
How to find Nash equilibria with extreme total latency

in network congestion games?

Heike Sperber⋆

University of Kaiserslautern, Department of Mathematics, P.O.Box 3049, 67653 Kaiserslautern,
Germany.

sperber@mathematik.uni-kl.de

Abstract. We study the complexity of finding extreme pure Nash equilibria in sym-
metric network congestion games and analyse how it depends on the graph topology
and the number of users. In our context best and worst equilibria are those with
minimum respectively maximum total latency.
We establish that both problems can be solved by a Greedy algorithm with a suit-
able tie breaking rule on parallel links. On series-parallel graphs finding a worst Nash
equilibrium is NP-hard for two or more users while finding a best one is solvable
in polynomial time for two users and NP-hard for three or more. Additionally we
establish NP-hardness in the strong sense for the problem of finding a worst Nash
equilibrium on a general acyclic graph.

Keywords: network congestion game, total latency, extreme equilibria, complexity

1 Introduction

Nash equilibria are one of the most common concepts in non-cooperative game
theory. The classic questions concering these stable states of a game, in which no
selfish user is unsatisfied and wants to change to a different strategy, are those of
existence and uniqueness.
Modern algorithmic game theory brings up additional questions such as computabil-
ity of equilibria and the overall performance of the system under selfish behaviour.
Pigou [13] gave a first negative answer by stating that in general selfish non-coopera-
tive behaviour does not lead to social optimal outcome. Papadimitriou [12] intro-
duced the coordination ratio as the quotient of the social cost of a worst Nash
equilibrium and the minimal social cost. It is often called “Price of Anarchy” as it
reflects the degradation in performance due to missing central regulation.
Koutsoupias and Papadimitriou [10] established a model (KP-Model) in which users
of different size travel on parallel links with linear latency functions analogously
to uniform/related machines in scheduling. The price of anarchy of this game and
various similar models was studied extensively [2, 11, 5, 6].
The problems of finding extreme (best and worst) Nash equilibria concerning make-
span social cost for this model was studied by Fotakis et al. [7], who established
them to be NP-hard in the strong sense.
These hardness proofs rely on the different sizes of users and the corresponding
scheduling and bin-packing problems are easy to solve for unit-sized users. Addi-
tionally Epstein et al. [3] show all Nash equilibria for unit-sized users on parallel
links to have the same makespan.
Unit-sized users traveling through more complex graphs are modeled by network
congestion games. Rosenthal [14] established the existence of pure Nash equilibria
in these games. Fabrikant et al. [4] gave a polynomial time algorithm to compute an

⋆ Supported by the Rhineland-Palatinate Cluster of Excellence Dependable Adaptive Systems and
Mathematical Modeling.



arbitrary Nash equilibrium for a symmetric (single-commodity) network congestion
game by the use of a certain min-cost flow instance. On series-parallel graphs this
min-cost flow instance can be solved by the Greedy algorithm GBR of Fotakis et
al. [8].

Recently Gassner et al. [9] analysed extreme Nash equilibria in network congestion
games for makespan social cost, measuring the latency of the longest path chosen by
a user, and showed that finding a worst equilibrium is “easier” in the sense that a
worst equilibrium can be found in polynomial time on series-parallel networks while
establishing a best one is NP-hard on this topology.

In contrast Awerbuch et al. [1] used the total latency as measure of social cost to
establish bounds on the price of anarchy for network congestion games.

Contribution We give a complete characterization of the complexity of finding
Nash equilibria with minimum or maximum total latency in network congestion
games with non-decreasing latency functions on edges.

On parallel links both problems can be solved by a Greedy algorithm with tie break-
ing according to the increase in cost. But the problem of finding a best Nash equi-
librium is slightly harder as this approach fails for non-increasing latencies.

The situation is more involved for series-parallel graphs: Unfortunately the problem
of finding a worst Nash equilibrium is NP-hard even for two users. Here finding
the best equilibrium is somehow easier, as we can find a best equilibrium for two
users in polynomial time but the problem is NP-hard for three or more users. Our
reductions so far imply only NP-hardness in the weak sense. For finding a worst Nash
equilibrium we additionally establish NP-hardness in the strong sense on general
acyclic networks.

These results are summarized in the following chart:

Find a . . . Nash equilibrium with Nash equilibrium with
on . . . minimum total latency maximum total latency

parallel links polynomially solvable for
increasing latencies by
Greedymin

polynomially solvable for
non-decreasing latencies by
Greedymax

series-parallel graphs polynomially solvable for
two users by Greedymin but
NP-hard for three or more

NP-hard for two or more
users (NP-hard in the strong
sense on general acyclic
graphs)

Road Map We start by introducing notation and preliminary results in Section 2
and then establish our results on finding a best Nash equilibrium in Section 3 and
in Section 4 for a worst Nash equilibrium, respectively.

2 Preliminaries

We consider a symmetric network congestion game, namely N unit-sized users each
choosing a path from the source s to the sink t in the directed graph G = (V, E).
The strategy set P of all users are thus all simple s-t-paths in G. We denote by n

the number of vertices and m the number of edges of G. The edges are equipped
with non-decreasing latency functions ℓe : N0 → R

0
+ for all e ∈ E modeling the

congestion effects. An instance of the game is thus given by [G = (V, E), (ℓe)e∈E , s ∈
V, t ∈ V, N ].



In our context a flow is a function f : P → N0 that assigns integer values to paths
in the network. The latency on a path is the sum of the latencies on its edges that
depends on the total flow on the edge:

ℓP (f) :=
∑

e∈P

ℓe




∑

P
′
∈P: e∈P

′

fP
′





We denote by fe :=
∑

P∈P: e∈P fP the flow on edge e uniquely induced by the flow
f defined on paths.
Note that there may be different so-called flow-decompositions or flows on paths
that correspond to the same flow on edges. Even more, Gassner et al. [9] give an
example that the property of a feasible flow to be a Nash equilibrium might depend
on the flow decomposition.

A stable state of the system is a choice of paths such that no user can benefit by
deviating from her choice given those of the other users:

Definition 1 (Nash Equilibrium, Nash Flow). A flow f = (fP )P∈P is at Nash
equilibrium, if and only if for all paths P1, P2 with fP1

> 0 we have

ℓP1
(f) ≤ ℓP2

(f̃) with f̃P =







fP − 1 if P = P1

fP + 1 if P = P2

fP otherwise

.

Rosenthal [14] established that every instance of a network congestion game pos-
sesses a least one pure strategy Nash equilibrium. We want to analyse Nash equilibria
with respect to an additional measure of quality:

Definition 2 (Total latency social cost). The total latency C(f) of a flow f in
a network G = (V, E) with edge latency functions ℓe is defined as

C(f) =
∑

e∈E

ℓe(fe)fe

We denote the highest latency experienced by a user as the makespan Cmax(f) of a
flow f :

Cmax(f) := max
P∈P:fP >0

ℓP (f)

Example 1 (Nash equilibria with different social cost). Consider the graph G in Fig-
ure 1 consisting of just two nodes s, t and two parallel edges e1, e2 between them
with latency ℓe1

(x) = x and ℓe2
(x) = 1

2x. We want to send two users from s to t.

s t

ℓe1
(x) = x

ℓe2
(x) = 1

2
x

s t

Nash flow with cost 2

Nash flow with cost 3

2

Fig. 1. Two Nash equilibria on parallel links need not have the same total latency. (Example 1).

In this setting there are two Nash equilibria: One sending all flow on edge e2 for
costs of 2 and the second one sending one user on each edge e1 and e2 resulting in
lower costs of 3

2 .



Even more, in general no Nash equilibrium is optimal concerning total latency even
on parallel links:

Example 2 (No optimal Nash equilibrium). Consider the graph G in Figure 2 with
two parallel links and latencies ℓe1

(x) = x, ℓe2
(x) = 2x + ǫ for 0 < ǫ < 1

2 . We send
two users from s to t.

s t

ℓe1
(x) = x

ℓe2
(x) = 2x + ǫ

s t

Unique Nash flow with cost 4

Optimum flow with cost 3 + ǫ

Fig. 2. Nash equilibria on parallel links need not be optimal concerning total latency. (Example 2).

The unique Nash equilibrium sends both users on edge e1 for costs of 4, while the
optimal solution splits the flow resulting in cost of 3 + ǫ.

Examples 1 and 2 motivate to study the following two problems:

Definition 3 (Best Nash Equilibrium Problem (BNash)).
Given: Network congestion game [G = (V, E), (ℓe)e∈E, s ∈ V , t ∈ V , N ]
Output: Nash equilibrium f with minimum total latency

Definition 4 (Worst Nash Equilibrium Problem (WNash)).
Given: Network congestion game [G = (V, E), (ℓe)e∈E, s ∈ V , t ∈ V , N ]
Output: Nash equilibrium f with maximum total latency

We are going to examine the dependence of the complexity of both problems on
the topology of the underlying network. Thereby, we look at parallel links, arbitrary
(acyclic) graphs and series-parallel graphs. The latter are defined inductively as
follows:

Definition 5 (Series-parallel graph). A single edge e = (s, t) is series-parallel
with start terminal s and end-terminal t by definition. Let Gi be series-parallel with
start-terminal si and end-terminal ti (i = 1, 2). Then the graph S(G1, G2) obtained
by identifying t1 as s2 is a series-parallel graph, with s1 and t2 as its terminals
(series composition). The graph P (G1, G2) obtained by identifying s1 as s2 and also
t1 as t2 is a series-parallel graph (parallel composition) with s1(= s2) and t1(= t2)
as its terminals.

For our positive results we modify the algorithm GBR introduced by Fotakis et al. [8]
which works as follows: The users are iteratively assigned to a path minimizing the
latency induced by the users already assigned. To be more precise denote by fi the
result of GBR in the ith iteration, f0 the constant zero flow on all edges and

L+(fi) := min
P∈P

∑

e∈P

ℓe(fi,e + 1) (1)

the minimum latency for a new (i + 1)st user. Thus GBR chooses a path Pi+1 of
user (i + 1) such that the latency on Pi+1 is L+(fi) after the assignment. Fotakis
et al. [8] establish that this algorithm yields a Nash equilibrium on series-parallel
graphs.



This path Pi+1 is in general not uniquely determined by (1) but there is a set P+(fi)
of paths with minimal latency for an additional (i + 1)st user. We add tie breaking
rules to chose a specific path from this set:

Definition 6 (Greedymin and Greedymax). In the following we denote by
Greedymin the algorithm GBR that chooses among candidate paths P+(fi) one with
minimal cost increase:

Pi+1 := argmin
P∈P+(fi)

∑

e∈P

∆ce(fi,e + 1)

The cost increase ∆ce : N → R
0
+ for all edges e ∈ E is defined as

∆ce(1) = ℓe(1) and ∆ce(n) = n · ℓe(n) − (n − 1) · ℓe(n − 1) for all n ≥ 2.

Greedymax denotes the analog algorithm which chooses a candidate path with maxi-
mal cost increase.

Observe that the running time of Greedymin [Greedymax] is polynomial in the input
size of the network congestion game on a series-parallel graph as in the (i + 1)th
iteration we just have to find a lexicographic shortest s-t-path for the fixed edge
labels (ℓe(fi,e + 1), ∆ce(fi,e + 1)) [(ℓe(fi,e + 1),−∆ce(fi,e + 1))], which can be done
in linear time on these acyclic graphs with the help of a topological sorting of the
vertices.

3 Best Nash Equilibrium

3.1 Parallel links

On parallel links all local optima of Rosenthal’s potential function are global opti-
mum and thus all Nash flows can be found by the min-cost flow instance introduced
by Fabrikant et al. [4]. In particular on this very easy topology every Nash flow can
be found by GBR. Which Nash equilibrium is found depends on the tie breaking
rule applied.

We start with the case of increasing functions and establish that Greedymin really
finds a best Nash equilibrium.

Theorem 1. Greedymin solves BNash for increasing latency functions on parallel
links.

Proof. We use induction on the number of users to show that Greedymin succeeds in
finding a best Nash equilibrium. The base case is easy, as sending one user on any
candidate edge will induce the same cost.

Let fi+1 be the result of Greedymin after (i + 1) iterations and ei+1 the edge chosen
in the (i + 1)st iteration. Let gi+1 denote an arbitrary Nash flow in the same graph
with also (i + 1) users which is not equal to fi+1. (If there is no such flow fi+1 is
best anyway.) Denote by Ē := {e ∈ E : ℓe(gi+1,e) = Cmax(gi+1)} the set of critical
edges of gi+1. Remember that the candidate set of edges for iteration (i + 1) is

E+
i := {ei+1 ∈ E : ℓei+1

(fi,ei+1
+ 1) = min

e∈E
ℓe(fi,e + 1)}.

In a first step, we show that there exists an edge ē with ē ∈ Ē ∩ E+
i .

For the sake of a contradiction assume that for all edges ē ∈ Ē we have ē 6∈ E+
i and

let ē be an arbitrary such edge. Thus we know ℓē(gi+1,ē) = Cmax(gi+1) = Cmax(fi+1)



and ℓē(fi,ē + 1) > Cmax(fi+1). Monotonicity of the latency functions thus implies
fi,ē + 1 > gi+1,ē. By integrality of the flow values we conclude

fi+1,e ≥ fi,ē ≥ gi+1,ē for all e ∈ Ē. (2)

Let e ∈ E\Ē be an arbitrary edge that is not critical for gi+1 and thus ℓe(gi+1,e) <

Cmax(gi+1). gi+1 being Nash additionally gives us ℓe(gi+1,e + 1) ≥ Cmax(gi+1) =
Cmax(fi+1) ≥ ℓe(fi+1,e). As ℓe is increasing and both flows gi+1,fi+1 are Nash we
can conclude either if ℓe(fi+1,e) = Cmax(fi+1) then gi+1,e+1 = fi+1,e or if ℓe(fi+1,e) <

Cmax(fi+1) then fi+1,e = gi+1,e. Together this implies that

fi+1,e ≥ gi+1,e for all e ∈ E\Ē. (3)

Equations (2) and (3) tells us that either gi+1 = fi+1 or fi+1 sends more users from
s to t. This contradicts the choice of gi+1 and thus completes the proof of the first
step.

In the second step, we are now ready to compare the cost of fi+1 and gi+1: We have
just established that there exists ē ∈ Ē ∩ E+

i . Hence, we know that ℓē(gi+1,ē) =
Cmax(gi+1) = Cmax(fi+1) and ℓē(fi,ē +1) = Cmax(fi+1) and thus by ℓē being increas-
ing gi+1,ē = fi,ē + 1. We decompose gi+1 into one unit of flow on edge ē and a Nash
flow gi with i users. Hence we can compare the total latencies:

C(gi+1) − C(fi+1) = C(gi) − C(fi) + ∆cē(gi+1,ē) − ∆cei+1
(fi+1,ei+1

)

≥ ∆cē(gi+1,ē) − ∆cei+1
(fi+1,ei+1

)

= ∆cē(fi,ē + 1) − ∆cei+1
(fi,ei+1

+ 1)

≥ 0

The first inequality follows from the induction hypothesis and the second one from
the choice of edge ei+1 by Greedymin. ⊓⊔

The following example establishes that in general Greedymin does not work for non-
decreasing latencies:

Example 3 (Greedymin fails for non-decreasing latency functions). Consider the
graph G in Figure 3 with 5 parallel edges between s and t. There is one edge e1

with latency ℓe1
(x) =

{

3 x ≤ 1

6 x > 1
and the remaining four edges have latency ℓei

(x) =

2x + 2, i = 2, .., 5. We want to send 9 users from s to t.

s t

ℓe1
(x) =

{

3 x ≤ 1

6 x > 1

ℓei
(x) = 2x + 2, i = 2, .., 5

s t

Greedymin solution with cost 51

Nash flow with cost 46

Fig. 3. Greedymin fails for non-decreasing latencies on parallel links. (Example 3).

Greedymin assigns the first user to edge e1, then in some order adds one user to
each of the other edges. In the sixth iteration all edges are candidate edges and the
algorithm compares the cost increase:

∆ce1
(2) = 9 > 8 = ∆cei

(2) i = 2, .., 5



Thus Greedymin assigns the remaining four users one to each of the edges e2,..,e5

which results in total latency 51. But assigning only one job to every edge e2,..,e5

and five users to e1 is also Nash and has costs of 46.

3.2 Series-parallel networks

In series-parallel graphs the best Nash equilibrium is not guaranteed to be be found
by GBR (with any tie breaking rule) for three or more users, even for increasing
latency functions.

Example 4 (Best Nash flow not found by GBR). Consider the graph shown in Fig-
ure 4 for three users.

s u1 t

ℓe1
(x) = 4x

ℓe2
(x) = 2x ℓe4

(x) = 2x

ℓe3
(x) = 4x

ℓe5
(x) = 3x

Fig. 4. Best Nash equilibrium not found by GBR. (Example 4).

The solution of GBR for the graph given in Figure 4 is unique and has a unique
path decomposition sending one user on the lower edges e2 and e4 and the other two
on the direct edge e5 with costs C(f∗) = 16. However, there is a Nash equilibrium
f with cost C(f) = 15 which sends one user on the direct edge e5 and both other
users on one upper e1 (e3) and one lower edge e4 (e2) such that all edges are used
by exactly one user.

The good news is that for two users we can use Greedymin to find a best Nash
equilibrium on series-parallel graphs in polynomial time.

Theorem 2. Greedyminsolves BNash for two users on series-parallel graphs.

Proof. We use induction on the number of composition steps necessary to construct
G. If G is a single edge every Nash equilibrium send both users over this one edge
and thus Greedymin finds a best one.

For the induction step let f be the result of Greedymin which sends the users on
paths P1, P2 and g an arbitrary equilibrium in G which uses paths Q1, Q2. We
analyse the cost of f in comparison to that of g in several cases depending on the
allocation of the four paths in G1 and G2.

1. G = S(G1, G2): As Greedymin on Gi chooses exactly the parts of P1, P2 in Gi

we know by induction hypothesis that f |Gi
is a best equilibrium on Gi, i = 1, 2.

As g also decomposes into two Nash equilibria in G1, G2 and the cost of the
flow in G is just the sum of the costs of the flows in G1, G2 we conclude that
C(f) ≤ C(g).

2. G = P (G1, G2):
2.1. P1 ∈ G1 and P2 ∈ G2:

2.1.1. Q1 ∈ G1 and Q2 ∈ G2: To be Nash both f and g can only use shortest
paths w.r.t. ℓe(1) in both components and the costs are just the sum of
the latency of these paths. Hence C(f) = C(g).

2.1.2. W.l.o.g. Q1, Q2 ∈ G1: Let f1 be the result of Greedymin on G1. f1

chooses paths P1 and P̄2 in G1. Greedymin on G did not choose P̄2 instead
of P2 thus we have one of the following two cases:



2.1.2.1. ℓP̄2
(f1) > ℓP2

(f): We can conclude from the construction of f1 and

the induction hypothesis for Greedymin on G1 that

C(f) = ℓP1
(f) + ℓP2

(f) < ℓP1
(f1) + ℓP̄2

(f1) = C(f1) ≤ C(g)

2.1.2.2. ℓP̄2
(f1) = ℓP2

(f) and
∑

e∈P̄2
∆ce(f1,e) ≥

∑

e∈P2
∆ce(fe): Again by

applying the induction hypothesis we can compare the cost of f and
g:

C(f) =
∑

e∈P1

ℓe(1) +
∑

e∈P2

ℓe(1)

=
∑

e∈P1

ℓe(1) +
∑

e∈P2

∆ce(fe)

≤
∑

e∈P1

ℓe(1) +
∑

e∈P̄2

∆ce(f1,e)

= C(f1)

≤ C(g)

2.2. W.l.o.g. P1, P2 ∈ G1:
2.2.1. Q1, Q2 ∈ G1: As we can restrict both flows to G1 we know by induction

hypothesis that C(f) ≤ C(g).
2.2.2. Q1, Q2 ∈ G2: Due to the Nash property of g, no user wants to change

to a path in G1, and in f no user wants to change to G2. Together with
monotonicity of the latency functions this implies

ℓQj
(g) ≤ ℓPi

(f) and ℓPi
(f) ≤ ℓQj

(g) for all i, j ∈ {1, 2}

Hence ℓP1
(f) = ℓP2

(f) = ℓQ1
(g) = ℓQ2

(g) and so C(f) = C(g).
2.2.3. Q1 ∈ G1 and Q2 ∈ G2: Greedymin on G did not choose Q2 instead of P2

so we have exactly one of the following cases:
2.2.3.1. ℓQ2

(g) > ℓP2
(f): In the following we show that this case contradicts

g being Nash. For this purpose we construct a path Q̄2 in G1 and
show that the user on path Q2 would want to change to Q̄2.
Let v1 = s, v2, . . . , vk = t be the vertices in P2 and vi1 = s, vi2 , . . . , vil =
t those that also lie on P1. Let πj,1, πj,2 be the parts between vij and
vij+1

of P1, P2, respectively for j = 1, .., l − 1. Let Q̄2 be the path
through vertices vi1 , . . . , vil using path segments π̄j , j = 1, . . . , l − 1
where π̄j = π1,j if there is an edge e ∈ πj,2 with e ∈ (P2 ∩Q1)\P1 and
π̄j = π2,j otherwise. Let g1 be the flow that uses paths Q1, Q̄2.
Let j ∈ {1, . . . , l − 1} be arbitrary. If π̄j = π1,j we know that Q1

does not intersect π1,j as it shares an edge with πj,2 and G is series-
parallel. We additionally use that P1 is a shortest s-t-path w.r.t. ℓe(1)
and conclude

∑

e∈π̄j

ℓe(g1,e) =
∑

e∈πj,1

ℓe(1) ≤
∑

e∈πj,2

ℓe(1) ≤
∑

e∈πj,2

ℓe(fe)

If π̄j = π2,j we have
∑

e∈π̄j

ℓe(g1,e) =
∑

e∈πj,2

ℓe(g1,e)

=
∑

e∈π̄j,2\Q1

ℓe (1)
︸︷︷︸

≤fe

+
∑

e∈π̄j,2∩Q1∩P1

ℓe (2)
︸︷︷︸

=fe

≤
∑

e∈π̄j,2

ℓe(fe)



By summing over j we conclude ℓQ̄2
(g1) ≤ ℓP2

(f) < ℓQ2
(g) which

contradicts g being Nash.
2.2.3.2. ℓQ2

(g) = ℓP2
(f) and

∑

e∈Q̄2
∆ce(ge) ≥

∑

e∈P2
∆ce(fe): Using that

P1 and Q1 are both shortest paths w.r.t. ℓe(1) we have

C(f) =
∑

e∈P1

ℓe(1) +
∑

e∈P2

∆ce(fe) ≤
∑

e∈Q1

ℓe(1) +
∑

e∈Q2

∆ce(ge) = C(g)

⊓⊔

In contrast to this positive result we can use a construction similar to Example 4
to establish (weak) NP-hardness of the problem to find a best Nash equilibrium for
three or more users.

Theorem 3. The problem BNash is NP-hard on series-parallel graphs for three or
more users.

Proof. The proof of weak NP-completeness of the decision version of BNash uses a
reduction from the Even-Odd Partition Problem:

Even-odd Partition (EOP for short):
Given: Finite set A = {a1, a2, . . . , a2n}, a size w(ai) ∈ Z

+ for each ai ∈ A

and 2B =
∑2n

i=1 w(ai).
Question: Does there exist a subset A′ ⊂ A with

∑

a∈A′ w(a) = B and A′

contains exactly one element of {a2i−1, a2i} for i = 1, . . . , n.

We may assume without loss of generality that

w(a2i−1) < 2w(a2i) and w(a2i) < 2w(a2i−1) holds for i = 1, . . . , n. (4)

Given an instance I(EOP) then an instance I(BNash) is defined by a graph G =
(V, E) with V = {v1, v2, . . . , vn, vn+1} with two parallel edges between vi and vi+1

for i = 1, . . . , n and an edge e+ = (s, t). The latency functions of the two edges
between vi and vi+1 are ℓ(x) = w(a2i−1)x and ℓ(x) = w(a2i)x for i = 1, .., n and
ℓe+(x) = 1

2Bx. Three users travel from s = v1 to t = vn+1. We denote G\{e+} by
G′.
We show that I(EOP) is a YES-instance if and only if there exists a Nash equilib-
rium f in G of I(BNash) with C(f) ≤ 5

2B.

Let I(EOP) be a YES-instance and A′ its solution. Construct a flow f in G by
sending one user along the edges with slope w(a′) for a′ ∈ A′, the second user on
the remaining edges of G′ and the third user on edge e+.
The cost of f can be calculated as follows

C(f) =
∑

e∈E

ℓe(fe) · fe =
∑

e∈E

ℓe(1) =
∑

a∈A

w(a) +
1

2
B = 2B +

1

2
B =

5

2
B

Additionally f is a Nash flow: Both users in G′ can not benefit from changing their
path in G′ due to (4) and as both chosen paths have latency B they do not want
to change to edge e+ either. The user on edge e+ has also no incentive to change to
any path in G′.

On the contrary assume f to be a Nash flow with cost C(f) ≤ 5
2B.

Case 1: fe+ = 3
Let P be the path in G′ consisting of the edges with latency min{w(a2i−1), w(a2i)}.



The latency on path P for one user would be less or equal to B due to the choice of
edges and thus at least one user wants to change from e+ to P as ℓe+(f) = ℓe+(3) =
3
2B. Hence f can’t be Nash in this case.

Case 2: fe+ = 2
Let P1 be the path chosen by the third user and P as in Case 1. We know about the
cost of f :

C(f) = 2 · ℓe+(2) + ℓP1
(f) ≥ 2 · B +

∑

e∈P

ℓe(1) (5)

Equation (4) implies

∑

e∈P

ℓe(1) =
n∑

i=1

min{w(a2i−1), w(a2i)} >

n∑

i=1

1

2
max{w(a2i−1), w(a2i)} ≥

1

2
B (6)

Using Equations (5) and (6) we derive a contradiction to the assumption about the
cost of f :

C(f) ≥ 2 · B +
∑

e∈P

ℓe(1) >
5

2
B

Case 3: fe+ = 1
Denote by P1 and P2 those paths in G′ chosen by two of the users. From Equation (4)
we know that P1 ∩ P2 = ∅ and hence

ℓP1
(f) + ℓP2

(f) = 2B (7)

In a Nash equilibrium no user wants to change from Pi, i = 1, 2 to edge e+:

B = ℓe+(fe+ + 1) ≥ ℓPi
(f) for i = 1, 2 (8)

Combining Equations (7) and (8) we conclude that ℓP1
(f) = B = ℓP2

(f) and hence
these disjoint paths give rise to an even-odd partition.

Case 4: fe+ = 0
This case can not constitute a Nash equilibrium, as at least one user wants to change
to edge e+. ⊓⊔

4 Worst Nash Equilibrium

4.1 Parallel links

Analogously to the case of finding the best equilibrium in Theorem 1 we can establish
a result for finding a worst Nash equilibrium for increasing latency functions by
Greedymax. But for this case we can get even more as stated in the following theorem:

Theorem 4. Greedymax solves WNash on parallel links for non-decreasing latency
functions.

We prepare the proof of Theorem 4 by a lemma. We adopt the notation of the Proof
of Theorem 1 and add the set M− := {e ∈ E|fi+1,e < gi+1,e} to compare the flow
on edges.

Lemma 1. Let fi+1 be the result of GBR (with any tie-breaking rule) on parallel
links. For every other Nash flow gi+1 6= fi+1 there exists an edge ē ∈ Ē with ē ∈
M− ∩ E+

i .



Proof. All edges e ∈ M− have latency ℓe(gi+1,e) = Cmax(gi+1) = Cmax(fi+1) and
thus are elements of Ē. Additionally we have gi+1,e > fi+1,e. If e 6= ei+1 and thus
fi+1,e = fi,e this implies that e ∈ E+

i . For e = ei+1 we use ei+1 ∈ E+
i . As gi+1 6= fi+1

we have M− 6= ∅ and thus there must be an edge with the desired properties. ⊓⊔

Proof (of Theorem 4). We analyse the costs by induction on the number of users
assigned by Greedymax. The base case is easy as any choice of a minimum latency
edge induces the same cost for the first user.
Let fi+1 be the result of Greedymax after (i + 1) iterations and ei+1 the edge chosen
in the (i + 1)st iteration. Denote by gi+1 an arbitrary Nash flow in the same graph
with also (i + 1) users which is not equal to fi+1. (If no such gi+1 exists there is
nothing left to prove.)
Using Lemma 1 we can decompose gi+1 in a way that the (i + 1)st user was send on
an edge ē ∈ (Ē∩M−∩E+

i ). As both ei+1, ē ∈ E+
i the tie breaking rule of Greedymax

implies that

∆cei+1
(fi+1,ei+1

) = ∆cei+1
(fi,ei+1

+ 1) ≥ ∆cē(fi,ē + 1) (9)

Hence we can compare the costs of gi+1 and fi+1:

C(gi+1) − C(fi+1) = C(gi) − C(fi)
︸ ︷︷ ︸

≤0

+∆cē(gi+1,ē) − ∆cei+1
(fi+1,ei+1

)

≤ ∆cē(gi+1,ē) − ∆cei+1
(fi+1,ei+1

)

= ∆cē(gi,ē + 1) − ∆cei+1
(fi,ei+1

+ 1)

(9)

≤∆cē(gi,ē + 1) − ∆cē(fi,ē + 1) (10)

As ē ∈ M− we know that gi+1,ē−1 = gi,ē ≥ fi+1,ē. If ē 6= ei+1 we conclude gi,ē ≥ fi,ē

and if ē and ei+1 coincide even strict inequality holds.
We distinguish two cases:
Case 1: gi,ē = fi,ē (and ei+1 6= ē)

∆cē(gi,ē + 1) − ∆cē(fi,ē + 1) = 0 (11)

Case 2: gi,ē > fi,ē

This implies that ℓē(gi,ē) = Cmax(gi+1) = Cmax(fi+1) and

∆cē(gi+1,ē) − ∆cē(fi,ē + 1) = Cmax(fi+1) · (gi+1,ē − gi,ē − fi,ē − 1) + fi,ē · ℓē(fi,ē)

= fi,ē · (ℓē(fi,ē) − Cmax(fi+1)
︸ ︷︷ ︸

≤0

) (12)

≤ 0

Thus (11),(12) together imply that the difference in cost described in (10) is negative.
This proves that fi+1 is “worse” than gi+1. ⊓⊔

4.2 Series-parallel networks

First of all we observe that GBR does in general not find a worst Nash equilibrium
on series-parallel networks independent of the tie breaking rule applied:

Example 5 (Worst Nash flow not found by GBR). Consider the series parallel graph
shown in Figure 5 in which we want to send two users from s to t.
GBR sends one user on path P1 = {e1, e3} and the other one on P2 = {e5}. The
resulting Nash flow f has makespan Cmax(f) = 6 and cost C(f) = 10.



s u t

ℓe1
(x) = 2x ℓe2

(x) = 2x

ℓe3
(x) = 4x ℓe4

(x) = 4x

ℓe5
(x) = 6x

G1

G2

Fig. 5. Worst Nash equilibrium not found by GBR (Example 5).

We compare this to the Nash flow g with gQ1
= gQ2

= 1 with Q1 = {e1, e4} and
Q2 = {e2, e3}. This flow has also makespan Cmax(g) = 6 but cost C(g) = 12. Thus
GBR does not find the worst equilibrium.

Observe that g1 := g|G1
is not the worst Nash flow on G1 for two users (neither

for makespan nor cost), as sending both users on path P1 induces costs of 16 but
also a makespan of 8 and thus does not constitute a Nash equilibrium any more
when G1 and G2 are composed in parallel. This tells us that a worst Nash flow in a
parallel composed graph does not necessarily consist of worst Nash flows in the two
components.

In the following we want to show that it is hard to find the worst Nash equilibrium
in series-parallel graphs.

Theorem 5. The problem WNash is NP-hard on series-parallel graphs even for two
users.

Proof. The proof of (weakly) NP-completeness of the decision version of WNash
uses a reduction from the Even-Odd Partition Problem as introduced in the Proof
of Theorem 3.

Given an instance I(EOP) then an instance I(WNash) is defined by a graph G =
(V, E) with V = {v1, v2, . . . , vn, vn+1} with two parallel edges between vi and vi+1

for i = 1, . . . , n and an edge e+ = (s, t). The latency functions of the two edges
between vi and vi+1 are ℓ(x) = w(a2i−1)x and ℓ(x) = w(a2i)x for i = 1, .., n and
ℓe+(x) = Bx. Finally, two users travel from s = v1 to t = vn+1. We denote G\{e+}
by G′.

We show that I(EOP) is a YES-instance if and only if there exists a Nash equilib-
rium f in G of I(WNash) with costs C(f) ≥ 2B.

Let I(EOP) be a YES-instance and A′ its solution. Construct a flow f in G by
sending one user along the edges with slope w(a′) for a′ ∈ A′ and one user on the
remaining edges of G′.
The cost of f can be calculated as follows

C(f) =
∑

e∈E

ℓe(fe) · fe =
∑

e∈E\{e+}

ℓe(1) =
∑

a∈A

w(a) = 2B

Additionally observe that f is a Nash flow: Both users can not benefit from changing
their path in G′ due to (4) and as both chosen paths have latency B they have no
incentive to change to edge e+ either.

On the contrary assume f to be a Nash flow with cost C(f) ≥ 2B.
Case 1: fe+ = 0
Denote by P1, P2 the paths chosen by the two users. No user choosing e+ implies
that ℓPi

(f) ≤ B, i = 1, 2. Additionally equation (4) tells us that P1 ∩ P2 = ∅ in



f . We can conclude that the slopes on the edges of P1 and P2 form an even-odd
partition.
Case 2: fe+ = 2
Consider the path P in G′ including the edges with slopes āi = min{a2i−1, a2i},
i = 1, .., n. We know that

∑n
i=1 w(āi) ≤ B by choice of ai and equation (4). But as

the users on e+ experience latency ℓe+(2) = 2B at least one user wants to change
to P and hence this situation is not Nash.
Case 3: fe+ = 1
Denote by P1 the path in G′ chosen by the second users. We know that ℓP1

(f) ≤ B

because otherwise f would not be Nash as the user on path P1 would want to change
to P as defined in Case 2. Taking into account that P1 ∩ e+ = ∅, we can can use the
cost of f to find the matching lower bound for the latency on P1:

2B ≤ C(f) = ℓP1
(f) + ℓe+(f) = ℓP1

(f) + B

Hence we have ℓP1
(f) = B and the slopes on P1 form an even-odd partition. ⊓⊔

4.3 General topologies

Even more, we want to show that it is hard in the strong sense to find the worst
Nash equilibrium in general graph topologies.

Theorem 6. The problem WNash is NP-hard in the strong sense even on acyclic
graphs with two users.

Proof. Consider an instance I(BlockP) of the strongly NP-complete Blocking Path
problem:

Blocking Path Problem (BlockP for short) [9]:
Given: Digraph G = (V, E) with source s ∈ V and sink t ∈ V .
Question: Does there exist an s-t-path P ∈ P such that after deleting

the edges of P there is no path from s to t?

An instance I(WNash) of determining a worst pure Nash equilibrium is constructed
as follows: I(WNash) is defined on a graph G′ = (V, E′) which contains the same
vertex set as G and E′ = E ∪ {(s, t)}. Since G′ is acyclic it is possible to define a
bijective function π : V → {1, . . . , n} such that π(i) < π(j) if (i, j) ∈ E. Given any
such bijection π the latency functions are given by

ℓe(x) = (π(j) − π(i))x, e = (i, j) ∈ E.

Observe that due to this definition of the latency functions of edges in G every path
from s to t is a shortest path with respect to the edge lengths ℓe(1). Let L∗ be the
length of a shortest path from s to t in G with respect to edge lengths ℓe(1) for
e ∈ E. Then the latency of (s, t) is defined by ℓ(s,t)(x) = (L∗ + 1

2)x.

It remains to show that there exists a blocking path P ∗ for I(BlockP) if and only if
there is a Nash equilibrium f in G′ with cost C(f) ≥ 2 · L∗ + 1

2 .

Given a blocking path P ∗ in I(BlockP) we choose paths P1 = P ∗ and P2 = (s, t)
and construct a flow f with fP1

= fP2
= 1 while the flow on all other paths is equal

to zero. Hence, we know that C(f) = 2 · L∗ + 1
2 .

Additionally f is a Nash equilibrium as neither the user on path P1 nor the user
on P2 can benefit from changing to another path. First consider the user on path
P1: Every path P in G has latency L∗ as long as there is one user on P2. Moreover,



ℓP2
(f̃) = 2L∗ + 1 for f̃P2

= 2. Hence, the user of P1 is satisfied with her situation.
In the second step, we check path P2: Compare the flow f̃ with f̃P1

= f̃P = 1
for some path P in G. Observe that P shares at least one edge e′ with the blocking
path P1 and since all slopes of latency functions in G are integral, we have ℓe′(1) ≥ 1.
Therefore,

ℓP (f̃) =
∑

e∈P

ℓe(f̃) ≥
∑

e∈P\{e′}

ℓe(1) + ℓe′(2)

=
∑

e∈P

ℓe(1) + ℓe′(1) = L∗ + ℓe′(1) ≥ L∗ + 1.

Since ℓP2
(f) = L∗ + 1

2 < ℓP (f̃) holds for all alternative paths P in G we conclude
that f is a Nash equilibrium.

On the other hand, given a Nash equilibrium f with cost C(f) ≥ 2 · L∗ + 1
2 we

distinguish three cases to show that there exists a blocking path in I(BlockP):

1. Both user share a path, i.e. there is one path P1 with f(P1) = 2:
But this situation is not stable and thus no Nash equilibrium: If P1 = (s, t) we
know that ℓP2

(f) = 2L∗+1. However, one user would be better of by changing the
flow to f̃ with f̃P2

= f̃P = 1 for some path P in G as then ℓP (f̃) = L∗ < ℓP2
(f).

If P1 is a path in G, ℓP1
(f) = 2 · L∗ implies that one user wants to change to

P2 = (s, t) because her latency would be only L∗ + 1
2 this way.

2. Both users travel on two distinct paths P1, P2 through G: W.l.o.g. we can assume
that ℓP1

(f) ≥ ℓP2
(f). Consider the flow f̃ with f̃P2

= f̃(s,t) = 1 with ℓ(s,t)(f̃) =

L∗ + 1
2 . Since f is a Nash equilibrium, we have ℓP2

(f) ≤ ℓP1
(f) ≤ ℓ(s,t)(f̃) and

by integrality of the latencies we conclude

C(f) = ℓP1
(f) + ℓP2

(f) ≤ 2 · L∗.

This leads to a contradiction to the lower bound on the cost of f .

3. Only one user travels through G on a path P1 and the second user on P2 = (s, t):
We show that P1 is a blocking path in G. Assume that P1 is not blocking. Then
there exists a path P ′ from s to t in G such that P ′ does not share an edge
with P1. Hence, the flow f̃ with f̃P1

= f̃P ′ = 1 induces latency ℓP ′(f̃) = L∗ and
implies ℓP2

(f) = L∗ + 1
2 > L∗ = ℓP ′(f̃). This contradicts f being Nash and thus

P1 is a blocking path in G. ⊓⊔

References

1. B. Awerbuch, Y. Azar, and A. Epstein, The price of routing unsplittable flow, Proceedings 37th
Annual ACM Symposium on the Theory of Computing (STOC), 2005, pp. 57–66.

2. A. Czumaj and B. Vöcking, Tight bounds for worst-case equilibria, Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 413–420.

3. A. Epstein, M. Feldman, and Y. Mansour, Efficient graph topologies in network routing games,
Joint Workshop on Economics of Networked Systems and Incentive-Based Computing, 2007.

4. A. Fabrikant, C. Papadimitriou, and K. Talwar, The complexity of pure nash equilibria, Pro-
ceedings of the 36th Annual ACM Symposium on the Theory of Computing (STOC), 2004,
pp. 604–612.

5. R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode, Nashification and the coor-

dination ratio for a selfish routing game, Proceedings of the 30th International Colloquium on
Automata, Languages and Programming (ICALP) (J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, eds.), LNCS, vol. 2719, Springer, 2003, p. 190.

6. S. Fischer and B. Vöcking, On the structure and complexity of worst-case equilibria, Theoretical
Computer Science 378 (2007), no. 2, 165–174.



7. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis, The structure

and complexity of nash equilibria for a selfish routing game, Proceedings of the 29th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP) (P. Widmayer, F. T.
Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo, eds.), vol. 2380, Springer-Verlag,
2002, pp. 123–134.

8. D. Fotakis, S. Kontogiannis, and P. Spirakis, Symmetry in network congestion games: Pure

equilibria and anarchy cost, Proceedings of the 3rd Workshop on Approximation and Online
Algorithms (WAOA) (T. Erlebach and G. Persiano, eds.), LNCS, vol. 3879, Springer, 2005,
pp. 161–175.

9. E. Gassner, J. Hatzl, S. O. Krumke, H. Sperber, and G. J. Woeginger, How hard is ist to

find extreme nash equilibria in network congestion games, Proceedings of the 4th International
Workshop on Internet and Network Economics (WINE) (C. Papadimitriou and S. Zhang, eds.),
LNCS, vol. 5385, 2008, pp. 82–93.

10. E. Koutsoupias and C. Papadimitriou, Worst-case equilibria, Proceedings of the 16th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS), LNCS, vol. 1563,
1999, pp. 404–413.

11. M. Mavronicolas and P. Spirakis, The price of selfish routing, Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing (STOC), 2001, pp. 510–519.

12. C. Papadimitriou, Algorithms, games, and the internet, Proceedings of the 33rd Annual ACM
Symposium on the Theory of Computing (STOC), 2001, pp. 749–753.

13. A. C. Pigou, The economics of welfare, Macmillan, 1920.
14. R. W. Rosenthal, A class of games possessing pure-strategy nash equilibria, International Jour-

nal of Game Theory 2 (1973), no. 1, 65–67.


