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Abstract—In real-time Industrial Internet of Things (IIoT),
e.g., monitoring and control scenarios, the freshness of data
is crucial to maintain the system functionality and stability.
In this paper, we propose an AoI-Aware Deep Reinforcement
Learning (AA-DRL) approach to minimize the Peak Age of
Information (PAoI) in D2D-assisted IIoT networks. Particularly,
we analyzed the success probability and the average PAoI via
stochastic geometry, and formulate an optimization problem with
the objective to find the optimal scheduling policy that minimizes
PAoI. In order to solve the non-convex scheduling problem,
we develop a Neural Network (NN) structure that exploits the
Geographic Location Information (GLI) along with feedback
stages to perform unsupervised learning over randomly deployed
networks. Our motivation is based on the observation that in
various transmission contexts, the wireless channel intensity is
mainly influenced by distance-dependant path loss, which could
be calculated using the GLI of each link. The performance of
the AA-DRL method is evaluated via numerical results that
demonstrate the effectiveness of our proposed method to improve
the PAoI performance compared to a recent benchmark while
maintains lower complexity against the conventional iterative
optimization method.

Index Terms—Industrial IoT, neural networks, age of infor-
mation

I. INTRODUCTION

The Internet of Things (IoT) technology evolves rapidly
as a worldwide network of interconnected intelligent devices
that are capable of sensing, communicating, and processing to
support a variety of applications, such as industrial monitoring,
health monitoring and vehicular networks [1]. Different from
consumer IoT, Industrial IoT (IIoT) networks are characterized
by strict communication requirements to maintain production
efficiency and avoid safety-critical situation [2]. IIoT net-
works are evolving from the typical star network configuration
to Device-to-Device (D2D) communications where sensor-
actuator pairs in propinquity communicate directly without
evolving a central node (e.g., access point or a Base Station
(BS) [3]. In outband D2D communication [3], the D2D pairs
operate in full frequency reuse model where the they com-
munication over the same frequency band in uncoordinated
fashion. For IIoT scenarios that comprise enormous D2D
pairs, this incurs significant interference when D2D links
are activated at the same time. Such uncoordinated access
would cause noticeable degradation in the network perfor-
mance in terms of delay, throughput and most importantly
the information freshness. Information freshness is crucial

for a typical real-time control and monitoring scenario as it
affects the derived intelligent and autonomous decisions and
the system stability as well. For instance, in oil refineries,
valve actuators should acquire timely monitoring of oil level
to avoid oil tank spillage [4]. Information freshness is quan-
tified by Age-of-Information (AoI) [5], a process-level metric
which, from the receiver perspective, counts the time elapsed
since the latest received information was generated. Efficient
D2D links scheduling has been proved to effectively enhance
various performance metrics [3]. However, this approach is
not necessarily effective to improve and optimize AoI. In
addition, scheduling problems for wireless networks with
complex interference are usually non-convex and NP-hard [6].
The conventional method for link scheduling first involves
estimating the interference of channels and then optimizing the
schedule using these estimates [7]. Estimating Channel State
Information (CSI) in densely deployed networks can be costly,
and even achieving a near-optimal solution to the resulting
optimization problem can be intricate. For instance, in network
consisting of N D2D links, N2 CSI are required in the path-
loss matrix within each coherence block, which corresponds
to a computational complexity of at least O(N2). To that
end, machine learning and artificial intelligence techniques are
employed to find optimal schedules in dense networks [8].

In this work, we develop an AoI-Aware Deep Reinforcement
Learning (AA-DRL) approach to minimize Peak AoI (PAoI)
in dense D2D-assisted IIoT networks. The learning approach
is based on the collected Geographic Location Information
(GLI) to select the optimal scheduling policy. Our motivation
is based on the fact that in various transmission contexts, the
wireless channel intensity is mainly influenced by distance-
dependant path loss. Moreover, the pattern of interference
within a network largely depends on how transmitters and
receivers are positioned relative to one another. We derive
the successful transmission probability and the average PAoI
considering a preemptive queuing policy and spatial coupled
interference between the D2D pairs. Then, we formulate
the PAoI optimization problem under stationary randomized
policy. We solve the non-convex scheduling problem via a
proposed Neural Network (NN) structure where the scheduling
policy is mapped to the GLI while explicit CSI is not required.
The NN is trained via an unsupervised training process by
utilizing the GLI along with feedback stages to obtain the
optimal scheduling policy. Our obtained numerical results
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show that the proposed AA-DRL approach achieves improved
PAoI performance compared to a recent benchmark [9] while
maintains lower complexity against the conventional iterative
optimization method.

The remainder of the paper is organized as follows. Related
work is presented in Section II. Section III describes the
system model. In Section IV, we introduce our proposed
DRL algorithm and the NN structure. Performance evaluations
and conclusion are presented in Sections V and Section VI,
respectively.

II. RELATED WORK

Several research works have been conducted with the goal
of minimizing AoI in wireless networks. The authors in
[10] studied the average AoI under different queue man-
agement schemes which concluded that packet replacement
can promote reduced AoI compared to the conventional First
Come First Served (FCFS) approach. The authors in [11]–
[13] introduced centralized scheduling methods to minimize
the average AoI. However, the centralized scheduling approach
is inefficient in D2D-enabled IIoT networks as it would incur
high overhead and extended delay. Efficient scheduling in
D2D networks was tackled by different works that focus on
the analysis and optimization of resource allocation [14],
traffic density [15], or user fairness [16], while less attention
was paid to the minimization of AoI. Moreover, other works
apply stochastic geometry to model the spatial relationship of
D2D devices, and adopting AoI-aware decentralized schedul-
ing with the assumption of having full CSI [17]. However,
it is shown that it is very challenging to obtain a global
CSI in D2D networks [18]. A backlog-aware protocol was
presented in [19] to minimize the average AoI subject to a
delay constraint. The work in [9] presented a locally-adaptive
slotted-ALOHA protocol where a link-wise access probability
is dynamically selected to minimize the AoI considering a
unit-size buffers and Last Come First Served (LCFS) queuing
discipline. Both [19] and [9] require the exchange of queue-
status information between neighboring nodes to find the
optimal access probability, which implies significant overhead
and complexity in dense IIoT networks. Different from these
works, our proposed AA-DRL has the potential to optimize
the AoI performance of IIoT networks while maintaining low
complexity with no explicit need for CSI.

III. SYSTEM MODEL

We consider an IIoT network with a three-layer hierarchy
as depicted in Fig. 1. The first layer is the field network that
consists of N D2D pairs transmitting status updates via a
shared time-slotted channel, where each transmission attempt
fits within the duration of one time slot. The second layer
includes edge computing nodes with storage, computing, com-
munication, and other resources that are used for computing-
intensive tasks. The third layer is the industrial cloud where
historical data about the field and edge nodes is stored in
the cloud for long-term data analysis. The considered model
is common in most remote data acquisition and distributed

control applications, and is shown to have promising advan-
tages in supporting efficient resource management [20]. In the
field network layer, each transmitter generates status update
following a Poisson process with average rate λ packets/slot.
Such arrival model captures the scenario where such traffic can
be triggered by the occurrence of some random incident [21].
The D2D transmitters have a single-occupancy backlog, i.e.,
the output buffer can accommodate only one packet. Moreover,
we consider a preemptive queuing policy where an arriving
packet can preempt the one currently in the service (if there is
such). We consider a stationary randomized scheduling policy
[22], in which the D2D transmitters are activated to transmit
in each time slot with a given slot-access probability that
is subject to optimization. Let π = {p1, p2, ..., pN} denotes
the the randomized scheduling policy and Π is the class that
represents all the possible policies where π ∈ Π. Particularly,
for a given scheduling policy π, the D2D transmitter ni,
i ∈ {1, 2, ..., N}, is activated with a probability pi across all
the time slots.

A. Successful Update Probability

The collisions among simultaneously active D2D pairs are
not necessarily destructive, due to the capture effect [23]. In
that sense, a packet is decoded successfully at the end of a time
slot when the Signal-to-Interference plus-Noise ratio (SINR)
at the corresponding receiver exceeds the capture ratio β. The
SINR at the AP in a time slot t given a set V of interfering
links can be written as [17]

SINRi(t) =
Pt|hi,i|2d−α

i,i

σ2 +
∑

j∈V\{i} Pt|hj,i|2d−α
j,i

, (1)

where Pt is the transmission power (assumed fixed for all
D2D pairs), hj,i is the random variable that represents the
Rayleigh fading of the channel between transmitter of link
j and the receiver of link i with hj,i ∼ exp(1), dj,i is the
distance between between transmitter of link j and the receiver
of link i, σ2 denotes the power of AWGN, and α is the path
loss exponent. According to the considered channel model,
for an arbitrary node ni, the conditional successful decoding
probability in timeslot t given a certain scheduling policy π
can be obtained as

ϕi(t|π) = Pr(SINRi > β |π)

= Pr

(
Pt|hi,i|2d−α

i

σ2 +
∑

j∈V\{i} Pt|hj,i|2d−α
j aj(t)

> β|π

)

= exp

(
− βσ2

Ptd
−α
i

) ∏
j∈V\{i}

 1

1 + aj(t)
βd−α

j

d−α
i

 .

(2)

Using (2) and considering the adopted randomized scheduling
policy, the average successful probability ϕi(t) is given as

ϕi(t) = piexp

(
− βσ2

Ptd
−α
i

) ∏
j∈V\{i}

1− pj

1 +
d−α
i

βd−α
j

 . (3)



Fig. 1. The hierarchy of the considered IIoT network.

B. Analysis of the Peak AoI

The evaluation of the PAoI is statistically identical for
all the D2D pairs, hence, in the following we focus on the
derivation of the PAoI of an arbitrary D2D pair. Fig. 2 shows
an example evolution of the AoI of the considered preemptive
queuing scheme. Let tj , j = 1, 2, 3, ...., the generation time
of the jth update. We denote Xj as the random variable that
represents the interarrival time between consecutive updates,
Xj = tj+1 − tj , which follows an exponentially distribution
with mean 1/λ. Note that an update may not be received
correctly by the D2D receiver due to transmission failures
or preemption. Hereafter, we use a different index i ≤ j to
refer to the successfully received updates. Let di refers to the
departure time of ith update that is successfully received by
the corresponding D2D receiver, and Si is its corresponding

service time. We denote gi as the generation time of the first
generated update after di−1, and is given as

gi ≜ min{tj | tj > di−1}. (4)

Therefore, we can see that the indices i and j in general do
not refer to the same update. For instance, in Fig. 2, the
generated update at t3 is not received, and the successfully
received update at d2 is the one generated at t4. We define
Wi = gi − di−1 as the interval between the reception of
the (i − 1)th update until the generation of the next update.
We define the interval Ti = di − gi, which represents the
interval from gi until the next update received successfully.
Note that Ti spans the generation instants of failed updates. We
also define the interdeparture time between two consecutive
successfully received status updates Yi = di − di−1. From the
definition of Wi and Ti, we have Yi = Ti+Wi. Therefore, the



Fig. 2. Evaluation of the AoI of an arbitrary node ni with D = 6.

PAoI , denoted as APi (the value of AoI just before receiving
the update at di), can be given as

APi
= Yi + Si−1, (5)

where Si−1 represents the service time of the update received
before di. For instance, in Fig. 2, the PAoI at d2 is equal to
Y2 + S1, where S1 is the service time of the update received
before d2, which is d1. The average PAoI (E[APi

]) is given
by

E[APi
] = E[Y ] + E[S] = E[T ] + E[W ] + E[S], (6)

where E[Y ] = E[T ] + E[W ]. We denote γ as the probability
that an update is preempted. The value of γ is given as a
function of the arrival intensity and the service time as follows

γ = 1− e(−µλ), (7)

where µ is the duration of one time slot, which represents the
deterministic service time S of an update.

For the considered queuing system, when a packet departs,
it leaves the system empty, hence, W will follow the same dis-
tribution as the interarrival time, i.e., E[W ] = 1/λ. Moreover,
we have E[S] = µ. Therefore, the term E[T ] can be evaluated
using the following recursive method [24] as

E[T ] = (1− γ)(1− α)E[S]︸ ︷︷ ︸
R1

+ (1− γ)α
(
E[S] + E[W ] + E[T̂ ]

)
︸ ︷︷ ︸

R2

+ γ(E[X | X < S] + E[T̂ ])︸ ︷︷ ︸
R3

,

(8)

where α = 1 − ϕi(t) represents the failed transmission
probability at time slot t. The first term R1 in (8) denotes the
case when the first update (generated at gi) is not preempted
(1−γ) by other updates and is received successfully. The term
R2 refers to the case when the first update is not preempted,
but the transmission fails. In this case, the system spends the

service time S for the first update, then waits for the period
W until the next update is generated. The evaluation of T̂ is
the same as T , hence E[T̂ ] = E[T ]. The term R3 represents
the case that the first generated update is preempted by a new
update. In that case, the effective generation interval, i.e., the
generation interval given that a packet, is preempted can be
given as

E[X | X < S] =

∫ µ

0
sλe−sλ ds

1− e(−µλ)
=

1

λ
+ µ

(
1− 1

γ

)
. (9)

Using (9) in (8) and substituting E[S] and E[W ], E[T ] can be
obtained as

E[T ] =
γ + α− γα

λ(1− β)(1− α)
. (10)

Then, E[Y ] becomes

E[Y ] = E[T ] + E[W ]

=
γ + α− γα

λ(1− γ)(1− α)
+

1

λ
=

1

λ(1− γ)(1− α)
.

(11)

Based on (6) and (11), we obtain the average PAoI for the PR
scheme E[APi

] as

E[APi
] =

1

λ(1− γ)(1− α)
+ µ. (12)

For a given λ and µ, E[APi ] is mainly influenced by ϕi(t),
which depends on pi. Our goal in this work is to find
the optimal scheduling policy π that minimizes the average
PAoI E[APi

]. Therefore, our optimization problem can be
formulated as follows

min
π∈Π

E[APi
]

s.t. 0 < pi ≤ 1, ∀i ∈ {1, 2, ...., N}.
(13)

Deriving a closed for expression for the solution of (13) a hard
problem due to the spatio-temporal correlation of link states.
In the following section, we introduce a DRL algorithm to
solve optimization problem in (13).

IV. THE GLI-BASED DEEP LEARNING APPROACH

In this section, we present the design structure of the GLI-
based NN to approximate the solution of (13) by mapping
the GLI to the scheduling policy. The conventional method
to solve the optimization problem in (13) requires a full
information about the CSI, which incurs O(N2) computational
complexity for a network of N D2D pairs. The CSI could
be mapped using GLI, which is considered as a function of
CSI that captures the main feature of the wireless channels
(the path loss and shadowing of a wireless link are mostly
functions of distance and location). In that sense, we use the
GLI as input to the NN to acquire the optimal scheduling
policy π∗. The structure of NN is depicted in Fig. 3 and is
illustrated in more details as follows.



Fig. 3. The structure of considered NN.

A. D2D Density Grid

First, we construct grid matrices to quantize the continuous
form of the locations of the transmitters and receivers as shown
in Fig. 4. We assume that the considered network is distributed
in a square-shaped area with a side length of L. The whole lay-
out is then partitioned into square cells, where the GLI infor-
mation is represented as the tuple {(xtx

i , ytxi ), (xrx
i , yrxi )}Ni=1,

where (xi, yi) is the index of the cell and the coordinate values
ranges from 0 to L. We consider two sub-grids, GTx and
GRx that represent the activation state of the transmitters and
receivers, respectively. For a grid size of R×R, the transmitter
matrix GTx

i of link i is defined as

GTx
i =

{
1 if(x, y) = ⌈(xtx

i , ytxi ) ∗R/L⌉
0 otherwise.

(14)

Based on the activation probability pi, we have

GTx =

N∑
j=i

pjG
Tx
j . (15)

Note that the same applies to GRx. In this case, the matrices
GTx and GRx represent GLI information to solve the problem
in (13) where probability pi reflects the interference to other
links, hence they could be regarded as feature matrices to the
convolution layer presented in the next subsection.

B. The 3-Layer Convolution Stage

The two matrices GTx and GRx are processed via three
connected convolution layers and the output is a set of
extracted feature after each layer. Each entry in the resulting
matrix comes from a unique convolution positioned at the
corresponding index of the input matrix using the convolution
filter. When the index represents the receiver’s location, then
the convolution essentially extracts features from all the trans-
mitters in proximity to this receiver, based on the size of the
convolution filter. Both GTx and GRx undergo the convolution
phase concurrently, producing three matrices each. Then, every
link on the D2D plane gleans a total of six features from
these matrices, based on the index of its individual receiver or
transmitter.

Fig. 4. Construction of the transmitter and receiver density grids.

C. The Fully Connected Stage

The second stage is fully connected stage that comprises
two hidden layers. We consider the Rectified Linear Unit
(ReLU) as the activation function of each neuron where a
sigmoid non-linearity is used at the output node to produce the
activation probability pi. For the considered D2D configuration
with N links, the feature vectors for each link are processed
through the fully connected layer. This results in a collection
of activation probability vectors π. In order to consider the Tx-
Rx features in the learning process, we include the pi from
the previous iteration and the distance between the Tx and
Rx of the link as two features into the fully connected stage.
Particularly, the output probabilities pi are used as inputs to
get new GLI using (15). This in turn helps to improve the
convergence of the NN and enhance the training process in
general.

D. The NN Training Process

We train the NN using a randomly generated set of D2D
layouts to minimize the AoI via gradient descent on the
convolutional filter weights and the NN weight parameters.
Specifically, the locations of N transmitters are first generated
uniformly within the region L× L, and then the locations of
the corresponding receivers are generated following a uniform
distribution within a pairwise distances of {dmin, dmax}.
Although the training stage would require the channel gains,
it will no longer be required after the network is well-trained
and only N GLI is required to obtain the optimal schedule.
This way, for each iteration, the NN tends to improve the
scheduling policy of the previous iteration.

V. PERFORMANCE EVALUATIONS

In this section, we present the setup of the training and test
processes of the considered NN, and evaluate the performance
of the proposed AA-DRL via numerical results with the
relevant parameters listed in Table I.

A. Network Setup and Training Process

We consider a D2D-assisted IIoT network where N D2D
pairs are distributed in 600 meters × 600 meters region. The



TABLE I
EVALUATION PARAMETERS

Parameter Value

Deployment area 600 meters × 600 meters
Hidden layer 30 neurons
GLI grid length R 150
Size of convolution filter 10× 10
Path loss exponent (α) 3
SINR threshold (β) 0 dB
Noise power (σ2) −90 dBm
Transmission power 100 mW

Fig. 5. Comparison of the average PAoI under different values of λ with
N = 100 and N = 400.

Fig. 6. CDF of AA-DRL and benchmark with N = 100 and λ = 0.2 of
1000 different network layouts.

D2D transmitters are uniformly positioned within the deploy-
ment area while the locations of the corresponding receivers
are generated following a uniform distribution within the
pairwise distances {dmin = 2 meters and dmax = 80 meters}.
We generate 10000 sets of such layout to train the NN and
5000 sets for testing. The NN consists of 3 convolution filters
with each filter of size 20× 20. Each hidden layer in the
fully connected stage comprises 30 neurons utilizing ReLU
and sigmoid functions.

Fig. 7. Log scale values of the computation time required to optimize a single
layout under varying N .

B. Numerical Results

The following results show the performance of the pro-
posed AA-DRL scheme in terms of the average PAoI and
the computational complexity. Moreover, we use the work
in [9] as a benchmark to prove the effectiveness of our
proposed approach. Fig.5 compares the average PAoI of AA-
DRL and the benchmark in [9] under varying λ. The figure
shows superior performance of the proposed AA-DRL over
the benchmark, especially when the network size increases
from N = 100 to N = 400. For instance, while AA-DRL
achieves 55% reduction in the AoI compared to the benchmark
at N = 100 and λ = 0.71, this percentage increases to 75%
at N = 400 and λ = 0.81. The effectiveness of our proposed
AA-DRL is attained through incorporating and mapping of
the GLI in the scheduling policy, while the benchmark work
is based only on local observations of the backlog status of the
users, which would be inefficient in high interference regimes.

To further emphasize the effectiveness of the proposed AA-
DRL considering different layouts, we plot the Cumulative
Distribution Function (CDF) of the average PAoI in Fig. 6
with N = 100 and λ = 0.2. Although different PAoI values
are obtained under different layouts, we can observe that the
CDF curves of both approaches have the same trend, hence the
performance improvements of AA-DRL could be guaranteed
under different network distributions (i.e., different spatial
locations).

One concern regarding the proposed AA-DRL would be
its corresponding computational complexity. In the following,
we roughly analyze the computational complexity of AA-
DRL and compare it with an optimal iterative approach.
The iterative approach uses a convex optimization solver
(e.g., CVX) to obtain a local optimal probability pi. The
access probability pi is updated in each iteration towards a
minimum PAoI based on the obtained pi from the previous
iteration. This way, N one-variable problems are solved in
a single iteration. For each iteration, the problem requires
the collection of N2 elements of the CSI matrix, leading to
at least O(N2) computational complexity of this algorithm.



For our proposed AA-DRL algorithm, the overall computation
is f × [R2 × (c21 + c22 + c23) + N × 10 × h1 × h2], where
f is the number of feedback rounds, ci is the size of the
convolution filter of stage i and h1 and h2 are the number
of neurons in each hidden layer. Therefore, for a given D2D
layout, the time complexity of AA-DRL scales as O(N). Fig. 7
shows the computation time in log scale of AA-DRL and the
iterative method under different values of N . For the sake
of reasonable comparison, we chose hardware configurations
that are optimally compatible with each algorithm. For AA-
DRL, we used Nvidia GPU GeForce GTX 1080Ti, while for
the iterative algorithm we used Intel CPU Core i7-8700K
@ 3.70GHz. The design of the NN in the proposed AA-DRL is
inherently amenable to parallel processing, gaining substantial
advantages from the parallel computational capabilities of
GPUs. Conversely, the iterative algorithm exhibits inherently
sequential computation patterns, making it more suited to
CPUs, which offer higher clock speeds. As it is demonstrated
by Fig. 7, our proposed AA-DRL shows considerable compu-
tational advantages over the iterative approach in large-scale
deployments while achieving optimal AoI performance. It is
also worth mentioning that the considered IIoT architecture
shown in Fig. 1 provides computational advantage where
the complexity of AA-DRL would be further relaxed taking
advantage of the computational capabilities of the edge node.

VI. CONCLUSION

In this paper, we proposed a DRL-based approach to op-
timize AoI in D2D-assisted IIoT networks. We formulated a
scheduling problem to minimize the average PAoI and devel-
oped a NN that maps the GLI to the optimal scheduling policy.
The obtained results showed that our proposed approach
achieves improved PAoI compared to a recent benchmark, all
while exhibiting reduced computational complexity in contrast
to the traditional iterative minimization algorithm.
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