
Monitoring Cumulative Cost Properties
Omar Al-Bataineh?, Daniel Jun Xian Ng∗, and Arvind Easwaran∗

?National University of Singapore
∗Nanyang Technological University

Abstract—This paper considers the problem of decentralized
monitoring of a class of non-functional properties (NFPs) with
quantitative operators, namely cumulative cost properties. The
decentralized monitoring of NFPs can be a non-trivial task
for several reasons: (i) they are typically expressed at a high
abstraction level where inter-event dependencies are hidden,
(ii) NFPs are difficult to be monitored in a decentralized way,
and (iii) lack of effective decomposition techniques. We address
these issues by providing a formal framework for decentralised
monitoring of LTL formulas with quantitative operators. The
presented framework employs the tableau construction and a
formula unwinding technique (i.e., a transformation technique
that preserves the semantics of the original formula) to split
and distribute the input LTL formula and the corresponding
quantitative constraint in a way such that monitoring can be
performed in a decentralised manner. The employment of these
techniques allows processes to detect early violations of monitored
properties and perform some corrective or recovery actions. We
demonstrate the effectiveness of the presented framework using
a case study based on a Fischertechnik training model, a sorting
line which sorts tokens based on their color into storage bins. The
analysis of the case study shows the effectiveness of the presented
framework not only in early detection of violations, but also in
developing failure recovery plans that can help to avoid serious
impact of failures on the performance of the system.

I. INTRODUCTION

Given the concept of Industry 4.0 [1], conventional factories
and critical infrastructures evolve into “smart systems”, which
integrate the physical devices and equipment with the cyber
communications, creating a critical distributed system. With
the growing scale of systems, it is challenging to maintain the
stability under all operating conditions. Reducing the down-
time and increasing the resiliency to faults become a crucial
issue in the system design. Besides, the rapid evolution of
systems has led to a significant increase in systems complexity.
This further introduces new challenges in satisfying all the
system requirements during the design and execution.

However, to increase the fault tolerance and resilience for
distributed systems, many researchers have suggested the use
of non-functional properties to evaluate the performance of
the systems. An NFP is a specific requirement to evaluate the
Quality of Service (QoS) that the system can provide [2]. For
example, execution latency (response time) is a critical NFP
since the users normally need to finish a mission in a certain
time period. To this end, researchers have designed Assume-
Guarantee (A-G) contracts, defined in [3], to supervise the
NPFs of the systems in a centralized fashion.

Unfortunately, for a large-scale distributed systems with
numerous processes, one cannot identify the source of the

faults whenever the system violates the monitored property
(i.e., a formula formalising a requirement over the system’s
global behaviour which is typically expressed as a Liner
Temporal Logic formula). To solve this problem, one can
decompose the global formula into simpler sub-formulas. Each
sub-formula is monitored by a certain process of the system.
Given this decentralized framework, we can rapidly detect the
source of a fault if a specific sub-formula fails. However, new
challenges also arise in the decentralized framework.

Building a decentralized runtime monitor for a distributed
system is a non-trivial task since it involves designing a
distributed algorithm that coordinates the monitors in order
to reason consistently about the temporal behaviour of the
system. The formula decomposition techniques can play an
important role in decentralized monitoring, as it allows the
system to be organized into a set of disjoint groups of
processes where each group is responsible for monitoring a
unique part of the formula. Formula decomposition techniques
can therefore help to improve the scalability and efficiency of
the solution specially when dealing with large-scale systems.

The main challenge we encounter when developing a de-
centralized monitoring solution for distributed systems is how
to deal with properties that are expressed at a high level of
abstraction, where inter-event dependencies are hidden. An
example of such properties is the response time properties of
systems, which verify the accumulation or difference between
the time at which the request occurs and the time at which the
response is produced. To address this challenge, we introduce
what we call the notion of formula unwinding technique.

The formula unwinding technique aims at transforming a
system-level formula into a new formula that is semantically
equivalent to the original formula but makes event depen-
dencies explicit. The unwinding technique is performed in a
way such that satisfaction/falsification of unwound formula
implies satisfaction/falsification of the original formula. The
resulting unwound formula is then decomposed into a set of
sub-formulas (by tableau decomposition) that reintroduce all
intermediate events and modules involved in the monitoring
of the initial property. Each sub-formula is then assigned
to a process/module for monitoring. The key advantage of
the presented monitoring framework is that violations of the
monitored formula may be detected far ahead before the
actual violation occurs. This allows processes to perform some
recovery plans or corrective actions to avoid violation of the
global formula or to mitigate its effect on the entire system.

Contributions: We summarize contributions as follows.
• We describe a methodology of creating distributed mon-

ar
X

iv
:2

10
4.

11
47

4v
1

 [
cs

.S
E

]
 2

3
A

pr
 2

02
1

itors for monitoring of cumulative cost properties under
the assumption where processes are synchronous and
the formula is represented as a tableau. Specifically,
we consider properties such as execution time, power
consumption, memory consumption, etc. For short we
denote such class of properties as CNFPs.

• We develop an unwinding algorithm for CNFPs that can
be used to transform a system-level formula into a new
formula that is semantically equivalent to the original for-
mula but makes component event dependencies explicit.
The unwinding algorithm helps to optimise decentralised
monitoring of CNFPs in a way such that violations can
be detected way before the original property would fail.

• We develop a tableau-based algorithm that can be used
to organise processes of a given system into disjoint
groups where each group can monitor a unique part of
the formula. The developed tableau algorithm helps to
reduce the complexity of the monitoring problem with-
out compromising soundness. The problem of splitting
monitoring of systems into simpler monitoring tasks is an
interesting research problem, especially when considering
applications like cloud, edge and fog computing.

• We demonstrate the effectiveness of the presented frame-
work for monitoring cumulative cost properties by con-
sidering response time properties of systems using a case
study based on a Fischertechnik training model. A short
video documentation of the case study is available at
https://youtu.be/5CUH0Z2qaBM.

II. BACKGROUND

A. Decentralized Monitoring Problem

A distributed program P = {p0, p1, ..., pn−1} is a set of
n processes working together to achieve a certain task. Each
process of the system emits events at discrete time instances.
Each event σ is a set of actions denoted by some atomic propo-
sitions from the set AP . We denote 2AP by Σ and call it the
alphabet of the system. We assume that the distributed system
operates under the perfect synchrony hypothesis [4], and that
each process sends and receives messages at discrete instances
of time, which are represented using identifier t ∈ N≥0.

We assume that each process pi has a set of input variables
denoted as IN(pi) and set of output variables denoted as
OUT (pi). We use a projection function Πi to restrict atomic
propositions to the local view of monitor Mi attached to
process pi, which can only observe events of process pi. For
atomic propositions (local to process pi), Πi : 2AP → 2AP ,
and we denote APi = Πi(AP), for all i = 1...n. For
events, Πi : 2Σ → 2Σ and we denote Σi = Πi(Σ) for all
i = 0...n − 1. The system’s global trace, g = (g1, g2, ..., gn)
can now be described as a sequence of pair-wise unions of
the local events of each process’s traces. We denote the set of
all possible events in pi by Ei and the set of all events of P
by EP =

⋃n−1
i=0 Ei. We assume that the underlying distributed

system is enriched with computational cost: each event σ is
associated with a cost whose value depends on the the running
cost of the process that generates that event. Formally, we

assume we have a cost function C : EP → N that maps events
of P to N, where N denotes the set of natural numbers. In our
setting, the assignment of a truth value to a variable is an event
and it is the occurrence of this event that we are interested in.
Finally, finite traces over an alphabet Σ are denoted by Σ∗,
while infinite traces are denoted by Σ∞.

Definition 1: (LTL formulas [5]). The set of LTL formulas
is inductively defined by the grammar

ϕ ::= true | c | ¬ϕ | ϕ∨ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | φ1◦≤qφ2

where c ∈ AP and X is read as next, F as eventually (in the
future), G as always (globally), and U as until. Note that we
extend the basic LTL language with the metric operator ◦≤q ,
namely the quantitative dependency operator. The operator will
be used to express properties with arithmetic constraints.

Definition 2: (LTL Semantics [5]). Let w = a0a1... ∈ Σw

be an infinite word with i ∈ N being a position. Let d be
a variable whose valuation is a mapping from d to R+. We
define the semantics of LTL formulae inductively as follows
• w, i |= true
• w, i |= ¬ϕ iff w, i 6|= ϕ
• w, i |= c iff c ∈ ai
• w, i |= ϕ1 ∨ ϕ2 iff w, i |= ϕ1 or w, i |= ϕ2

• w, i |= Fϕ iff w, j |= ϕ for some j ≥ i
• w, i |= Gϕ iff w, j |= ϕ for all j ≥ i
• w, i |= ϕ1Uϕ2 iff ∃k≥i with w, k |= ϕ2 and ∀i≤l<k with
w, l |= ϕ1

• w, i |= Xϕ iff w, i+ 1 |= ϕ
• w, i |= φ1 ◦≤q φ2 iff (w, i |= φ1 ∧ d = x) ⇒ (w, j |=
φ2 ∧ d ≤ (x+ q)), for some j ≥ i and q ∈ N.

In our setting, a quantitative property is given as an LTL
formula extended with a quantitative dependency operator:
φ1 ◦≤q φ2 means that the computation from a state in which
φ1 holds to a state in which φ2 holds has a cost bounded by
the constraint q. The technical challenge of monitoring quan-
titative properties in this setting consists of translating global
constraints into local ones. This is achieved by computing the
maximal cumulative accepted cost for the completion of an
event. We call the operator ◦≤q as a quantitative dependency
operator and the arithmetic constraint q as CNFP constraint
on the cumulative cost. We call an LTL property that contains
the operator ◦≤q as “cumulative cost” property.

Problem 1: (The decentralized monitoring problem).
Given a distributed system P = {p0, p1, ..., pn−1},a finite
global trace g ∈ Σ∗, an LTL property ϕ with a set of
atomic propositions AP formalising a requirement over the
system global behaviour, and a set of monitor processes
M = {M1,M2, ...,Mn} such that
• each process pi has a local set of propositions APi ⊂ AP ,
• each process pi has a local monitor Mi,
• each process pi has a partial view of the global trace g,
• monitor Mi can observe local events of pi,
• monitor Mi can communicate with the other monitors.
The decentralised monitoring problem aims to design an

algorithm for distributing and monitoring ϕ, such that satis-
faction or violation of ϕ can be detected by local monitors.

2

https://youtu.be/5CUH0Z2qaBM

Before proceeding further, let us consider a simple example of
a distributed system and a cumulative cost property by which
we demonstrate some of the notions introduced in this section.

Example 1: Suppose we have a distributed system P with
three processes p0, p1 and p2 as described in the graph given
in Fig. 1. As one can see, there are four variables in the graph
(I0, O0, O1, Of). We call the variable I0 as environment vari-
able and the variables O0, O1 and Of as dependent variables.
Note that when the truth value of O0 is not issued by process
p0 then the truth value of both O1 and Of will not be issued by
processes p1 and p2 due to the dependency relationships. We
assume that the assignment of a truth value to each variable is
associated with a cost which depends on the running costs of
the processes p0, p1 and p2. We would like then to monitor the
cumulative cost property ϕ = G(I0 ◦≤q Of). As one can see,
the cost is accumulated from one variable to another so that
the cost of generating the variable Of is the sum of individual
costs of O0 and O1 and Of . However, to ensure the satisfaction
of ϕ, the cumulated costs must not exceed the bound q.

p0 p1 p2I0 O1 Of

Fig. 1. A dependency graph of a simple system with three processes

B. Tableau Construction for LTL

There are various tableau systems for LTL [6], [7], [8],
[9]. However, in this work we selected Reynolds’s implicit
declarative one [9]. The interesting completeness and termi-
nation of the tableau, in addition to its efficiency and simplicity
are the key reasons for choosing this style of tableau. Given
an LTL formula ϕ we construct a directed graph (tableau)
Tϕ using the standard expansion rules for LTL. Applying
expansion rules to a formula leads to a new formula but with
an equivalent semantics. We review here the basic expansion
rules of temporal logic: (1) Gp ≡ p∧XGp, (2) Fp ≡ p∨XFp,
and (3) p Uq ≡ q ∨ (p ∧X(p Uq)). Tableau expansion rules
for propositional logic are very straightforward and can be
described as follows:
• If a branch of the tableau contains a conjunctive formula
A ∧B, add to its leaf the chain of two nodes containing
the formulas A and B.

• If a node on a branch contains a disjunctive formula A∨
B, then create two sibling children to the leaf of the
branch, containing A and B, respectively.

The labels on the tableau proposed by Reynolds are just
sets of formulas from the closure set of the original formula.
Note that one can use De Morgan’s laws during the expansion
of the tableau, so that for example, ¬(a ∧ b) is treated as
¬a∨¬b. A node in Tϕ is called a leaf if it has zero children.
A leaf may be crossed (×), indicating its branch has failed (i.e.,
contains opposite literals), or ticked

√
, indicating its branch

is successful. The whole tableau Tϕ is successful if there is at
least a single successful branch.

p ∧ (q ∨ r)

p, (q ∨ r)

p, q p, r

√ √

Fig. 2. A tableau for (p ∧ (q ∨ r))

Gp

p,XGp

Gp

p,XGp

√

Fig. 3. A tableau for Gp

Reynolds [9] introduced a new tableau rule (the PRUNE
rule) which supports a new simple traditional style tree-shaped
tableau for LTL. The PRUNE rule provides a simple way to
curtail repetitive branch extension. The PRUNE rule works
as follows. If a node at the end of a branch has a label
which has appeared already twice above, and between the
second and third appearance there are no new eventualities
satisfied that were not already satisfied between the first and
second appearances then that whole interval of states (second
to third appearance) has been useless. In this case we cut the
construction and declare that the branch is unsuccessful.

Fig. 2 represents a tableau for a simple propositional logic
formula and Fig. 3 represents a tableau for a temporal logic
formula. Using the PRUNE rule and the LOOP rule (a rule
that cuts construction after a poised label appears two times in
the branch) we guarantee completeness and termination of the
tableau construction (i.e., it always terminates and returns a
semantic graph for the monitored formula including formulas
containing nested temporal operators) [9]. For example, the
formula Gp (see Fig. 3) gives rise to a very repetitive infinite
tableau without the LOOP rule, but succeeds quickly with it.
We first break down the formula into its elementary ones. Note
that the atoms and their negations can be satisfied immediately
provided there are no contradictions, but to reason about
the X formula (XGp) we need to move forwards in time.
Reasoning switches to the next time point and we carry over
only information nested below X .

To demonstrate how one can construct a tableau for cumula-
tive cost formulas, let us construct the formula G((a∧b)◦≤q c)
(see Fig. 4). In the given tableau we use the basic tableau
decomposition rules (the G-rule, the X-rule, and the ∧-rule)
to decompose the formula in addition to the distributive law for
the quantitative dependency operator. The quantitative operator
◦≤q satisfies the ∧-distributive law so that ((a ∧ b) ◦≤q c) ≡
(a ◦≤q c) ∧ (b ◦≤q c) and the ∨-distributive law so that
((a ∨ b) ◦≤q c) ≡ (a ◦≤q c) ∨ (b ◦≤q c). Note that we do not
decompose dependency formulas of the form (a ◦≤q c) as
they do not contain temporal or logical connectives. Note also
that quantitative dependency formulas of the form (a ◦≤q c)

3

G((a ∧ b) ◦≤q c)

((a ∧ b) ◦≤q c) ∧XG((a ∧ b) ◦≤q c) by (G− rule)

((a ∧ b) ◦≤q c), XG((a ∧ b) ◦≤q c) by (∧ − rule)

((a, b) ◦≤q c), XG((a ∧ b) ◦≤q c) by (∧ − rule)

(a ◦≤q c), (b ◦≤q c), XG((a ∧ b) ◦≤q c) by (DIST − rule)

G((a ∧ b) ◦≤q c) by (X − rule)

√
by (LOOP − rule)

Fig. 4. A tableau for a cumulative cost formula G((a ∧ b) ◦≤q c)

represent the simplest form of quantitative dependency formu-
las that maybe encountered when dealing with cumulative cost
properties and hence they cannot be split into simpler ones.

III. CUMULATIVE COST PROPERTIES

NFPs are a class of properties that are used to express qual-
ity attributes of the system. There is a great variety of NFPs
that can be considered when verifying distributed systems
such as performance, reliability, maintainability and safety. In
this work, we are interested in NFPs that are cumulative in
nature such as response time, energy consumption, memory
consumption, etc. CNFPs typically contain some constraints
related to the running cost of the system. We call such
properties as cumulative cost properties (see Definition 3).

Definition 3: (Cumulative cost properties). Let P be a
distributed system and ϕ be an LTL formula formalising some
property of the system P . We call the property ϕ a cumulative
cost property if ϕ contains some quantitative dependency
operator of the form ◦≤q , where q ∈ N, corresponds to the
cost cumulated along a running path of P until certain event
is reached denoted by some propositions in ϕ. The manner
in which costs are accumulated from one event to another
depends on the model representing the distributed system P .

Before introducing the notion of unwinding process for
cumulative cost properties of systems, let us discuss first the
types of variables that may be encountered when dealing with
a distributed system, which can be classified as follows.
• Independent variables (environment variables). An

independent variable is the variable that is controlled and
manipulated by the environment. It is independent from
the behaviour of the processes of the system.

• Dependent variables. A dependent variable is the vari-
able that is generated from some process of the system.

So that the truth value of the variable depends on the
truth values of some other variables.

We assume here we have a dependency graph of the system
that shows the dependency relationships among its processes.
We use the dependency graph to identify dependent variables
and the set of variables that affect their truth values.

Definition 4: (Dependency graph). A dependency graph G
of a system P is a tuple of the form (P,R, V), where
• P = {p0, ..., pn−1} is a set of processes of P ,
• R ⊆ P × P is a transition relationship between the

processes of the system P ,
• V = D ∪ E is the set of variables of the system P ,

where D represents the set of dependent variables and E
represents the set of environment variables.

We assume that a dependency graph does not have any
circular dependencies: it forms a directed acyclic graph. For-
mally, we require that the transitive closure R+ of the relation
R to be irreflexive; i.e. (p, p) 6∈ R+ for all p ∈ P . A pair
(pi, pj) ∈ R+ models a dependency (i.e., pi depends on pj).
That is, the output variable issued by pi depends on the output
variable issued by pj . We classify processes in the dependency
graph of a given system into three categories as follows.

1) Source processes. This type of processes have no pre-
decessors and at least one successor. The input variables
of source processes are called environment variables.

2) Intermediate processes. This type of processes have at
least one predecessor node and one successor node.

3) Sink processes. This type of processes have at least one
predecessor and zero successors. The output variables of
sink processes represent the final outputs of the system.

CNFPs are typically given in an abstract form where
inter-variable dependencies are hidden and hence cannot be
efficiently monitored in a decentralised manner. To ensure
the efficient monitoring of CNFPs, the set of intermediate
variables need to be explicitly observable in the formula (being
part of the set of propositions of the formula). To do so,
we compute for each dependent variable what we call the
set of dependency paths, which can be extracted from the
dependency graph of the system. A dependency path for a
variable v shows the set of processes and their input and output
variables that affect the truth value of the variable v, which is
crucial for the unwinding process.

Note that the unwinding process of a formula proceeds by
unwinding dependent variables one-by-one until all variables
are unwound. During unwinding we use the following rules to
specify dependency relationships between variables. Through-
out the rules, we assume that the running cost of the considered
process p is bounded by the numerical constraint q.

1) If process p takes a single input I ∈ IN(p) and
produces a single output O ∈ OUT (p) then the resulting
dependency formula will take the form I ◦≤q O.

2) If process p takes multiple inputs (I1, ..., Ik) ∈ IN(p)
and produces a single output O ∈ OUT (p) then the
resulting dependency formula will take the form (I1 ∧
... ∧ Ik) ◦≤q O.

4

3) If process p takes a single input I ∈ IN(p) and produces
multiple outputs (O1, .., Ok) ∈ OUT (p) then breaking
dependencies among variables will yield k dependency
formulae of the form (I ◦≤qO1, I ◦≤qO2, ..., I ◦≤qOk).

4) If process p takes inputs (I1, .., Ik) ∈ IN(p) and
produces outputs (O1, .., Om) ∈ OUT (p) then breaking
dependencies among variables will yield m formulae of
the form ((I1 ∧ ... ∧ Ik) ◦≤q O1, ((I1 ∧ ... ∧ Ik) ◦≤q
O2), .., ((I1 ∧ ... ∧ Ik) ◦≤q Om)).

The decentralised monitoring of LTL formulas can be
studied under different assumptions. However, in this work,
we make the following assumptions about the class of systems
and properties that can be monitored by our framework.
• The system is a synchronous distributed system.
• The dependency or dataflow graph that highlights all

dependencies between modules and input/output variables
of the system is available in advance.

• The underlying model (i.e., a distributed system) is aug-
mented with information about cost. That is, each event
in a trace of the system is associated with a numerical
value representing the cost of generating that event.

• The input formula defines some cumulative cost formula
with a quantitative dependency operator of the form ◦≤q .

From the given dependency graph, the initial LTL formula
is translated to a set of sub-formulas (by tableau decomposi-
tion) that reintroduce all intermediate variables and modules
involved in the monitoring of the initial property. Each sub-
formula is then assigned to a process/module for monitoring.
Note that the dependency graph of the system may contain
multiple dependency paths for the dependent variables being
unwound and hence the way the running cost of the system
is accumulated depends heavily on the structure of the depen-
dency graph. Recall also that the unwinding process of CNFPs
requires a decomposition of the constraints in the formula into
sub-constraints, which should be performed while preserving
the semantics of the original global formula. Furthermore, the
property of interest may contain multiple arithmetic constraints
related to the different sub-systems of the monitored system.
We address these challenges at Sections IV-A and IV-B.

IV. MONITORING FRAMEWORK

Our monitoring framework for cumulative cost properties
consists of two phases: setup and monitor. The setup phase cre-
ates the monitors and defines their communication topology.
The monitor phase allows the monitors to begin monitoring
and propagating information to reach a verdict when possible.
We first describe the formal steps of the setup phase.
• Unwind the original formula ϕ by transforming it into

a new formula that is semantically equivalent to ϕ but
makes variable dependencies explicit. We denote the
resulting unwound formula by ϕ(U).

• Negate the unwound formula ϕ(U) using the standard
LTL negation propagation rules.

• Construct a tableau T¬ϕ(U) using the method of Sec. II-B.
The presented decentralised framework consists mainly of

two components: the unwinding component which is described

in details at Sec. IV-A and the decomposition component
which described in details at Sec. IV-B. The unwinding com-
ponent aims at transforming a system-level formula into a new
formula that is semantically equivalent to the original formula
but makes variable dependencies explicit. This is crucial for
the effectiveness of the decentralised monitoring of CNFPs.
The decomposition component aims at organising processes
into disjoint groups using tableau. However, since branches
in tableau represent ways to satisfy the original formula, we
choose to negate the formula using LTL negative propagation
rules before decomposing it using the tableau technique. In
this case, each branch in the constructed tableau represents a
way to falsify the formula and therefore violations detected by
processes that monitor a formula representing the semantics of
some branch in the constructed tableau is a global violation.

Given a distributed system P = {p0, p1, ..., pn−1}, a finite
global trace g = (g0, g1, ..., gn) ∈ Σ∗, and an LTL property
ϕ formalising a requirement over the system P and ϕ(U) be
the unwound version of ϕ. We now summarize the monitoring
steps in the form of an algorithm that describes how process
pi makes decisions regarding the monitored formula ϕ(U):

1) [Read next event]. Read next σi ∈ gi (initially each
process reads σ0), where gi is the local trace for pi.

2) [Send new observations]. Propagate new observations as
pairs of the form (idx(φ), val) to the successor process,
where idx(φ) is the index value of the formula φ and
val ∈ {true, false, unknown}.

3) [Receive new observations]. Receive new observations
and evaluate the formula ϕ(U).

4) [Go to step 1]. If the trace has not been finished or a
decision has not been made then go to step 1.

To reduce the size of propagated messages, processes send
indices of sub-formulas of ϕ(U) that result from the tableau
decomposition rather than formulas themselves. That is, we
assign a unique index value to each formula in resultant tableau
of the unwound formula. This is possible as variables are pre-
known to processes, thanks to the tableau decomposition.

A. Unwinding Cumulative Cost Properties

The unwinding process of CNFPs needs to be performed
in a way the semantics of the original formula is preserved.
Note that the input formula may contain multiple constraints
with a large number of dependent variables. It is necessary
then to ensure that the unwinding process of a given formula
is performed in a rigorous manner. We describe here an
unwinding algorithm for CNFPs which consists of three steps:

1) The preprocessing step. The goal of this step is to detect
dependency operators in the input formula and represent
each of them as tuples of the form (L,R, q), where L
is the left operand of ◦, R is the right operand of ◦,
and q is the CNFP constraint on the cumulative cost.
For example, if the input formula has the form G((c ∧
d) ◦≤10 e). Then L = (c ∧ d), R = e, and q = 10.

2) The unwinding step. The goal of this step is to make all
intermediate variables that affect the truth value of the

5

original formula explicitly observable in the unwound
formula. This can be performed by examining the de-
pendency graph of the system under monitoring.

3) The constraint decomposition step. The goal of this
step is to break the arithmetic constraint q into sub-
constraints for different affected sub-formulas in the
unwound formula.

The unwinding algorithm (Algorithm 1) takes an LTL
formula ϕ formalising a cumulative cost property of interest
together with a dependency graph G of the system being
monitored. It returns a new formula ϕ(U) in which all in-
termediate variables become explicitly observable. Recall that
each dependency operator in the formula being analyzed is
represented as a tuple (L,R, q), where dependent variables
are unwound first and then the constraint q is decomposed
while taking into consideration the dependency relationships
among variables and the running costs of processes.

During the unwinding process, the algorithm replaces each
dependent variable by its full dependency formula (the set
of variables that affect its truth value) as derived from the
dependency graph of the system being monitored. Such re-
placement is performed while preserving the semantics of
the original formula. The function DependencyPath(vi) is a
function that returns the set of processes along the dependency
paths of the variable vi. The function Cost(Path) returns
the sum of the running costs of the processes along the path
path. Intuitively, for a path of n processes p0, ..., pn−1, we
have Cost(path) =

∑n−1
i=0 (cost(pi)). Hence, the constraint

associated with the dependency formula φi assigned to process
pi is synthesized using the following formula

ci = q − (

n−1∑
j=i+1

(cost(pj))) (1)

where q is an arithmetic constraint given in the original
formula. Note that Formula (1) takes advantage of the fact
that the property being monitored has an additive nature and
hence the running cost of the system accumulates along the
paths. We can therefore decompose the constraint q into sub-
constraints by considering the running costs of local processes.
Note that it is possible to have more than one dependency
path that leads from process pi to the process that produces
the variable being unwound. In this case, the parameter ci is
computed by considering the path with the least cost.

B. Organizing Processes into Disjoint Groups

Approaches to decomposition of formulas can be classified
into logical approaches and algebraic approaches. The first
are based on equivalent transformations of formulas in propo-
sitional or temporal logic. The second ones consider formulas
as algebraic objects with corresponding transformation rules.
In this work, we follow the logical approach of formula
decomposition and we adopt the tableau technique for this
purpose. It is advantageous to use tableau as a decomposition
technique for decentralised monitoring. First, it can be used to
detect tautological and unsatisfiable parts of the formula and to

1: Inputs : (ϕ,G)
2: Output : ϕ(U) := ϕ
3: list := ∅
4: Queue Waiting := ∅
5: for each ◦ ∈ Operators(ϕ) do . Preprocessing phase
6: L = getLeftOPND(◦)
7: R = getRightOPND(◦)
8: q = getConstraint(◦)
9: add (L,R, q) to Waiting

10: end for
11: while Waiting 6= ∅ do . Unwinding phase
12: select (L,R, q) from Waiting
13: finalFormula := true
14: unwind := false
15: for each vi ∈ atoms(R) do
16: add vi to list
17: ψ := true
18: while list 6= ∅ do
19: select vi from list
20: if vi ∈ OUT (p) | p ∈ processes(G) then
21: unwind := true
22: paths := DependencyPath(vi)
23: V al := min(∀path∈paths(Cost(path))
24: ci := (q − V al)
25: ψ := (

∧
i=1...n(Ii | Ii ∈ IN(p))) ◦≤ci vi)

26: ψ
′

:= ψ
′ ∧ ψ

27: end if
28: for each vj ∈ (atoms(ψ) \ vi) do
29: if vj ∈ OUT (p) | p ∈ processes(G) then
30: add vj to list
31: end if
32: end for
33: end while
34: finalFormula := (finalFormula ∧ ψ′

)
35: end for
36: if unwind = true then
37: replace (L ◦≤q R) by finalFormul in ϕ(U)

38: end if
39: end while
40: return ϕ(U)

Algorithm 1: Unwinding cumulative cost formulas

propagate information about only feasible branches. Second,
it helps to reduce the complexity of the monitoring problem.

Definition 5: (Decomposability). An LTL formula ϕ is
called disjointly OR-decomposable (or decomposable, for
short) wrt a system P if it is equivalent to the disjunction
φ1 ∨ φ2 ∨ ... ∨ φn of some formulas φ1, .., φn such that:

1) atoms(φ1)∪ ...∪ atoms(φn) = atoms(ϕ), where n >
1;

2) atoms(φi) 6= ∅, for i = 1...n;
3) APp ∩ atoms(φi)∩ atoms(φj) = ∅, for any p ∈ P and

i 6= j, i, j = 1.., n.

where atoms(φi) represents the set of atomic propositions

6

in φi and APp represents the set of atomic propositions that
are locally observed by process p. The formulas φ1, .., φn are
called decomposition components of ϕ. The variable sets of
the components must be proper subsets of the variables of
the original formula ϕ. The obtained formulas define some
partition of atoms(ϕ) that is observed by a unique subset of
processes in order to ensure disjointness.

In this work, we view a tableau Tϕ of an LTL formula ϕ as
a set of branches B1, ...,Bk where each branch Bi consists of
a sequence of nodes (n0, ..., n`), where n0 = ϕ is the initial
node and n` is the leaf or terminal node of the branch Bi.
The formulas at node n` are generated through the repeated
application of the tableau decomposition rules and hence they
are either in their simplest form (atomic formulas) or that no
new information can be obtained from decomposing further
the formulas (a fixed point has been reached). Hence, we need
only to examine terminal nodes of branches when organizing
processes into groups using the tableau representation.

We now describe a formula decomposition algorithm (Al-
gorithm 2) that can be used to perform a logical decom-
position of the formula based on the observation power of
processes and the tableau representation of the formula. Note
that the unwinding algorithm performs a decomposition of
the constraints in the formula but not a logical decompo-
sition of the formula itself, which will be performed by
the tableau algorithm presented here. The tableau algorithm
takes as inputs the parameters (P, Tϕ), and returns a set
of groups of processes with their corresponding assigned
LTL formulas (group1, φ1), ..., (groupn, φn). The function
GetTerminalNode(B) returns the terminal node (set of
formulas at the last node) in the branch B. The algorithm
consists of two phases: the exploring phase and the merging
phase. In the exploring phase, the branches of the tableau
are examined in order to compute the set of processes that
contribute to their truth values. In the merging phase, joint
groups (groups with common processes) are merged. This is
necessary in order to avoid communications across groups. We
assume that processes within groups communicate with each
other using a static communication scheme in which the order
of communication is determined by their PIDs.

To show how one can monitor CNFPs in a decentralised
manner, we consider response time properties as an example.

Example 2: Suppose we have a system that consists of 7
processes (p0, p1, p2, p3, p4, p5, p6) as shown in Fig. 5. The

p0 p2 p4I0 O2

p1I1

p3 p5O3 p6 Of

Fig. 5. A system with multiple dependency paths.

property that we would like to monitor in a decentralized

1: Input: (P, Tϕ)
2: group := ∅, ListOfGroups := ∅
3: Output: ListOfGroups
4: if |Tϕ| = 1 then return {(P,ϕ)}
5: end if
6: for each B ∈ Tϕ do . Exploring phase
7: NT = GetTerminalNode(B)

8: φ :=
∧|NT |

i=0 (NTi)
9: for each p ∈ P do

10: if (APp ∩ atoms(φ)) 6= ∅ then
11: add p to group
12: end if
13: end for
14: add (group, φ) to ListOfGroups
15: group := ∅
16: end for
17: for each M ∈ ListOfGroups do . Merging phase
18: for each N ∈ ListOfGroups \M do
19: if M.group ∩N.group 6= ∅ then
20: M.group := merge(M.group,N.group)
21: M.φ := M.φ ∨N.φ
22: remove N from ListOfGroups
23: add M to ListOfGroups
24: end if
25: end for
26: end for
27: return ListOfGroups

Algorithm 2: Organizing processes into disjoint groups

manner for the given system is ϕ = G((I0 ∧ I1) ◦≤20 Of).
Obviously, the formula in its given form cannot be monitored
efficiently in a decentralized way since it is given in an
abstract form where all inter-dependent variables are hidden.
We therefore need first to unwind the formula ϕ. This can be
performed by examining the dependency graph of the system.
The resulting unwound formula has the following form

ϕ(U) = G((O1 ∧O4 ∧O5) ◦≤c6 Of) ∧G(O2 ◦≤c5 O4)∧
G(O3 ◦≤c4 O5) ∧G(O0 ◦≤c3 O2) ∧G(O0 ◦≤c2 O3)∧
G(I1 ◦≤c1 O1) ∧G(I0 ◦≤c0 O0).

(2)
Formula (2) can be negated as follows

¬ϕ(U) = F¬((O1 ∧O4 ∧O5) ◦≤c6 Of) ∨ F¬(O2 ◦≤c5 O4)∨
F¬(O3 ◦≤c4 O5) ∨ F¬(O0 ◦≤c3 O2) ∨ F¬(O0 ◦≤c2 O3)
∨F¬(I1 ◦≤c1 O1) ∨ F¬(I0 ◦≤c0 O0).

(3)
Formula (3) is then decomposed using the tableau technique.

The resulting tableau of this formula consists of six branches
where each branch represents a way to falsify the original
formula. We then use Algorithm 2 to organise processes into
disjoint groups as described in Table I. Note that for this par-
ticular example processes need not to communicate with each
other and they can detect violation of the monitored formula
(if any) separately. This is mainly due to the syntactic structure
of the given formula. Thanks to the tableau decomposition!

7

TABLE I
SUB-FORMULAS AND THEIR CORRESPONDING ASSIGNED PROCESSES AS

GENERATED BY ALGORITHM 2

Sub-formula Monitoring process
F¬(I0 ◦≤c0 O0) p0
F¬(I1 ◦≤c1 O1) p1
F¬(O0 ◦≤c2 O3) p2
F¬(O0 ◦≤c3 O2) p3
F¬(O2 ◦≤c4 O4) p4
F¬(O3 ◦≤c5 O5) p5

F¬((O1 ∧O4 ∧O5) ◦≤c6 Of) p6

The attribution of processes to each sub-formulas for mon-
itoring relies mainly on the observation power of processes
(the set of variables that are locally observed by each process).
For example, process p0 is the only process among processes
that can observe (locally) the variables I0 and O0 and hence
the first formula in Table I is assigned to p0. The constraints
c0, ..., c6 can be computed using formula (1) as follows

c0 = min(20− cost(p2) + cost(p4) + cost(p6)),
(20− cost(p3) + cost(p5) + cost(p6)))

c1 = (20− cost(p6)); c2 = (20− (cost(p5) + cost(p6)))

c3 = (20− (cost(p4) + cost(p6))); c4 = (20− cost(p6))

c5 = (20− cost(p6)); c6 = 20.

Suppose that the lower running costs (response times) of
processes are given as follows: cost(p0) = 2, cost(p1) =
3, cost(p2) = 1, cost(p3) = 2, cost(p4) = 4, cost(p5) =
3, cost(p6) = 4. The values of the sub-constraints assigned
to the processes will be as follows

c0 = 11; c1 = 16; c2 = 13; c3 = 12; c4 = c5 = 16; c6 = 20.

Hence, the earliest possible time at which violation (if any) of
the property ϕ can be detected will be at (x + 11), where x
represents the time at which monitoring has been initiated.

C. The Soundness of Monitoring Framework

By assuming that the dependency graph of the system is
finite, one can show that the formula ϕ can be unwound in
a finite number of unwinding steps. An upper bound on the
number of unwinding steps can be computed in terms of the
number of processes and the number of dependent variables
in ϕ. Termination of Algorithm 1 is guaranteed since we
assume that the dependency graph G does not have any circular
dependencies. In Theorem 1, we show that the transformation
(unwinding) of the input formula into a new formula that
makes variable dependencies explicit is sound. That is, the
original formula and the unwound formula are semantically
equivalent. The soundness of transformation relies heavily on
the employed graph traversal strategy that is used to unwind
dependent variables in the input LTL formula. The traversal
strategy needs to respect the order at which intermediate
variables are generated. This implies that monitoring of the
original formula and the unwound formula yields the same
verdict. One of the key advantages of monitoring the unwound
(extended) formula over the original (abstract) formula is that

violations maybe detected way before the original property
would fail and hence some corrective actions maybe taken to
avoid severe consequences of failure.

Theorem 1: (Soundness of unwinding) Let G be a de-
pendency graph for a system P and ϕ be an LTL property
formalising a cumulative cost property of P . Let ϕ(U) be
an LTL formula obtained by unwinding the property ϕ using
Algorithm 1. Then ϕ and ϕ(U) are semantically equivalent.

Proof: . Let ϕ be an LTL formula formalising a cumula-
tive cost property with a quantitative dependency constraint
of the form (L ◦≤q R), where q ∈ N. Let also G be the
dependency graph of the system P and ϕ(U) be an unwound
version of ϕ with the set of constraints {c1, ..., cn} obtained
by running Algorithm 1. Suppose that V arϕ and V arϕ

(U)

are the set of variables in ϕ and ϕ(U) respectively. To prove
the theorem we need to show that the construction of ϕ(U)

from ϕ and G (Algorithm 1) meets the following correctness
criteria: (1) the unwinding of dependent variables in ϕ using
the graph G preserves the semantics of the property ϕ, and (2)
the decomposition of the global constraint q into local con-
straints respects the order at which intermediate variables are
generated. To show that Algorithm 1 meets the first criterion
let us consider a dependent variable v in (L◦≤qR). To unwind
the variable v, Algorithm 1 conducts a backward analysis of
the graph G starting from the process that generates v until
it reaches some source process (i.e., a process whose inputs
are independent or environment inputs) (see lines 18-35).
Note that some of intermediate variables along the explored
dependency path affect the truth value of the variable v (i.e., if
truth values of intermediate variables are missing then the truth
value of v cannot be obtained). Algorithm 1 then constructs a
full dependency formula for the explored path(s) which takes
the form (φ1 ◦≤c1 φ2)∧ ...∧ (φn−1 ◦≤cn φn), where φi can be
either atomic formula or compound formula and n represents
the number of processes along the visited dependency path.
The above steps are repeated on each detected dependent
variables in (L ◦≤q R). Finally, Algorithm 1 replaces the
quantitative dependency formula (L ◦≤q R) under analysis
with the resultant unwound quantitative dependency formula
to conclude the unwinding process (see lines 36-37). It is
easy to see that traversing the graph G in this manner (back-
ward traversing) that respects the order at which intermediate
variables are generated ensures soundness of transformation.
The constraint q is decomposed among monitoring processes
using formula (1). The constraint q is decomposed into local
constraints in a way such that violations detected by individual
processes are actual violations. To do so, we need to ensure
that the constraint ci assigned to process pi represents the
maximal cumulative accepted cost for the completion of an
event generated by that process. To achieve this, Algorithm
1 subtracts the global constraint q from the cost of the path
that have the minimal cumulated cost among all paths that
lead from process pi to the process that generates the variable
being unwound (see lines 22-24). It is easy to see that such
decomposition of the constraint q into sub-constraints c1, ..., cn
preserves the semantics of the original quantitative formula.

8

Hence, under the same truth assignments of variables in
(V arϕ∩V arϕ(U)

), formulas ϕ with the constraint q and ϕ(U)

with the constraints {c1, ..., cn} yield the same output.
Theorem 2: (Soundness of monitoring). Let ϕ ∈ LTL

formalising a cumulative cost property of a system P and
g ∈ Σ∗ be a global trace. Let ϕ(U) be the unwound version
of ϕ. Then g |= ϕ(U) : B ⇒ g |= ϕ : B, where B ∈ {>,⊥}.

Proof: Theorem 2 is a direct implication of theorem 1 as
formulas ϕ and ϕ(U) are semantically equivalent.

V. A CASE STUDY

A. A description of The Case Study

The case study presented here is based on a Fischertechnik
training model which we use to demonstrate the advantages
of the unwinding approach and the underlying monitoring
framework. This model factory, as shown in Fig. 6, is a sorting
line which sorts tokens based on their color into storage bins.

Color Sensor

Light Sensor 1
(LS1)

Light Sensor 2
(LS2)

Ejector

Token

Bin 2

Step

Conveyor Belt

Pulse Counter

Bin Light Sensor

Bin 1 Bin 3

Fig. 6. Fischertechnik Testbed: Sorting line with color detection.

The processes of the model factory, including its actuators
and sensors, are given below.
• Light sensors: Two light sensors for the detection of a

token on the conveyor belt.
• Color sensor: This sensor provides an analog signal for

color determination of a token.
• Ejector: One of three ejectors is used to push the color

sorted token into the storage bins.
• Storage bins: There are three storage bins where each

has a sensor.
• Direct current (DC) motor: This motor is responsible

for providing the power necessary for the rotation of the
belt.

• Pulse counter: An encoder to track the movement of
the conveyor belt through step counts.

• Conveyor belt: This is a physical belt which moves the
token to its bin.

• Tokens: There are two types of token one is a white
token and the other is a blue token.

The various processes of the model factory are shown in
Figure 7. A token first enters the conveyor belt from the left
side and is then detected by the first light sensor LS1. It

White

Token

Light

Sensor 1

(LS1)

Light

Sensor 2

(LS2)

Ejectors

Storage Bins with Light Sensors

Color Sensor

(Analog)

DC Motor

Ethernet

PTP Time

Synchronised

Blue

Token

Arduino

Pro Mini

(APM)

Pulse

Counter

Raspberry

Pi 3 (RPI)

Token Detector

Motor Controller

Bin Resolvers

Ejector
Controller

B1 B2 B3

Color
Processors

Fig. 7. Hardware Architecture: The Fischertechnik training model with the
various processes grouped together: A Token Detector, Color Processors, bin
Resolvers and the Ejector Controller.

moves along the conveyor belt and reaches the color sensor
which then identifies the color of the token (i.e., white or
blue). As it moves along the conveyor belt, the token passes
through the second light sensor LS2. Then after passing the
light sensor LS2, the ejectors then eject the token into one of
the three bins (B1, B2 or B3). The bin B1 is designated for
the white token while the bin B2 is designated for the blue
token. The movement of a token is tracked through the pulse
counter which counts the number of steps the token made on
the conveyor belt.

To control the sorting line, a collective of Raspberry Pi
(RPI) 3s are used as computation nodes while the Arduino
Pro Minis (APMs) are used as analogue to digital converters
to process the analogue signal from the color sensor. Once
the analogue signal is processed, the color information is
communicated to the RPI. A motor controller (MC) regulates
the DC motor which in turn regulates the belt’s rotation and
also tracks the belt’s steps through the pulse counter. The token
detector (TD) monitors the arrival of tokens through LS1 and
triggers the color processors (WCP and BCP) to read the color
sensor. Both of them are used to process the analogue value
from the color sensor to determine the color of the token.
There are two managerial processes, the bin resolvers (WBR
and BBR) which receive the color output from their CPs and
determine the token’s bin placement. As the token’s color is
being read while it is moving, the color sensor produces a
noisy analogue value, leading to inaccurate color readings.
Each color processor in the system is designed to be biased
towards their assigned color to combat this problem. After that,
the ejector controller (EC) receives bin information from the
BRs and triggers the corresponding ejector. EC also monitors
inputs from LS2 to ensure the timely arrival of the token. The
dependencies among processes can be seen in Figure 8.

The application programs on the RPIs are written with
4DIAC, which is based on the IEC 61499 standard [10]. RPIs
in the system are networked through Ethernet and are also

9

time synchronized through Precision Time Protocol to enable
decentralized monitoring through the unwinding technique.

Token

Detector

White Color Processor

White Bin Resolver

Blue Bin Resolver

Ejector

Controller

Motor Controller

TCS

TCS

CVW

CVB

EW

EB

AW

LS1

Blue Color Processor

SCCP AB

SC

Fig. 8. Dependency Graph G: Shows the input-output dependencies of the
various processes in the system.

The dependency graph G illustrated in Figure 8 shows an
end-to-end timing requirement for all the processes such that
both the white and the blue tokens can be sorted correctly into
their respective bins. We are then interested in verifying two
response time properties for the system: the first is ϕW which
represents the system formula for sorting the white tokens
and the second is ϕB which represents the system formula for
sorting the blue tokens. We aim to monitor these formulae in
a decentralized way. The notations used during the unwinding
of both formulae are given in Table II. The two response time
formulae of the system can be described as follows

ϕW = G((LS1 ∧ SC) ◦≤5 AW)

ϕB = G((LS1 ∧ SC) ◦≤6 AB)

TABLE II
I/O VARIABLES IN THE SYSTEM

Variable Definition

LS1/2 Light Sensor 1, 2
TCS Trigger Color Sensor

CVW/B Annotated Color Value
SC Current Step Count

SCCP Token Step Count at CP
EW/B Bin ejection information to White/Blue bin
AW/B Arrival at White/Blue bin

We then unwind the two formulae ϕW and ϕB using the
unwinding technique described at Section III. In Table III we
give the resulting sub-formulae that result from the unwinding
process of the formula ϕW and in Table IV we give the
resulting sub-formulae that result from the unwinding process
of the formula ϕB with their corresponding timing constraints.

Decentralized monitoring for each of the processes can
now be done based on their sub-formulae. Note that in both
Tables III and IV, there is a special sub-formula φ∗. φ∗ exists
as a special observer as there is a separate requirement to
trigger (TCS) the color processors at the moment the token
is beneath the color sensor. Monitoring for each sub-formula
are done at their respective processes, with the exception of
sub-formulae φW2 and φB2. Instead, the observers of these
sub-formulae are on WBR and BBR respectively, as WCP
and BCP cannot host the 4DIAC runtime environment.

TABLE III
FORMULA UNWINDING FOR THE WHITE TOKEN

Formula c-value (seconds) Process

ϕW LS1 ∧ SC ◦AW 4 EC
φW4 EW ◦AW 4 EC
φW3 CVW ∧ SCCP ◦ EW 2 WBR
φW2 TCS ◦ CVW 2 WBR
φW1 LS1 ∧ SC ◦ SCCP 2 TD
φ∗ LS1 ∧ SC ◦ TCS 1 TD

TABLE IV
FORMULA UNWINDING FOR THE BLUE TOKEN

Formula c-value (seconds) Process

ϕB LS1 ∧ SC ◦AB 5 EC
φB4 EB ◦AB 5 EC
φB3 CVB ∧ SCCP ◦ EB 2 BBR
φB2 TCS ◦ CVB 2 BBR
φB1 LS1 ∧ SC ◦ SCCP 2 TD
φ∗ LS1 ∧ SC ◦ TCS 1 TD

B. The Failure Scenarios

In this section, we describe some possible failure scenarios
that may occur when running the presented model factory. De-
pending on how early the failure is detected (i.e., violation of
the main formula), different recovery plans may be performed
to meet the main objective of the token sorting process.

To enable failure recovery plans, a ‘clever’ resilience mech-
anism is additionally employed to take advantage of the
violations reported by the observers through monitoring of
the sub-formulae in each process. A summary of the violations
which can be detected through decentralized monitoring of the
system is listed in Table V. The faults listed in the table are
based on timing deviations of their expected behavior.

1) Process / Formula: Token detector/φ∗. Fault: A failure
to trigger the color sensor leads to an unclassified token
even when the token is detected. Since color sorting is
the main objective, a failure here constitutes to major
fault of the system. Recovery: As a last resort, we
push the unclassified token into bin 3 for re-sorting.

2) Process / Formulae: Token detector/φW1/B1. Fault:
It is plausible that the step count SCCP read by the
token detector is lost. Losing the step count undermines
the system’s ability to track the position of the token.
Recovery: As this can be detected early by TD, we can
respond by making use of the second light sensor LS2

to redetermine the token’s position and push the token
into its rightful bin.

3) Process / Formulae: Color processors / φW2/B2. Fault:
As mentioned previously, the observers for the color
processors (i.e., WCP/BCP) are hosted on WBR and
BBR, respectively. A delay in the processing the color
value of the token extends the execution latency of the
color processors. Recovery: To prevent the token from
missing the ejector before a color value is produced, we
can slow down the motor of the conveyor belt, allowing
for more time for the color processors to produce an
output.

10

TABLE V
FAULTS AND RECOVERY PLANS

Formula Fault Recovery Plans

φ∗ Failure to trigger the color sensor (TCS) Unclassified token goes into bin 3
φW1,B1 Absence of the step count of the token (SCCP) Reference step count at LS2

φW2,B2 Color sensor output (CVW/B) delay Reduce conveyor belt speed
φW3,B3 WBR or BBR output (EW/B) delay Reduce conveyor belt speed
φW4,B4 Token fails to reach assigned bin (AW/B) Token goes into bin 3

4) Process / Formulae: Bin resolvers / φW3/B3. Fault:
The bin resolvers are responsible for assigning the token
to their respective bins based on their color read by
the color sensor. A delay in the making a decision for
assigning the token extends the execution latency of the
bin resolvers. Recovery: To prevent the token from
missing the ejector before a decision is reached, we can
slow down the motor of the conveyor belt, allowing for
more time for the bin resolvers to produce an output.

5) Process / Formulae: Ejector controller / φW4/B4.
Fault: The sorted token has to reach its assigned bin.
A fault occurs when the sorted token is unable to reach
its assigned bin. Recovery: The token is pushed to bin
3 for re-sorting.

The above recovery plans have been implemented on the
above described case study which allows the processes to
respond appropriately when a failure occurs (or an early
violation of the properties is detected). The goal of these
recovery plans is to minimize the impact of violations on the
system by allowing the process to take the most appropriate
possible action given the time at which (potential) violation of
the main formula is detected. Without early violation detection,
it is not possible to recover sufficiently in time to place the
tokens into their respective bins. This is evident as seen in
sub-formulae φW4/B4, which is equivalent to just monitoring
the overall system formulae ϕW/B . The tokens can only be
ejected into bin 3 at the last point of violation detection. A
short video documentation of the case study is available at
https://youtu.be/5CUH0Z2qaBM.

VI. RELATED WORK

The key novelty of our presented framework comparing to
existing frameworks [11], [4], [12], [13], [14], [15], [16], [17]
is the employment of the tableau construction and the formula
unwinding technique to split and distribute LTL formulas with
quantitative operators so that monitoring of such class of
properties can be conducted in a decentralised manner. The
employment of these techniques allows processes to detect
early violations of properties and perform some corrective or
recovery actions to avoid severe consequences of failures.

Sen et al. [11] propose a monitoring framework for safety
properties of systems using the past-time linear temporal logic
(ptLTL). However, the algorithm is unsound. The evaluation
of some properties may be overlooked in their framework.
This is because monitors gain knowledge about the state of
the system by piggybacking on the existing communication
among processes. That is, if processes rarely communicate,

then monitors exchange little information, and hence, some
violations may remain undetected. The authors have not con-
sidered quantitative properties of systems as we have done in
this work and hence their framework cannot be directly applied
to deal with this class of properties.

Bauer and Falcone [4] propose a decentralized framework
for runtime monitoring of LTL. The framework is constructed
from local monitors which can only observe the truth value
of a predefined subset of propositional variables. The local
monitors can communicate their observations in the form of a
(rewritten) LTL formula towards its neighbors. The approach
has the risk of saturating the communication devices as pro-
cesses send their obligations as rewritten temporal formulas.
Mostafa and Bonakdarpour [15] propose similar decentralized
LTL monitoring framework, but truth value of atomic variables
rather than rewritten formulas are shared. Our work differs
from these works in that we consider decentralised monitoring
of quantitative properties where we extend the classical LTL
with a quantitative dependency operator of the form ◦≤q . The
technical challenge of monitoring quantitative properties in
this setting consists of translating global constraints into local
ones which can be monitored by individual processes.

The work of Falcone et al. [13] proposes a general decen-
tralized monitoring algorithm in which the input specification
is given as a deterministic finite-state automaton rather than
an LTL formula. Their algorithm takes advantage of the
semantics of finite-word automata, and hence they avoid the
monitorability issues induced by the infinite-words semantics
of LTL. They show that their implementation outperforms
the Bauer and Falcone decentralized LTL algorithm [4] using
several monitoring metrics. It is not clear to us how the de-
centralised monitoring framework of [13] based on finite state
automata can be used to monitor quantitative LTL properties
in which costs may accumulate from one state to another. Our
framework employs also an unwinding algorithm which helps
to optimise decentralised monitoring of properties in a way
such that violations can be detected way before the original
property would fail. Early detection of violations cannot be
achieved using the monitoring framework of [13].

Colombo and Falcone [16] propose a new way of organizing
monitors called choreography, where monitors are organized
as a tree across the distributed system, and each child feeds in-
termediate results to its parent. The proposed approach tries to
minimize the communication induced by the distributed nature
of the system and focuses on how to automatically split an LTL
formula according to the architecture of the system. However,
their framework cannot be used to efficiently monitor LTL

11

https://youtu.be/5CUH0Z2qaBM

properties with quantitative operators. The key difference be-
tween our framework and their framework is the employment
of the tableau construction and formula unwinding technique
to split and distribute the global quantitative constraint, which
help to detect early violations of the monitored property and
perform some recovery actions.

Recently, Al-Bataineh et al. [17] presented a monitoring
framework for LTL formulas in which functional properties
are modeled as LTL formulas and decomposed using the
tableau decomposition rules. They showed how to use tableau
to optimise the underlying decentralized monitoring process
of functional properties for synchronous distributed systems.
However, quantitative LTL properties have not been considered
in their work and hence cumulative cost properties cannot be
efficiently monitored in their decentralised framework.

Several extensions to the classical LTL (both past and future
LTL) have been proposed in the prior literature [18], [19], [20].
The authors of [18], [19], [20] focused mainly on showing
decidability of some restricted forms of constraint systems
using automata-theoretic technique. They extended until with
arithmetic expressions with integer variables, which maybe
used to model quantitative properties of systems. However, in
our work we extend the LTL with a quantitative dependency
operator of the form ◦≤q which can be used to capture quan-
titative dependencies among variables/modules in the system
model. Such extension allows us to monitor in a straightfor-
ward manner an interesting class of quantitative properties,
namely cumulative cost properties of systems. The introduced
quantitative dependency operator allows direct verification of
cumulated costs among dependent parts (modules, processes,
or variables) of the system being monitored, where the left
and right operands of the dependency operator can be atomic
formula, compound formula, or LTL formula.

VII. CONCLUSION

The topic and idea of splitting monitoring of systems into
simpler monitoring tasks is an interesting current research
problem, especially when considering upcoming applications
like cloud, edge and fog computing. In this work, we in-
troduced a methodology to decentralize the monitoring of
cumulative cost properties of systems formalised as temporal
properties and represented as a tableau. The decentralization
process works by systematically transforming (“unwinding”)
the system level LTL formula into a semantically equivalent
formula which can then be decomposed and distributed across
the system’s processes/nodes in order to monitor fulfilment
of the respective sub-properties at runtime. If a monitor
detects a violation, depending on its nature, the error can
either be forwarded to a superordinate process or corrective
actions may be initiated directly at the level of the process
detecting the fault. As such violations can typically be detected
way before the original property would fail, such corrective
actions can even avoid the system failure in some cases. The
methodology is demonstrated with two synthetic examples and
a real experiment involving a Fischertechnik plant model.

ACKNOWLEDGEMENT

This work was supported by Delta-NTU Corporate Lab
for Cyber-Physical Systems with funding support from Delta
Electronics Inc. and the National Research Foundation (NRF)
Singapore under the Corp Lab@University Scheme.

REFERENCES

[1] F. M. of Education and Research. (2018) Industry 4.0.
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html.

[2] L. Chung and J. C. Prado Leite, “Conceptual modeling: Foundations
and applications,” A. T. Borgida, V. K. Chaudhri, P. Giorgini, and
E. S. Yu, Eds., 2009, ch. On Non-Functional Requirements in Software
Engineering, pp. 363–379.

[3] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for system design,” INRIA, Tech. Rep., 2012.

[4] A. K. Bauer and Y. Falcone, “Decentralised LTL monitoring,” in FM
2012: Formal Methods - 18th International Symposium, Paris, France,
2012, pp. 85–100.

[5] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, ser. SFCS ’77.
IEEE Computer Society, 1977, pp. 46–57.

[6] E. Beth, Semantic entailment and formal derivability. Mededelingen
der Koninklijke Nederlandse Akad. van Wetensch, 1955.

[7] R. Smullyan, First order Logic. Springer-Verlag, 1968.
[8] E. A. Emerson and J. Y. Halpern, “Decision procedures and expres-

siveness in the temporal logic of branching time,” in Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, ser.
STOC ’82, 1982, pp. 169–180.

[9] M. Reynolds, “A New Rule for LTL Tableaux,” in Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, 2016, pp.
287—-301.

[10] A. Zoitl, T. Strasser, and G. Ebenhofer, “Developing modular reusable
iec 61499 control applications with 4diac,” in 2013 11th IEEE Interna-
tional Conference on Industrial Informatics (INDIN), 2013, pp. 358–363.

[11] K. Sen, A. Vardhan, G. Agha, and G. Rosu, “Efficient decentralized
monitoring of safety in distributed systems,” in Proceedings of the 26th
International Conference on Software Engineering, ser. ICSE ’04. IEEE
Computer Society, 2004, pp. 418–427.

[12] C. Colombo and Y. Falcone, “Organising LTL monitors over distributed
systems with a global clock,” in Runtime Verification - 5th International
Conference, RV 2014, 2014, pp. 140–155.

[13] Y. Falcone, T. Cornebize, and J. Fernandez, “Efficient and generalized
decentralized monitoring of regular languages,” in Formal Techniques
for Distributed Objects, Components, and Systems, 2014, pp. 66–83.

[14] T. Scheffel and M. Schmitz, “Three-valued asynchronous distributed
runtime verification,” in International Conference on Formal Methods
and Models for System Design (MEMOCODE), vol. 12. IEEE, 2014.

[15] M. Mostafa and B. Bonakdarpour, “Decentralized runtime verification of
LTL specifications in distributed systems,” in 2015 IEEE International
Parallel and Distributed Processing Symposium, 2015, pp. 494–503.

[16] C. Colombo and Y. Falcone, “Organising LTL monitors over distributed
systems with a global clock,” Formal Methods in System Design, vol. 49,
no. 1-2, pp. 109–158, 2016.

[17] O. Al-Bataineh, D. Rosenblum, and M. Reynolds, “Efficient Decentral-
ized LTL Monitoring Framework UsingTableau Technique,” in Interna-
tional Conference on Embedded Software (EMSOFT), 2019.

[18] H. Comon and V. Cortier, “Flatness is not a weakness,” in Computer
Science Logic, P. G. Clote and H. Schwichtenberg, Eds., 2000, pp. 262–
276.

[19] S. Demri and D. D’Souza, “An automata-theoretic approach to constraint
LTL,” Information and Computation, vol. 205, no. 3, pp. 380–415, 2007.

[20] M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella, M. Rossi, and
P. San Pietro, “Bounded reachability for temporal logic over constraint
systems,” in 17th International Symposium on Temporal Representation
and Reasoning, 2010.

12

	I Introduction
	II Background
	II-A Decentralized Monitoring Problem
	II-B Tableau Construction for LTL

	III Cumulative Cost Properties
	IV Monitoring Framework
	IV-A Unwinding Cumulative Cost Properties
	IV-B Organizing Processes into Disjoint Groups
	IV-C The Soundness of Monitoring Framework

	V A Case Study
	V-A A description of The Case Study
	V-B The Failure Scenarios

	VI Related Work
	VII Conclusion
	References

