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Aurélie Beynier Abdel-Illah Mouaddib

LIP6 - University Paris 6 GREYC - University of Caen

104 avenue du Président Kennedy Bd. Maréchal Juin
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Abstract— A peer-to-peer server network system consists of
a large number of autonomous servers logically connected in
a peer-to-peer way where each server maintains a collection
of documents. When a query of storing new documents is
received by the system, a distributed search process determines
the most relevant servers and redirects the documents to them
for processing (compressing and storing at the right document
base).

In this paper, we model this distributed search process as
a distributed sequential decision making problem using a set
of interactive Markov Decision Processes (MDP), a specific
stochastic game approach, which represent each server’s deci-
sion making problem. The relevance of a server to a document
is regarded as a reward considering the capacity of the storage
and the goodness score of a server. We show that using a central
MDP to derive an optimal policy of how to distribute documents
among servers leads to high complexity and is inappropriate
to the distributed nature of the application. We present then
interactive MDPs approach transforming this problem into a
decentralized decision making process.

I. INTRODUCTION

The Web is real-world application of distributed environ-

ment where various entities are massively distributed and

loosely connected. Documents become the basic element

to manage in large document bases. Consequently their

storage and search problems should be carefully considered

to maintain a performant system. To alleviate these problems,

distributed decision making systems formalize the problem

of storing the huge web documents to a large number of

autonomous local decision makers (servers) where each of

the decision makers (servers) decides about how to store and

how to retrieve documents [7], [8].

In this paper, we adopt a peer-to-peer distributed document

storage and search server network, in which each server

is autonomous and connected to only a small number of

peer servers. The resource consumption for each document

storage is probabilistic because of the uncertain output of

the compression techniques. However, we assume that each

storage technique has a probability distribution on resource

consumptions (memory). To optimally store a set of docu-

ments, the system should decide how to distribute the docu-

ments among the servers. We present, first, how this decision

making process can be formalized as an MDP from which a

global optimal policy of servers can be derived. It, also, will

be shown that using a centralized MDP is computationally

high and unsuitable because of the distributed nature of the

problem. Consequently, we present another approach based

on a specific distributed decision making technique.

The distribution of the document decision making problem

is, then, formalized as a decentralized decision making

process, a specific stochastic game approach, among servers

where each server should make a decision on which doc-

uments to store considering its capacity, the relevance of

the documents and the ability of the other servers to store

it. In order to model this problem, we consider a set of

interactive MDPs for a cooperative game theoretic model

where each server uses an MDP to compute its local policy

which selects documents to store considering the abilities of

the other agents.

The system we consider is a set of servers S = {a1, . . . an}
and queries q of searching and storing a set of documents

{d1, . . . dT }. The problem is then how to optimally distribute

documents dt among servers aj such that the resource

consumption of the system is minimized and the relevance

of documents to server is maximized.

To deal with this problem we transform it into a problem

of task allocation in a multi-agent system [5], [6], [3], [1], a

specific problem of distributed network resource allocation,

where the set of servers becomes a set of agents (or players)

A and the set of documents to store become a set of tasks

T.

II. FRAMEWORK FOR STORAGE TASKS

The problem of distributing documents to store among

servers can be formalized as a decentralized cooperative sys-

tem which consists of a set of agents A = {a1, a2, · · · , an}
that have to allocate and to execute a set of tasks T =
{d1, d2, · · · , dT }. Each agent ak has a bounded quantity

of resources Rak
that he uses to execute his allocated

tasks. Tasks will be allocated and executed in a commonly

known order: without loss of generality, we assume that this

ordering is d1, d2, · · · , dT . A task allocation is a mapping

P from tasks to agents. It can be expressed by P =
{D1, D2, · · · , Dn}, where Dk is the set of tasks allocated

to the agent ak. The sets Dk verify: ∀k 6= l,Dk ∩ Dl = ∅
and ∪

ak∈A
Dk ⊆ T.



Definition 1: Each agent ak has a reward function Gak
:

T → R
+ such as, Gak

(dt) represents what the system gains

if ak stores the document dt.

This function in the context of Peer-to-Peer document stor-

age server architecture considers many criteria such as the

memory capacity, the relevance, security and other criteria. In

our context, we limit ourselves to memory capacity and the

relevance of the server. To do that, we consider the goodness

score of a server [2], [8] which assesses the relevance to store

a document in comparison with the ones already stored. If

the terms of the document to store appear frequently in these

documents, then we believe the server is more relevant to the

document. In order to avoid considering all the terms of a

document, we use a relative term frequency according to the

greatest frequency in the document. We call this frequency

the local index LI(x, dt) of a term x in a document dt. More

formally:

LI(x, dt) =
|tf(x, dt) − maxy∈dt

tf(y, dt)|

maxy∈dt
tf(y, dt)

where tf(x, dt) is the term frequency of term x in document

dt. This index allows us to consider only terms with LI

greater than a threshold th (50% for example).

The relevance of a server to a term t is computed as a

sum of LI values of all the documents dt in the server a:

Relevance(t, a) =
∑

dt∈a

LI(t, dt)

The relevance of the server to a document dt is then:

Relevance(dt, a) =
∑

t∈dt,LI(t,dt)>th

Relevance(t, a)

This relevance is then used as the reward function gained

by an agent (server) ak when it stores a document dt.

Gak
(dt) = Relevance(dt, ak) =

∑

t∈dt,LI(t,dt)>th

∑

dt∈ak

LI(t, dt)

In this paper, we will be concerned not only with the

relevance but also with the utility to store a document dt

in a server. This function will consider in addition to the

relevance of the server, its capacity of storing new documents

which is its available memory resource. The utility function

Wak
is, then, given by:

Wak
(dt) = Gak

(dt) + Available resource(ak)

the function Available resource gives the available resource

of the server which is an observable information.

The uncertainty on task execution (resource consumption)

can be expressed by the fact that an agent ak cannot exactly

determine the quantity of resources which will be consumed

when he executes a task dt. So, he does not know whether

he could execute all tasks allocated to him or he will be

obligated to ignore ones. To deal with this uncertainty, we

use a discrete representation of the resource consumptions

for each agent:

Definition 2: The execution of a task dt by an agent ak

consumes one of p quantities of resources: r1
k, r2

k, · · · , r
p
k.

The value of p can vary with the agent and the task.

Definition 3: Each agent ak has a probability distribution

Prak
: {rj

k : dt ∈ T, j = 1, ..., p} −→]0, 1], where

Prak
(dt, r

j
k) expresses the probability that the execution of

the task dt by ak consumes the quantity of resources r
j
k.

With a higher value of p, the agent handles the uncer-

tainty in a better way. The different quantities r
j
k, k =

1, ..., n, j = 1, ..., p and the probability distribution Prak

are the knowledge of ak about his environment. The agents’

aim is then to allocate tasks (respond to query) in a way

which maximizes the system expected reward. We formalize

this specific allocation of tasks as a MDP [3] from which a

task allocation policy is derived.

III. DOCUMENT STORAGE TASK AS AN MDP

The problem of distributing documents among servers is

formalized as a sequential decision making process where at

each step, we decide to which server the document should be

allocated. We define the state of the system by the set of doc-

uments stored in each server and by the available resources

(available memory of servers). In centralized systems, the

controller constructs and solves one MDP in order to obtain

an optimal distribution of documents among servers. In the

following, we describe the MDP1 via: (1) the states, (2) the

actions, (3) the transition model and (4) the expected reward.

A. State Representation

A state represents a situation of the task allocation and

of the anticipation of resource consumption for all agents.

We denote by St = ((D1
t , R1

t ), ..., (D
n
t , Rn

t )) the state of the

system at step t, where: Dk
t is the set of tasks allocated to

ak up until step t (set of stored documents at a server). The

sets Dk
t satisfy the conditions:

n
∪

k=1
Dk

t ⊆ {d1, ..., dt} and ∀k 6= l then Dk
t ∩ Dl

t = ∅

A task dj≤i belongs to Dk
t if there were enough resources

to execute it when the decision to allocate it to ak has

been made (see next section). The construction of the MDP

starts from the initial state: S0 = ((∅, R1
0), ..., (∅, R

n
0 )).

The system arrives to a terminal state ST when a decision

has been made for all tasks or when agents have no more

resources to store new documents. More formally, ST =

((D1
T , R1

T ), ..., (Dn
T , Rn

T )) where
n
∪

k=1
Dk

T ⊆ T and Rk
T ≥

0, k = 1, · · · , n.

B. Actions and Transition Model

An action E(St−1, dt, ak) consists in allocating, from

St−1, a task dt to an agent ak (allocating a document to

a server) and in anticipating the amount of resources which

will be consumed when executing this task. For simplicity,

let this action be E(dt, ak). When it is applied to St−1 =
((D1

t−1, R
1
t−1), ..., (D

n
t−1, R

n
t−1)), the system moves to one

of the p following states: S
j
t = ((D1

t , R1
t ), ..., (D

k
t , Rk

t =
Rk

t−1 − r
j
k), ..., (Dn

t , Rn
t )) where j = 1, · · · , p, Dl

t = Dl
t−1

and Rl
t = Rl

t−1,∀l 6= k.

1The MDP described here is based on the MDP presented in [3].



• If r
j
k ≤ Rk

t−1 then Dk
t = Dk

t−1 ∪ {dt} and Rk
t =

Rk
t−1 − r

j
k (agent ak has enough resources to store the

document).

• Otherwise (r
j
k > Rk

t−1), Dk
t = Dk

t−1 and Rk
t = 0 (agent

ak lacks resources).

In fact, there are, at most, p possible states because the

execution of dt can consume one of p different quantities of

resources (Def. 2). When r
j
k > Rk

t−1, the agent will consume

all his resources (Rk
t−1) without achieving dt. So, this task

does not belong to Dk
t . However, arriving to state S

j
t , where

r
j
k ≤ Rk

t−1, means that ak has executed dt consuming the

quantity r
j
k of resources and the system will gain Wak

(dt).
The transition probability is expressed by the distribution

Prak
because ak reaches state S

j
t if the execution of dt

consumes the quantity r
j
k. In the other words, the probability

to reach a state S
j
t is Prak

(dt, r
j
k).

C. Expected Reward and Global Optimal Policy

The decision to apply an action depends on the reward

that the system expects to obtain by applying this action. An

allocation policy π is a mapping from states into actions: for

each state St−1, π(St−1) = E(dt, ak) means that being in

state St−1 the action E(dt, ak) will be applied.

We denote by V (E(dt, ak)) the expected reward asso-

ciated to the action E(dt, ak). Being in a state St−1, t =
1, · · · , T , the expected reward of a policy π(St−1) =
E(dt, ak) is the expected reward obtained by executing π:

V (E(dt, ak)). We define the expected reward EV [St−1]
associated with the state St−1 as an immediate gain αt−1

that the system obtains being in this state ( αt−1 =
Wak

(dt−1), if dt−1 ∈ Dk
t−1, 0 otherwise), accumulated by

the expected reward of the policy to come (reward-to-go).

An optimal policy π∗(St−1) is the one which maximizes

the expected reward at each state. This policy is obtained

by solving Bellman’s equation adapted to our former using

value iteration [4]:

• for each nonterminal state St−1:

EV [St−1] = αt−1 + max
ak∈A

{V (E(dt, ak))} (1)

V (E(dt, ak)) =

p∑

j=1

Prak
(dt, r

k
t ) · EV [Sj

t ] (2)

• for every terminal state ST :

EV [ST ] = αT (3)

Since the obtained MDP is a finite horizon with no loops2,

the policy guaranteed by Equation (1) is then optimal [4].

Formally,

π∗(St−1) = arg(max
ak∈A

{V (E(dt, ak))}) (4)

2Being in a state St−1, the applicable actions are E(dt, ak), ak ∈ A
and no one can drive to a state Sj≤t−1.

The operator arg returns the action whose expected reward

is maximal.

An optimal task allocation P∗ can be obtained from a

terminal state such as: ST = ((D1
T , R1

T ), ..., (Dn
T , Rn

T ))
reached by applying the optimal policy at each state starting

up from S0, thus: P∗ = {D1
T , D2

T , · · · , Dn
T }.

Due to the MDP state space size, allocating tasks

can only be performed when the number of tasks and

agents is “small” (see Section VI). Since a state St−1 =
((D1

t−1, R
1
t−1), ..., (D

n
t−1, R

n
t−1)), in the global MDP, glob-

alizes information (allocated tasks and available resources

task) of all agents. Using such a representation while dealing

with large sets of servers and documents is not realistic since

it quickly limits the size of the problems that can be consid-

ered. Furthermore, because of the distributed nature of the

problem (peer-to-peer server network), the distribution of the

decision making process is more suitable than a centralized

process. Indeed, the number of states is exponential in the

number of tasks and agents. Besides, the agent who solves

the MDP should have precise knowledge about the uncertain

behavior of the others. The high complexity of the problem

and the distributed nature of the application thus reduce the

applicative range of a global MDP for real-life peer-to-peer

server architecture. Consequently, we propose to consider a

system, more suitable, where each server is an autonomous

agent able to make a decision locally about storing or not

the document through a local MDP.

In the following, we introduce a new method allowing

agents to act in a decentralized way to obtain an optimal

task allocation similar to the one obtained by the MDP. We

re-formalize the problem of task allocation as decentralized

MDPs (decentralized Local-MDP) where each agent solves

his local MDP which requires less computation than the

global MDP.

IV. DOCUMENT STORAGE TASK AS LOCAL-MDPS

A Local-MDP consists of a set S̄ of states, a set of actions

ĀC and a transition model. In ak’s Local-MDP, each state is

associated with a reward which represents what the system

gains when ak is in this state. We associate each action with

an expected reward which represents what the system expects

to gain if ak applies this action. In the following, we describe

the MDP locally developed by an agent ak.

A. State Representation

A state of S̄ represents a local situation of task allocation

and of the anticipation of resource consumption for the agent

ak. We denote by: S̄t = (D̄k
t , R̄k

t ) the state of the agent ak

at step t, where D̄k
t is the set of tasks allocated to ak up until

step t, and R̄k
t is ak’s available resources. The development

of the Local-MDP starts from the initial state: S̄0 = (∅, Rk
0).

The agent arrives to a terminal state S̄T when all tasks have

been allocated or when he has no more sufficient resources to

execute other tasks. Note that ak’s Local-MDPs state space

does not contain any information about the states of the

other agents. This loss of information will be covered (see



next Section) using a specific action e∅ which leads to some

interactions between agents.

B. Actions and Transition Model

The action e(S̄t−1, dt, ak) consists in the allocation of

a task dt to ak and in the anticipation of the resource

quantity which will be consumed when executing dt. The

action e∅(S̄t−1, dt, ak) consists in ignoring the task dt by

ak. It represents, in fact, the allocation of dt to another agent

al 6= ak. We introduce this action in order to represent what

happens in the Local-MDPs of the other agents when ak

ignores the task dt. For simplicity, we denote e(S̄t−1, dt, ak)
and e∅(S̄t−1, dt, ak) by e(dt, ak) and e∅(dt, ak). Let ak’s

current state be S̄t−1 = (D̄k
t−1, R̄

k
t−1), then the application

of the action e(dt,ak) drives the agent ak to one of the p

following states:
¯
S

j
t = (D̄k

t , R̄k
t ), where j = 1, ..., p.

• If r
j
k ≤ R̄k

t−1, D̄k
t = D̄k

t−1∪{dt} and R̄k
t = R̄k

t−1−r
j
k.

• Otherwise ( r
j
k > R̄k

t−1), D̄k
t = D̄k

t−1 and R̄k
t = 0.

When r
j
k > R̄k

t−1, the agent will consume all his resources

(R̄k
t−1) without achieving dt. So, this task does not belong

to D̄k
t . However, arriving to a state S̄

j
t , where r

j
k ≤ R̄t−1,

means that dt has been achieved and the reward Wak
(dt) is

obtained. Furthermore, the transition probability of the action

e(dt, ak) is expressed by the distribution Prak
because ak

reaches a state S̄
j
t if the execution of dt consumes the

quantity r
j
k. On the other hand, the application of the action

e∅(dt,ak) drives to state S̄t = (D̄k
t = D̄k

t−1, R̄
k
t = R̄k

t−1)
with probability 1 (no resource consumption). This state

summarizes, in ak’s Local-MDP, all states generated, in the

MDP, by actions e(dt, al 6=k), al ∈ A.

C. Distributed expected reward and joint optimal policy

We define the reward EV [S̄t−1] and the expected rewards

associated to each action by a similar way as in the global

MDP. We denote by V (e(dt, ak)) and V (e∅(dt, ak)) the

expected rewards associated to the action e(dt, ak) and to the

action e∅(dt, ak), respectively at a state S̄t−1. Being in a state

S̄t−1, a policy to follow is an action e(dt, ak) or e∅(dt, ak)
to apply. The expected reward of a policy is the expected

reward of the corresponding action. The reward EV [S̄t−1]
is defined as an immediate gain ᾱt−1 that the system obtains

if ak is in the state S̄t−1 accumulated by the expected reward

of the used policy. The immediate gain ᾱt−1 to be in state

S̄t−1 is defined as follows:

ᾱt−1 = Wak
(dt−1) if dt−1 ∈ D̄k

t−1, 0 otherwise.

In the following, we formulate the reward EV [S̄t−1] and

the expected rewards V (e(dt, ak)) and V (e∅(dt, ak)) using

Bellman’s equations and value iteration:

• for each nonterminal state S̄t−1:

EV [S̄t−1] = ᾱt−1 + max{V (e(dt, ak)), V (e∅(dtak))}
(5)

V (e(dt, ak)) =

p∑

j=1

Prak
(dt, r

j
k) · EV [S̄t] (6)

V (e∅(dt, ak)) = max
al 6=ak

{V (e(dt, al))} (7)

• for every terminal state S̄T = (Dk
T , Rk

T ):

EV [S̄T ] = ᾱT (8)

Agent ak uses Equation (5) to determine the reward of state

S̄t−1. For that, he locally calculates the immediate gain

ᾱt−1 using the definition described above, and the expected

value V (e(dt, ak)) given in Equation (6). However, expected

value V (e∅(dt, ak)) given in Equation (7) is calculated by

receiving V (e(dt, al)), al 6= ak from the other agents via

communication. On the other side, each agent al ∈ A

calculates V (e(dt, al)) from his Local-MDP and sends it to

the others. Since the obtained Local-MDP is a finite horizon

with no loops, the policy guaranteed by Equation (5) is then

locally optimal and it leads to a global optimality as it will

be shown in Section V. Formally,

π∗(S̄t−1) = arg(max{V (e(dt, ak)), V (e∅(dt, ak))}) (9)

D. Coordination of distributed value calculation

As we have shown above, Equation (7) generates com-

munication between agents. Indeed, an agent al calculates

V (e(dt, al)) using Equation (6) and then sends it to the

other agents. In order to obtain an optimal policy π∗(S̄t−1),
agents exchange the values V (e(dt, al)), al ∈ A that needs

an exchange of the values V (e(dt+1, al)), al ∈ A, and so

on. At the end, agent ak can directly calculate V (e(dT , ak))
using Equation (8). After exchanging these values, the reward

EV [S̄T−1] can be calculated for any state S̄T−1. By back-

ward chaining, EV [S̄T−1] allows to calculate EV [S̄T−2],
and so on up to state S̄t−1. Algorithm 1 describes how an

agent ak derives his local policy from his local MDP.

COM(V (e(dt+1, ak)), {V (e∅(dt+1, ak)}) is a com-

munication primitive allowing ak to communicate the

value V (e(dt+1, ak)) to agents aj 6=k which uses it

for computing V (e∅(dt+1, aj)) and to receive from

them values V (e(dt+1, aj)) allowing him to compute

V (e∅(dt+1, ak)).The function reachablek(t) returns all

states S̄t reached by agent ak using action e(dt, ak) at step

t. reachablek(t) also describes states reached by agent ak

at step t.

The optimal policies obtained by the agents do not lead

to conflicts between them (see next lemma).

Lemma 1: For any state S̄t−1, t = 1, ..., T , the optimal

policies obtained by the agents according to Equation (9)

are consistent. Formally, ∀ak ∈ A, t = 1, ..., T,

π∗
k(S̄t−1)=e(dt, ak) =⇒ ∀al 6= ak, π∗

l (S̄t−1)=e∅(dt, al).

Proof Based on Equations 7 and 9.

Let π∗
k(S̄t−1) be e(dt, ak):

π∗
k(S̄t−1) = e(dt, ak)

(eq.(9))
=⇒

e(dt, ak) = arg(max{V (e(dt, ak)), V (e∅(dt, ak))})
(eq.(7))
=⇒

e(dt, ak) = arg(max{V (e(dt, ak)),max
al 6=k

{V (e(dt, al))}})

=⇒ V (e(dt, ak)) > V (e(dt, al)),∀al 6=k ∈ A

As the values V (e(dt, ah)),∀ah ∈ A are identical in

all Local-MDPs (each agent ah calculates the value of



V (e(dt, ah)) and sends it to the others), from the precedent

inequality we then have: ∀al 6=k ∈ A,

e(dt, al) 6= arg(max{V (e(dt, al)),max
ah6=l

{V (e(dt, ah))}})

because at least, we have: V (e(dt, ak)) > V (e(dt, al)).
Consequently, ∀al 6=k ∈ A,

e(dt, al) 6= arg(max{V (e(dt, al)), V (e∅(dt, al))})

∀al 6=k ∈ A, π∗
l (S̄t−1) = e∅(dt, al)

✷

Algorithm 1 Modified value iteration algorithm of Mak
:

Require: set of tasks (documents to store)

Ensure: policy π∗
k of agent ak

1: for all S̄T ∈ reachablek(T ) do

2: EV [S̄T ] = ᾱT

3: COM(EV [S̄T ], {V (e∅(S̄T−1, ak))})

4: end for

5: for t = T-1 down to 1 do

6: for all S̄t ∈ reachablek(t) do

7: EV [S̄t] = ᾱ(S̄t) +
max{V (e(dt+1, ak)), V (e∅(dt+1, ak))}

8: COM(V (e(dt+1, ak)), {V (e∅(dt+1, ak)) })

9: end for

10: end for

11: for t = 1 to T do

12: for all S̄t ∈ reachablek(t) do

13: π(S̄t) = arg(max(ᾱ(S̄t) +
{V (e(dt+1, ak)), V (e∅(dt+1, ak))}))

14: end for

15: end for

16: return π

V. AN OPTIMAL JOINT POLICY

In this section we prove that the optimality obtained in the

MDP is saved in the coordinated Local-MDPs. Firstly, we

show the relationship between the MDP state space and the

Local-MDPs’ state spaces. Secondly, we prove the equality

between the optimal policy obtained by the MDP and the

one obtained by the Local-MDPs.

Lemma 2: For each state St((D
1
t , R1

t ), ..., (D
n
t , Rn

t )), t =
0, ..., T in the MDP, it exists a state S̄t in the Local-MDP of

each agent ak, where S̄t = (Dk
t , Rk

t ), k = 1, ..., n.

Proof For t = 0, the agents are in the initial state

S0((∅, R
1
0), ..., (∅, R

n
0 )) in the MDP. The couple (∅, Rk

0), k =
1, ..., n is the initial state S̄0(∅, R

k
0) in ak’s Local-MDP.

Supposing now that the lemma is correct for a value

t − 1: ∀St−1((D
1
t−1, R

1
t−1), ..., (D

n
t−1, R

n
t−1)) ∈ MDP

k = 1, ..., n,∃S̄t−1 ∈ ak’s Local-MDP, where S̄t−1 =
(Dk

t−1, R
k
t−1).

We show in the following that the lemma is also correct

for the step t. In fact, every state St, in the MDP, is

produced by the application of an action e(dt, ak), ak ∈ A

in a step St−1. According to the transition model (see

Section III-B), the action e(dt, ak) has effects only on the

set Dk
t−1 and on the resources Rk

t−1. So, for a state St =
((D1

t , R1
t ), ..., (D

n
t , Rn

t )) produced by this action, it exists

in the ak’s Local-MDP a state S̄t = (Dk
t , Rk

t ) produced by

the action e(dt, ak) in the state S̄t−1 = (Dk
t−1, R

k
t−1), and

it exists in the Local-MDPs of the other agents al 6=k ∈ A a

state S̄t = (Dl
t, R

l
t) produced by the action e∅(dt, al) in the

state S̄t−1 = (Dl
t−1, R

l
t−1). ✷

Lemma 3: For every state St−1 = ((D1
t−1, R

1
t−1), ...,

(Dk
t−1, R

k
t−1), ..., (D

n
t−1, R

n
t−1)) in the MDP, the expected

reward associated to an action E(dt, ak),∀ak ∈ A is equal

to the one associated to the action e(dt, ak) applied in the

state S̄t−1 = (Dk
t−1, R

k
t−1) in ak’s Local-MDP.

Proof We prove this lemma by induction. For

the last decision step (t = T − 1), we are in a

state ST−1 = ((D1
T−1, R

1
T−1), ..., (D

k
T−1, R

k
T−1), ...,

(Dn
T−1, R

n
T−1)) in the MDP, and in the state

S̄T−1 = (Dk
T−1, R

k
T−1) in ak’s Local-MDP. According to

Equation (2), we have:

V (E(dT , ak)) =
p∑

j=1

Prak
(dT , r

j
k) · EV [Sj

T ]
(eq.(3))
=⇒

V (E(dT , ak)) =
p∑

j=1

Prak
(dT , r

j
k) · αj

T

where α
j
T is the immediate gain of state S

j
T . Since, the agent

to whom the task dT is allocated by the action E(dT , ak)
is ak, then α

j
T = ᾱ

j
T , (definitions of α and ᾱ). Moreover,

V (E(dT , ak)) =
p∑

j=1

Prak
(dT , r

j
k) · ᾱj

T

(eq.(8))
=⇒

V (E(dT , ak)) =
p∑

j=1

Prak
(dT , r

j
k) · EV [S̄j

T ]
(eq.(6))
=⇒

V (E(dT , ak)) = V (e(dT , ak)).

Supposing now that the lemma is correct for t, formally:

∀St((D
1
t , R1

t ), ..., (D
k
t , Rk

t ), ...(Dn
t , Rn

t )),

V (e(dt+1, ak)) = V (E(dt+1, ak)),∀ak ∈ A

where e is applied in the state S̄t = (Dk
t , Rk

t ). We show in

the following that the lemma also is correct for t − 1.

For every state St−1((D
1
t−1, R

1
t−1), ..., (D

k
t−1, R

k
t−1)

, ...(Dn
t−1, R

n
t−1)), we have:

V (E(dt, ak)) =
p∑

j=1

Prak
(dt, r

j
k) · EV [Sj

t ]
(eq.(1))
=⇒

V (E(dt, ak))=
p

P

j=1

Prak
(dt, r

j
k
)·[αj

t + max
al∈A

{V (E(dt+1, al))}]

As the lemma is supposed correct for t, then:

V (E(dt, ak)) =
p

P

j=1

Prak
(dt, r

j
k
) · [ᾱj

t + max
al∈A

{V (e(dt+1, al))}]

V (E(dt, ak)) = V (e(dt, ak)). ✷

Lemma 4: The optimal policy obtained in the MDP is

equivalent to the optimal policies obtained by the coordinated

Local-MDPs, formally: ∀ak ∈ A, t = 1, ..., T,

π∗
k(S̄t−1) = e(dt, ak) ⇐⇒ π∗(St−1) = E(dt, ak)

Proof Let ak be the agent verifying that π∗
k(S̄t−1) =

e(dt, ak) at step t− 1. According to Equation (9), we have:



e(dt, ak) = arg(max{V (e(dt, ak)), V (e∅(dt, ak))})
(eq.(7))
⇐⇒

e(dt, ak) = arg(max{V (e(dt, ak)), max
al 6=k∈A

{V (e(dt, al))}})

⇐⇒ V (e(dt, ak)) > V (e(dt, al 6=k)),∀al ∈ A
(lem.(3))
⇐⇒ V (E(dt, ak)) > V (e(dt, al 6=k)),∀al ∈ A

⇐⇒ E(dt, ak) = arg(max
al∈A

{V (e(dt, al))})

(eq.(4))
⇐⇒ π∗(St−1) = E(dt, ak). ✷

VI. PERFORMANCE AND COMPLEXITY

A. Cost of Computation

We studied the computation time of a problem with

different numbers of documents to store (from 10 to 160)

and four servers. We recorded the computation time of cases

where only one server solves the whole problem (large

MDP), two servers (two interactive MDPs), three servers and

4 servers (Figure 1). We observe a gain in computation time

when using many servers. The main reason is that the Local-

MDP’s state space size |S̄| is defined by: |S̄| = (p+1)T+1−1
(p+1)−1 ,

while the MDP’s state space size |S| is defined by |S| =
(n·p)T+1−1

(n·p)−1 .
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Fig. 1. Comparison of computation time

B. Cost of Communication

Each Local-MDP of each agent ak sends, at each time

t, (n − 1).|reachablek(t)| messages to the others. The

total number of messages exchanged between all Local-

MDPs is then,
∑n

k=1(n − 1).|reachablek(t)|. Note that

|reachablek(t)| decreases from step T to step 0 (only

one message is sent). The cost of communication is then∑n

k=1(n−1).|reachablek(t)|.Cost(size(message)) where the

function Cost is the cost of transmitting a message with a

given size. The communication cost of the search task is, in

the worst case, n since each server sends a message to one

server (considered as the most appropriate).

C. Reducing communication

Equation 7 uses all information sent by all the other Local-

MDPs. This Equation can be solved partially in a distributed

way where each Local-MDP, instead of sending all values of

reachable states, sends only the max of them. Then, Equation

7 can be solved using only the maximum values coming from

all Local-MDPs and then computes their maximum. By this

way, we reduce the number of messages and the size of the

messages which contain only the maximum value.

There is no effect on the results of Lemma 1-4. In-

deed, instead of applying max operator locally on val-

ues coming from different Local-MDPs, we apply max
operator only on maximum values coming from the

other Local-MDPs: V (e∅(dt, ak)) = maxj 6=k V max
j where

V max
j = maxa∈Aj

V (e(dt, aj) computed in aj’s Local-

MDP. This processing does not modify the result of Equa-

tion 7. Consequently, results of lemma 1-4 remain valid

and the cost of communication is reduced to n.(n −
1).Cost(size(message)).

Other techniques based on approximations can be con-

sidered such as sending the minimal values (pessimistic

approach) or any combination of max and min values but

these techniques have an immediate effect on the optimality

since the result of Equation 7 should change and the claims

could not be valid in these situations. The evaluation of these

approximations will be considered in a short time future

work.

Figure 2 shows the reduction of the cost of the communi-

cation using more local computation. When servers compute

the max values, they reduce the communication cost while

the quality of the solution remains optimal. In the same

way, the computation time is reduced. Figure 1 shows the

computation time results with the reduced mechanism of

communication as explained in this section.
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Fig. 2. Reduction of communication cost

The techniques presented above reduces the number of

messages but the complexity is O(n2). This complexity can

be reduced by using some specific architectures. A solution

is that each server ai communicates only with its neighbor

server ai+1 and server an communicates with server a1.

This architecture reduces the complexity from polynomial to

linear O(n) since the number of messages is 2 · n · T . This



architecture presents a drawback because servers waste time

waiting for the propagation of the max value. Further work,

will be concerned with a grid architecture and the effect on

the performance of the approach.

VII. CONCLUSION

In this paper, we presented an approach of applying MDP

techniques for the problem of document storage and search

using a server network architecture. We discussed the benefit

of using a decentralized decision making technique.

This work opens a new direction in using decision-

theoretic techniques to control peer-to-peer server network

architectures to improve the performance, the security and

the robustness of these systems. Further work will also be

concerned with the evaluation of this approach to the security

and the fault tolerance. We will deal with problems where

some servers are unavailable or become less and less safe

and documents should be moved automatically to another

server.

We also plan to develop a method allowing to reduce both

the number of exchanged messages and the state space size.

An agent can develop his Local-MDP considering only a

subset of agents (but not all agents). Another one considers

a different subset of agents. In this case, the problem of

the coordination of the obtained task allocations has to be

treated.
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