is called lightweight as single images can easily
be changed and distributed.

B. Application Containerisation and Container Management

Fig. 3 shows a sample containerised application, the
writable container. Containers can encapsulate a number of ap-
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Fig. 3. Container Image Architecture.

plication components through the image layering and extension
process. Different user applications and platform components
can be combined in a container. Fig. 4 is an illustration of
different scenarios using the container capability of combining
images for platform and application components.
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Fig. 4. Container-based Application Architecture.

A container solution consists of two main components —
(1) an application container engine to run images and (ii) a
repository/registry that is operated via push and pull operations
to transfer images to and from host-based container engines.

o These repositories play a key role in providing ac-
cess to possibly reusable private and public container
images, which might be tens of thousands. Examples
of popular images are platform components such as
MongoDB or Node.js.

e  The container API supports life-cycle operations like
creating, defining, composing, distributing containers,
running/starting images and running commands in
images.

e Container creation for applications is done by assem-
bling them from individual images, which can be base
images extracted from repositories.

In addition to these basic features, storage and network
management are two specific functions that containers as
application packages for distributed edge clouds also require.

Firstly, there are two ways data is managed in Docker —
through data volumes and data volume containers. Data storage
operations can add data volumes to any container. A data
volume is a designated directory within one or more containers
that bypasses the union file system. This allows to provide
features for persistent or shared data. Volumes can then be
shared and reused between containers (Fig. 5). A data volume
container enables sharing persistent data between application
containers through a dedicated, separate data storage container.

Secondly, network management is based on two methods
for assigning ports on a host — through network port mappings



TABLE 1.

VM vS. CONTAINER COMPARISON.

VMs

Containers

Standardisation

Host/guest ar-
chitecture

Fairly standardised system im-
ages with capabilities similar to
bare-metal computers.

Can run guest kernels that are
different from the host, with
consequent more limited in-

Not well standardised, OS-
and kernel-specific with vary-
ing degrees of complexity.

Run host kernels at guest level
only, but can do so possibly
with a different package tree or

distribution such that the con-
tainer kernel operates almost
like the host.

Started through standard boot Can start containerised ap-
process, resulting in a number | plication directly or through
of hypervisor processes on the | container-aware init daemon
host. like systemd. These appear as
normal processes on the host.

sight into host storage and
memory management.

Boot process

TABLE II. CONTAINER MODELS [ADAPTED FROM [13]].
(O] Container Models
Linux Docker, LXC Linux containers, OpenVZ (and others for variants

such as BSD, HP-UX, Solaris)

We have discussed LXC and Docker in detail. OpenVZ is also
container-based virtualization for Linux. OpenVZ puts more em-
phasis on security, but in contrast to LXC requires additional
patches to the (vanilla0 kernel to operate.

Sandboxie

- Provides application isolation support for Windows environments.
A sandbox is a container placed around an application. In this
sense, virtual machines are sandboxes that emulate a complete host
computer.

Warden/Garden (in Cloud Foundry):

- Warden provides an API for managing containers (isolated en-
vironments). Warden provides a service for managing a collection
of containers and defines a protocol for clients to send requests to
and receive responses from the server. Containers can be limited
in terms of CPU usage, memory usage, disk usage, and network
access. Warden builds on Ruby.

- Garden is a re-coding of Warden in Go. Garden provides the
container technology for Diego (the future architecture for Cloud
Foundry).

- LXC and Docker (in Openshift):

Openshift gears area kind of containers. Openshift gears are not
traditional LXC style Linux containers that e.g., Docker relies
on. Openshift combines gears, SELinux and Docker to put a
stronger emphasis on security (avoiding identification problems in
namespaces)

Windows

Cloud PaaS

and container linking. Applications connect to an applica-
tion running inside a Docker container via a network port.
Container linking allows linking multiple containers together
and sending information between them. Linked containers can
transfer their data using environment variables.

C. Comparison

In order to summarise traditional VMs and containers, we
compare the two technologies in Table 1.

We have used Docker earlier on to illustrate some container
concepts, but a range of other container technologies exist for
different operating systems types. For widely used OS like
Linux and Windows several ones exist, but also specific solu-
tions for PaaS, see Table II) [13]. Common to all is providing
isolation for applications to address security problems.

The tool landscape supporting containerisation is equally in
evolution. As one example, Rocket is a new container runtime
from the CoreOS project (CoreOS is a Linux derivate for
massive server deployments). Rocket is an alternative to the
Docker runtime. It is specifically designed for composability,
security, and speed — important properties in the edge cloud
domain. The concerns specifically addressed by Rocket are
good examples of ongoing concerns.

V. PAAS CLOUDS AND CONTAINERISATION

VMs are today the format to provision platform and
application components at the infrastructure layer. Containers,
however, appear as a highly suitable technology for application
packaging and management in PaaS clouds. PaaS provide
mechanisms for deploying applications, designing applications
for the cloud, pushing applications to their deployment envi-
ronment, using services, migrating databases, mapping custom
domains, IDE plugins, or a build integration tool. PaaS exhibit
features like built farms, routing layers, or schedulers that
dispatch workloads to VMs [8].

A. Evolution of PaaS

Container frameworks address the application deployment
problems through interoperable, lightweight and virtualised
packaging. Containers for application building, deployment
and management (through a runtime) provide interoperability.
Containers are interoperable — those produced outside a PaaS
can be migrated in since the container encapsulates the appli-
cation. Some PaaS are now aligned with containerisation and
standardised application packaging. Many PaaS use Docker,
some have their own container foundation for running platform
tools. This development is part of an evolution of PaaS, moving
towards container-based, interoperable PaaS.

e The first PaaS generation included classical fixed
proprietary platforms such as Azure or Heroku.

e The second PaaS generation was built around open-
source solutions such as Cloud Foundry or OpenShift
that allow users to run their own PaaS (on-premise or
in the cloud), already with a built-in support of con-
tainers. Openshift moves now from its own container
model to the Docker container model, as does Cloud
Foundry through its internal Diego solution.

e The current third generation of PaaS includes plat-
forms like Dawn, Deis, Flynn, Octohost and Tsuru,
which are built on Docker from scratch and are
deployable on own servers or on public IaaS clouds.

However, open PaaS platforms like Cloud Foundry and Open-
shift treat containers differently. Cloud Foundry supports state-
less applications through containers, but stateful services run
in VMs. Openshift on the other hand does not distinguish
between them.

Flynn and Deis, two sample 3rd generation PaaS, have
created a micro-PaaS concept where small PaaS can be run on
limited hardware with very little overhead. They have adopted
elements of CoreOS for their clustered, distributed architec-
ture management, building on the mechanism of lightweight,
decoupled services facilitated by Docker. This aids distributed
multi-tenancy cloud on reduced capability resources.

B. Service/Microservice Orchestration

Recently, microservice architectures have been discussed,
which aim to break up monolithic application architectures
into SOA-style independently deployable services, which are
well supported by container architectures. Services are loosely
coupled, independent software components that can be rapidly
called and mapped to any business process are required.



The microservices architectural style is an approach to
developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms. Microservices are independently de-
ployable, usually supported by a fully automated deployment
and orchestration framework. They require the ability to deploy
often and independently at arbitrary schedules, instead of
requiring synchronized deployments at fixed times.

The microservice development and architecture concerns
are central PaaS concerns. Containerisation provides an ideal
mechanism for their flexible deployment schedules and orches-
tration needs, particularly, if these are to be PaaS-provisioned.

VI. CLUSTERING AND ORCHESTRATING CONTAINER

The next concern is to facilitate the step from a single
container host to clusters of container hosts to run container-
ised applications over multiple clusters in multiple clouds in
order to meet the edge cloud requirements [10]. The built-in
interoperability of containers can make this possible.

A. Container Clusters

A container-based cluster architecture groups hosts into
clusters [12]. Fig. 5 illustrates an architectural framework
using common container and cluster concepts. Container hosts
are linked into a cluster configuration. Central concepts are
clusters, containers, application services, volumes and links.

Each cluster consists of several (host) nodes — where
nodes are virtual servers on hypervisors or possibly bare-
metal servers. Each (host) node holds several containers with
common services such as scheduling, load balancing and
applications. Each container in a cluster can hold continually
provided services such as their payload service, so-called jobs,
which are once-off services (e.g., print), or functional (mid-
dleware service) components. Next, application services are
logical groups of containers from the same image. Application
services allow scaling an application across nodes. Volumes are
used for applications that require data persistence. Containers
can mount volumes. Data stored in these volumes persists,
even after a container is terminated. Finally, links allow two
or more containers to connect and communicate.

Container Service Container
i mounted
—— U
Host:node Host node
H Link
; I
---------
[ Containor  IRIEREN
Host node Host node
Cluster

Fig. 5. Container-based Cluster Architecture — an architectural framework
based on common concepts.

Resulting from this architectural scenario is an abstraction
layer for cluster-based service management different from the
container features provided by for instance Docker. A cluster
management architecture has the following components: the
service node (cluster), an API, a platform service manager, a
lifecycle management agent and a cluster head node service.

The deployment of distributed applications through con-
tainers is supported using a virtual scalable service node
(cluster), with high internal complexity (supporting scaling,
load balancing, failover) and reduced external complexity. An
API allows operating clusters from the creation of services and
container sets to other life-cycle functions. A platform service
manager looks after the software packaging and management.
An agent manages the container life-cycles (at each host). A
cluster head node service is the master that receives commands
from the outside and relays them to container hosts. This
allows development of for instance edge cloud architecture
without consideration of the underlying network topology and
avoids manual configuration [8].

A cluster architecture is composed of engines to share
service discovery (e.g., through shared distributed key value
stores) and orchestration/deployment (load balancing, moni-
toring, scaling, and also file storage, deployment, pushing,
pulling). This satisfies some requirements put forward for these
cluster architectures by Kratzke [13]. A lightweight virtualised
cluster architecture building on containerisation should, ac-
cording to Kratzke, provide a number of management features
as part of the abstraction on top of the container hosts:

e Hosting containerised services and providing secure
communication between these services [17],

e  Auto-scalability and load balancing support [11],

e Distributed and scalable service discovery and orches-
tration [9],

e  Transfer/migration of service deployments between
clusters [10].

Similar to Docker, Diego, Warden and others in the con-
tainer space, several products have emerged in the cluster
space. One such cluster management platform is Mesos — an
Apache project that binds distributed hardware resources into
a single pool of resources. These resources can be used by
application frameworks to manage workload distribution. It is a
distributed systems kernel following the same principles as the
Linux kernel, but here at a different level of abstraction. The
Mesos kernel runs on all machines in the cluster. It facilitates
applications with APIs for resource management and schedul-
ing across cloud environments. In terms of interoperability, it
natively supports LXC and also Docker.

Another clustering management solution, albeit at a higher
level than Mesos, is the Kubernetes architecture. Kubernetes,
which is supported by Google, can be configured to orchestrate
Docker containers on Mesos. Kubernetes is based on processes
that run on Docker hosts. These bind hosts into clusters and
manage the containers. So-called minions are container hosts
that run pods, which are sets of containers on the same host.
Openshift is a PaaS example that has adopted Kubernetes.
Kubernetes competes here with the platform-specific evolution



towards container-based orchestration. Cloud Foundry, for in-
stance, uses Diego as a new orchestration engine for containers.

Clustered containers in distributed systems require ad-
vanced network support. Containers provide an abstraction that
makes each container a self-contained unit of computation.
Traditionally, containers are exposed on the network via the
shared hosts address. In Kubernetes, each group of containers
(called pods) receives its own unique IP address, reachable
from any other pod in the cluster, whether co-located on the
same physical machine or not. This requires advanced routing
features based on network virtualisation.

Distributed container management also needs to address
data storage. Managing containers in Kubernetes clusters might
cause difficulties with regard to flexibility and efficiency be-
cause of the need for the Kubernetes pods to co-locate with
their data. What is needed is to combine a container with
a storage volume that follows it to the physical machine,
regardless of the container location in the cluster.

B. Orchestration and Topology

The management solution provided by cluster solutions
needs to be combined with development and architecture
support. Multi-PaaS based on container clusters is a solution
for managing distributed software applications in the cloud,
but this technology still faces challenges. These include a lack
of suitable formal descriptions or user-defined metadata for
containers beyond image tagging with simple IDs. Description
mechanisms need to be extended to clusters of containers and
their orchestration as well [1]. The topology of distributed con-
tainer architectures needs to be specified and its deployment
and execution orchestrated, see Fig. 6.

There is currently no widely accepted solution for the
orchestration problems. We briefly illustrate the significance
of this problem through a possible solution that we want
to propose here as a possible reference framework. Docker
has started to develop its own orchestration solution and
Kubernetes is another relevant project, but a more comprehen-
sive solution that would address the orchestration of complex
application stacks could involve Docker orchestration based
on the topology-based service orchestration standard TOSCA,
which is for instance supported by the Cloudify PaaS. Cloudify
uses TOSCA (Topology and Orchestration Specification for
Cloud Applications [2]) to enhance the portability of cloud
applications and services, see Fig. 6. TOSCA supports a
number of features:

e the interoperable description of application and in-
frastructure cloud services — here implemented as
containers hosted on nodes in an edge cloud,

e the relationships between parts of the service — here
service compositions and links as relationships, as
illustrated in Fig. 5,

e the operational behaviour of these services (such as
deploy, patch or shutdown) in an orchestration plan.

This has the advantage of being independent of a supplier
creating the service and also any particular cloud provider
or hosting technology. TOSCA can also be used to associate
higher-level operational behaviour with cloud infrastructure

management. TOSCA templates can be used to define con-
tainer clusters, abstract node and relationship types, and appli-
cation stack templates.

Cloud applications can run in TOSCA containers — en-
acted through a TOSCA engine based on TOSCA topology
and orchestration descriptions [3]. The topology specification
is based on nodes (e.g., Web server or sensor/device) and
has life-cycle interfaces, which allows an architect to define
how to create, configure, start, stop and delete resources.
An orchestration plan is defined in YAML. The orchestration
plan is used to orchestrate the deployment of applications
as well as the post-deployment automation processes. The
orchestration plan describes the applications and their lifec-
ycle, and the relationships between components. This includes
the connections between applications and where they are
hosted — features that we have already discussed as vital for
the edge cloud environment. With TOSCA, we can describe
the infrastructure, the platform middleware tier and application
layer on top of these. A PaaS product like Cloudify supporting
TOSCA would take a TOSCA orchestration plan and then
enacts this using workflows that traverse the graph of the
components and issues commands to agents. These agents
create the application components and glue them together.
The agents use extensions, called plugins, which are adaptors
between for instance a Cloudify configuration and the various
infrastructure as a service (IaaS) and automation tool APIs.
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Fig. 6. Reference Framework for Cluster Topology Orchestration [adapted
from the TOSCA standard to an edge cloud setting].

Host
node
Cluster
Template

Orchestration Plan

TOSCA framework and engine provide an orchestrator
tool that allows the description of complex topologies and
deployments. A dedicated topology and orchestration speci-
fication allows to specify the deployment of each service in
the most ideal way. For simple stateless microservices, the
best approach, for instance, is to use Docker and Kubernetes.
A TOSCA blueprint can be used for more complex topologies
that require more orchestration. Examples here could include a
replicated and sharded mongo DB cluster or a more complex
microservice. Though, a TOSCA blueprint can also be used
for the basic container case to, for example, spawn a number
of instances of a Docker image.

Currently, TOSCA deals with container technologies, such
as Docker and Rocket, as well as container management tech-
nologies, such as Kubernetes and Mesos, in an agnostic way.



Due to this abstraction and interoperability, TOSCA is a suit-
able platform for defining a standard container orchestration
specification that is portable across various cloud environments
and container providers — which is, despite the current success
and leadership of for instance Docker, a valuable property.

In another direction that singles TOSCA out, there is a
growing interest in NFV (Network Functions Virtualization)
within the TOSCA community — an aspect at the infrastruc-
ture level (cf. earlier SDN comments) due to our focus on
application and service management at the platform level.

VII. CONCLUSION

Edge clouds move the focus from heavy-weight data centre
clouds to more lightweight virtualised resources, distributed
to bring services to the users. They do, however, create
challenges. We have identified lightweight virtualisation and
the need to orchestrate the deployment of these service as key
challenges. We looked at platform (PaaS) specifically as the
application service packaging and orchestration is a key PaaS
concern (through of course not limited to PaaS).

Our aim here was to start with the recently emerging
container technology and container cluster management to
determine the suitability of these approaches for edge clouds
through a technology review. The observations here support the
current enthusiasm for this technology, but have also identified
limitations. Some PaaS have started to address limitations
in the context of programming (such as orchestration) and
DevOps for clusters. The examples used above allow some
observations. Firstly, containers are largely adopted for PaaS
clouds. Secondly, standardisation by adopting emerging de-
facto standards like Docker or Kubernetes is also happening,
though currently at a slower pace. Thirdly, development and
operations are still at an early stage, particularly if complex
orchestrations on distributed topologies are in question.

We can observe that cloud management platforms are
still at an earlier stage than the container platforms that
they build on [14], [16]. While clusters in general are about
distribution, the question emerges as to which extent this
distribution reaches the edge of the cloud with small devices
and embedded systems. Whether devices running small Linux
distributions such as the Debian-based DSL (which requires
around S50MB storage) can support container host and cluster
management is a sample question. Recent 3rd generation PaaS
are equally lightweight and aim to support the build-your-
own-PaaS idea that is a first step. Container technology has
the potential to substantially advance PaaS technology towards
distributed heterogeneous clouds through lightweightness and
interoperability. However, we can also conclude that significant
improvements are still required to deal with data and network
management aspects, as is providing an abstract development
and architecture layer. Orchestration, as far as it is supported
in implemented cluster solutions, is ultimately not sufficient.
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