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Abstract—The emerging mission-critical Internet of Things
(IoT) play a vital role in remote healthcare, haptic interaction,
and industrial automation, where timely delivery of status up-
dates is crucial. The Age of Information (AoI) is an effective
metric to capture and evaluate information freshness at the des-
tination. A system design based solely on the optimization of the
average AoI might not be adequate to capture the requirements
of mission-critical applications, since averaging eliminates the
effects of extreme events. In this paper, we introduce a Deep
Reinforcement Learning (DRL)-based algorithm to improve AoI
in mission-critical IoT applications. The objective is to minimize
an AoI-based metric consisting of the weighted sum of the average
AoI and the probability of exceeding an AoI threshold. We
utilize the actor-critic method to train the algorithm to achieve
optimized scheduling policy to solve the formulated problem. The
performance of our proposed method is evaluated in a simulated
setup and the results show a significant improvement in terms
of the average AoI and the AoI violation probability compared
to the related-work.

Index Terms—IoT, deep reinforcement learning, neural net-
works, age of information, mission-critical communication.

I. INTRODUCTION

Future Internet of Things (IoT) enables ubiquitous sens-
ing and connected systems that will provide enhanced sit-
uational awareness, data driven decision analytics, and au-
tomated response without human intervention [1]. Mission-
critical IoT applications, such as first-responders monitoring,
process automation and control, and intelligent transportation,
are characterized by stringent communication requirements in
terms of real-time and reliable information delivery [2]. For
such scenarios, packet delay cannot be considered a primary
performance metric, but rather the freshness of the sensor data
received at the destination side. Packets received with stale
sensor data are useless to the destination, and may result in
wrong actuation/control decisions as well. To this end, the Age
of Information (AoI) [3], is a relevant metric in quantifying
the information freshness, which accounts for the time elapsed
since the generation instant of the latest received update at the
destination. The AoI depends both on the traffic generation
pattern (frequent messages offering fresher information), as
well as on the time spent by an update in the service. As a

result, the metric is intrinsically different from classical per-
formance criteria like throughput and latency, which focuses
on a single packet and only captures its service time [4].

Most previous works [5]–[7] focused on the analysis of the
average AoI and peak AoI. However, these two metrics of
AoI can not fully characterize the precise performance of real-
time status updates in mission-critical applications, as they do
cannot account for extreme AoI events that occur with very
low probabilities [8]. Instead, the AoI distribution needs to
be considered especially when dealing with time-critical IoT
applications. Specifically, minimizing the violation probability
that the AoI of each sensor node exceeds a predetermined
age constraint is of great significance for guaranteeing infor-
mation freshness in mission-critical networks. Therefore, the
minimization problem should accounts for a combined AoI-
based metric that considers the trade-off between minimizing
the average AoI of each node and maintaining the violation
probability at its minimum. This is a stochastic optimization
problem with non-convex constraints that is known to be
NP-hard even in deterministic settings. Deep Reinforcement
Learning (DRL) is introduced as a viable way to solve NP-
hard and non-convex problems [9], where an agent can be
trained offline to choose the action that maximizes the system
reward.

In this paper, we introduce a DRL-based algorithm to min-
imize the average AoI and its threshold violation in mission-
critical IoT networks. We consider a remote monitoring and
control scenario where a set of sensor nodes are deployed
to transmit fresh updates to a central controller. We develop
the problem as a NP-hard and non-convex problem aiming to
minimize an objective function that constitutes the weighted
sum of the average AoI and the probability of AoI threshold
violation. Then, we utilize DRL to solve the problem and
produce the scheduling policy, i.e., which node is to be
scheduled for transmitting fresh data at a given time instant
that minimizes the formulated AoI-based metric. The DRL
algorithm is trained using the actor-critic algorithm with a non-
zero probability of packet failure. Performance evaluations are
carried out via simulations and the obtained results show that
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Fig. 1. The remote monitoring system model.

our proposed algorithm outperforms existing work in terms of
the the average AoI and the AoI violation probability.

The remainder of the text is organized as follows. Section II
presents related work. Section III introduces the proposed
DRL method. Performance evaluations are given in Section IV,
followed by the conclusions in Section V.

II. RELATED WORK

The problem of AoI minimization has been addressed in
the literature considering various setups. The authors in [10]
investigates the AoI minimization problem with minimum
weighted sum of average peak ages for one-hop battery-
free wireless sensor networks. In [11], the authors consider
the problem of scheduling real-time traffic to minimize the
weighted average AoI under timely throughput constraint.
An age-independent stationary randomized policy is proposed
in [12] to minimize the long-term weighted AoI subject to a
long-term average power constraint in fading multiple access
channels. The authors of [13] also address the average AoI
minimization problem under deterministic and random packet
deadlines. In [14] the authors aim to minimize the long-
term average AoI of industrial IoT networks under average
transmission power constraints at the source. Despite their
interesting results, all the aforementioned works overlook
the AoI violation probability in the formulated optimization
problem. The work in [8] introduces a theoretical basis for
characterizing the violation probability of AoI in IoT sys-
tems under First-Come-First-Served (FCFS) discipline. The
authors in [15] consider the minimization of the AoI violation
probability in vehicular communication networks through an
online learning approach. However, the proposed approach is
not applicable in the considered industrial scenario of remote
monitoring and control.

III. THE PROPOSED METHOD

In this work, we consider the remote monitoring system
shown in Fig.1, in which N sensor nodes are distributed at
the field network side. The controller selects one node at a
time to generate a fresh update and transmit it to a central
controller. The monitoring process is modelled as a set of
tasks, where i ∈ {0, 1, ..., T − 1} denotes the task ID, and
the scheduling policy implies that the controller selects one
node n ∈ {0, 1, ..., N − 1} at a time to transmit its update at

task ID i at a rate λ(i), i.e., λ(i) represents the throughput
achieved at the i − th task. The variable In(i) represents
the output of the scheduler where In(i) = 1 if sensor n is
selected to sample and transmit, and In(i) = 0 otherwise. The
sensors transmit updates with different sizes, where Ln is the
size of the transmitted packet by sensor n. at task number i.
The packets are received successfully at the controller with
probability p ∈ (0, 1], where rn(i) denotes the number of
transmission attempts until sensor n successfully transmits its
packet at task i. Consequently, the age of the n− th sensor’s
data at the controller can be expressed as

An(i+ 1) = In(i)

rn(i)∑
k=1

Ln

λk(i)

+ (1− In(i))

An(i) +

N∑
m=1

Im(i)

rm(i)∑
k=1

Lm

λk(i)


(1)

where λk(i) is the average rate at the k− th transmission trial
at the time of task i. The calculation of the age of sensor n in
(1) can be explained as follows. When sensor n is selected by
the controller at task i, i.e., In(i) = 1, it is corresponding AoI
at the controller side at task i + 1 is equal to the time spent
in transmitting its packet. When other sensor node m ̸= n is
selected for transmission at task i, the AoI of sensor n at task
i+ 1 will be equal to the AoI at task i plus the time spent in
transmitting the packet from sensor m.

Our goal is to optimize the information freshness of the
sensor nodes at the controller to improve performance of real-
time status updates in mission-critical scenarios. Therefore,
we formulate the optimization problem, in which the objec-
tive function considers both latency and reliability through a
weighted sum of two AoI-based metrics as

minimize lim
T→∞

1

TN

N−1∑
n=0

T−1∑
i=0

An(i)

+

N−1∑
n=0

δn

T−1∑
i=0

Pr[An(i) > βn]

subject to (1),
N−1∑
n=0

In(i) = 1, ∀i ∈ {0, 1, ..., T − 1},

In(i) ∈ {0, 1}, ∀n ∈ {0, 1, ..., N − 1},

(2)

where βn is the AoI threshold of sensor n, where we assume
that the sensors tolerate different AoI limits. δn denotes the
weight of sensor n that quantifies the penalty of exceeding its
specified AoI threshold. The problem in (2) is a stochastic op-
timization problem with non-convex constraints that is known
to be NP-hard. In the following, we introduce our proposed
algorithm to solve the formulated optimization problem using
DRL.

In our proposed method, each node (the agent) observes the
state of the environment si, takes an action ai that leads to



Fig. 2. Structure of the A3C algorithm in our proposed method.

receiving a reward Ri and the transition to a new state si+1.
The state si includes the value of the AoI An(i), ∀n, i, the
transmission time of the last packet denoted as b(i − 1) and
the throughput that was achieved at the last j tasks λ(i− j +
1), ..., λ(i + 1). The action a(i) at the i − th task represents
the selection of the sensor n that will transmit in the next task.
The set of actions is represented by a vector of probabilities
P = {p(0), p(2), ..., p(N − 1)} of length N , such that the
action a(i) is to select the sensor n corresponds to the
maximum element of P. The reward function Ri is formulated
as follows

Ri = −
N−1∑
n=0

An(i)︸ ︷︷ ︸
L1

−
N−1∑
n=0

δn · 1An(i)>βn︸ ︷︷ ︸
L2

, (3)

where 1(.) is an indicator function. The first term L1 in (3)
represents the sum of AoIs of all sensors at the end of the task
i. The second term L2 is the weighted sum of the penalties
when exceeding the AoI thresholds. Therefore, the reward
reflects the performance of each action with respect to the
metric we need to optimize.

In our proposed algorithm, first, the agent explores the envi-
ronment through a training phase based on the Asynchronous
Advantage Actor-Critic (A3C) algorithm [16]. The structure of
the A3C method is shown in Fig. 2 and is described in details
as follows. The A3C is a model-free RL method that is used
for directly updating a stochastic policy which runs multiple
agents asynchronously with each agent having it’s own neural
network. A3C algorithm is characterized by learning separate
functions, one for the actor which is the parameterized policy
πθ(si, ai) and the other one for the critic which is the value
function V πθ (si, θ), where θ is the policy parameter. The agent
observes the environment through a set of metrics and feeds
their values to the neural network as depicted in Fig. 2. The
critic takes the role of the value function and evaluates the
performance of the actor, hereby helping with the estimation
of the gradient to use for the actor’s updates. Hence, for each

TABLE I
EVALUATION PARAMETERS.

Parameter Value

Network size (N ) 10 nodes
Packet length [10−100B]
AoI Threshold [20−200ms]
Packet drop probability 10%
α 0.01
ὰ 0.01
γ 100
ρ 5

choice of the parameter θ, we get the policy (probability over
actions) πθ(si, ai)← [0, 1], where πθ(si, ai) is assumed to be
differentiable over θ, i.e., ∂πθ(si,ai)

∂θ exists. Gradient updates
are performed to find the parameters that lead to maximal
rewards using the policy gradient method [17]. The method
estimates the gradient of the cumulative discounted reward
with respect to the policy parameter as

▽Eπθ
{
T−1∑
i=0

T−1∑
j=0

γiRi+j} = Eπθ
{▽logπθ(si, ai)D

πθ (si, ai),

(4)
where γ ∈ [0, 1] is the discount rate and Dπθ (si, ai) is the
advantage function [16] that captures how better an action is
compared to the expected one selected according to the policy.
The agent estimates Dπθ (si, ai) by sampling a trajectory
of scheduling decisions and uses the empirically computed
advantage as an unbiased estimate of Dπ(θ)(si, ai). Then, the
learning parameter θ is updated as follows

θ ← θ + α

T−1∑
i=0

▽logπθ(si, ai)D
πθ (si, ai), (5)

where α is the learning rate. The advantage function
Dπθ (si, ai) is computed based on the estimation of the value
function of the current state vπθ (s, θ). The value of vπθ (s, θ)
is calculated by the critic network as the expected total reward
starting at state s and following the policy πθ. The critic
network is trained based on the Temporal Difference (TD)
method [18] by bootstrapping from the current estimate of
the value function. Therefore, the update θv of the learning
parameter is given as

θv ← θv+ὰ

T−1∑
i=0

(Ri + γV πθ (si+1, θv)− V πθ (si, θv))
2
, (6)

where ὰ is the learning rate of the critic network and V πθ

is the estimate of vπθ . Hence, for a given (Ri, si, ai, si+1),
the advantage function Dπθ (si, ai) is estimated as Ri +
γV πθ (si+1, θv)− V πθ (si, θv).

IV. PERFORMANCE EVALUATION

In this section, we first describe the simulation environment
of our proposed method, then we introduce and discuss the
simulation results.



Fig. 3. CDF of the AoI of each sensor; (a) n = 0, (b) n = 1, ..., (j) n = 9

TABLE II
PERFORMANCE COMPARISON

Proposed method Benchmark
Normalized objective function 1.2 2.1

PV 0 0.07% 19.03%
PV 1 0.01% 8.55%
PV 2 0.016% 10.12%
PV 3 0.01% 12.02%
PV 4 0% 7.24%
PV 5 0% 4.24%
PV 6 0% 3.57%
PV 7 0% 5.22%
PV 8 0% 3.44%
PV 9 0% 4.30%

Average AoI (n = 0) 11.02 26.34
Average AoI (n = 1) 18.25 33.66
Average AoI (n = 2) 20.11 40.73
Average AoI (n = 3) 28.39 44.18
Average AoI (n = 4) 30.64 51.22
Average AoI (n = 5) 34.07 58.68
Average AoI (n = 6) 30.89 61.48
Average AoI (n = 7) 37.14 70.29
Average AoI (n = 8) 40.01 81.98
Average AoI (n = 9) 39.71 89.53

A. Simulation Model

We evaluate the performance of our proposed method via
MATLAB simulations using the parameters listed in Table I.
We consider a field network consists of 10 sensors (i.e.,
N = 10) where each node generates packets of sizes 10
to 100 bytes (with a step size of 10). Each sensor node
is attached with a different AoI threshold within the range
[20−200ms] with a step size of 20ms, where node n = 0 has
the strictest threshold and node n = 9 has the loosest one. We
set δn = 1000N−n

N , so that nodes with tighter AoI thresholds
get more penalty. The actor-critic pair is implemented in each
node (agent) with the same neural network structure. We use a

1D Convolutional Neural Network (1D-CNN) layer with 128
filters each of size 8 and stride 1, followed by a hidden layer
consists of 256 neurons with a Rectified Linear Unit (ReLU)
activation function [19]. The throughput of the last 10 tasks
(j = 10) is passed to the 1D-CNN, then its output along
with the other inputs is aggregated in the hidden layer. Finally,
the model has two sets of outputs, a single linear output for
the value function and 10 terminals representing the output of
the policy function based on the softmax approach. To ensure
that each agent explores the action space adequately during
training, we add an entropy regularization term [16] with a
weight ρ to the actor’s update rule. This term encourages
exploration by pushing θ in the direction of higher entropy. ρ
is set to 5 at the start of training and decays until it reaches
zero. The work proposed in [11] is used as a benchmark
to evaluate the effectiveness of our proposed method. In the
referred work, a sensor n is selected at task i with a probability
that is inversely proportional to its AoI threshold.

B. Results and Discussion

Here we present the simulation results and the performance
comparison with regard to the work in [11] (referred to
as “Benchmark” in the results). The obtained results are
summarized in Table II and Fig. 3.

In Table II, we include three metrics for comparison, the
normalized objective function in (2), the violation probability
of each sensor node (PV n = Pr[An(i) > βn], and the average
AoI of each sensor node. From Table II, it can be observed
that the proposed method achieves a 57% lower value for the
objective function compared to the Benchmark. This is mainly
due to the proposed A3C learning algorithm which guides the
scheduling policy to the minimum sum of both the average
AoI and the violation probability. Moreover, Table II shows
that our proposed method outperform the Benchmark in terms



of the average AoI and the AoI violation probability for all
the sensors, even for the ones that have strict deadlines. For
instance, we can observe that node 0 (i.e., n = 0) exceeds
its AoI threshold with a probability of 0.07% which is 99%
lower than that of the same sensor using the method in the
Benchmark. Furthermore, the proposed algorithm eliminates
the AoI violations for nodes n = 4 up to n = 9, while the
Benchmark continues to experience high threshold violation
for all sensors, e.g., at least the nodes exceed their AoI
threshold 4% of the time. In the proposed method, the nodes
learn how to respect the AoI violation threshold by giving
weights that are directly proportional to the specified AoI limit,
of which function is not defined by the Benchmark.

In order to take a deeper look into the performance of the
AoI, the plots in Fig. 3 show the Cumulative Distribution
Function (CDF) of the AoI of each sensor for the two methods.
From these plots, it can be clearly noticed that the proposed
method achieves a reduced AoI all the time for all sensors
compared to the Benchmark. The CDF performance of the
proposed method also confirms the improvements achieved in
the AoI violation probability given in Table II. As a summary,
our results show that our proposed learning method guides the
nodes to minimize the average AoI while maintaining low AoI
violation probability as much as possible, which essential in
mission-critical application within the IoT scenarios.

V. CONCLUSION

In this paper, we developed a DRL-based algorithm to
improve the AoI performance of mission-critical IoT. We
formulate an optimization problem to minimize the weighted
sum of the average AoI and the probability of exceeding
AoI threshold. We employed the A3C approach to train our
algorithm and solve the formulated problem. Compared with
existing work, simulation results proved the effectiveness of
our proposed method with respect to the formulated AoI-
based metric. An interesting direction for future work could
be investigating the performance of the proposed method in
large-scale networks, and also integrating a sampling process
to the optimization problem and scheduling decision process.
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