
Bitstream-Based JPEG Image Encryption
with File-Size Preserving

Hiroyuki KOBAYASHI
Tokyo Metropolitan College

of Industrial Technology,
Tokyo, JAPAN

Email: hkob@metro-cit.ac.jp

Hitoshi KIYA
Tokyo Metropolitan University

Tokyo, JAPAN
Email: kiya@tmu.ac.jp

Abstract—An encryption scheme of JPEG images in the
bitstream domain is proposed. The proposed scheme preserves
the JPEG format even after encrypting the images, and the file
size of encrypted images is the exact same as that of the original
JPEG images. Several methods for encrypting JPEG images in
the bitstream domain have been proposed. However, since some
marker codes are generated or lost in the encryption process,
the file size of JPEG bitstreams is generally changed due to
the encryption operations. The proposed method inputs JPEG
bitstreams and selectively encrypts the additional bit components
of the Huffman code in the bitstreams. This feature allows us to
have encrypted images with the same data size as that recoded in
the image transmission process, when JPEG images are replaced
with the encrypted ones by the hooking, so that the image
transmission are successfully carried out after the hooking.

Index Terms—JPEG, Encryption, File-size preserving,
Bitstream-based

I. INTRODUCTION

Due to the spread of digital cameras and smart phones,
opportunities to use digital images are increasing. Generally,
captured images are immediately JPEG encoded and stored.
These images are not only stored on personal devices, but
also are often uploaded to cloud providers, such as social
networks, cloud photo storage services, and so on. Most the
cloud providers accept only limited file formats like JPEG. In
addition, such cloud environments are based on the reliability
of the providers, but they are not a reliable situation in terms
of privacy preserving for users. Therefore, various image
encrypting methods have been studied for compressed image
data.

Encryption then Compression(EtC) systems [1]–[11] are
methods to encrypt for images before encoding. Some of these
methods have the compatibility with international compression
standards, and enable privacy preserving decompression and
compression.The compression performances of EtC systems
are almost as same as one of the original images, but the file
sizes are slightly different from those of compressed images
without encryption.

Several bitstream based encryption methods have also been
proposed [12]–[17]. For JPEG 2000 images, some bitstream-
based encryption methods have been proposed in considera-
tion of the generation of special marker codes and without
changing the file size [12]–[14]. Even for JPEG images, some

bitstream-based encryption methods have been proposed, but
the file size of the encrypted bitstream has changed by the
occurrences or disappearances of the JPEG marker code [15]–
[17]. For example, in [15], encryption is performed while
keeping the file size by rearranging the run lengths of AC
coefficients. However, occurrences or disappearances of the
pseudo marker code have not been studied. In this case, the
encrypted bitstream can not be correctly decoded or the file
size of the encrypted bitstream is changed. On the other hand,
in the methods of [16], [17], bitstream-based block scrambling
and coefficient scrambling are implemented. In these methods,
in order to accurately hold the JPEG format, encryption pro-
cessing is executed the byte stuffing operation which prevent
accidental generation of markers by the arithmetic encoding
procedures. As a result, It has been shown that the file size
changes by several bytes before and after encryption.

In this paper, we propose a bitstream-based JPEG encryp-
tion scheme that makes the file size exactly equal to the orig-
inal. The proposed method guarantees a constant file size by
providing a mechanism to avoid occurrences / disappearances
of the JPEG marker code. This feature allows us to have
encrypted images with the same data size as that stored in the
image transmission process, when JPEG images are replaced
with the encrypted ones by the hooking, so that the image
transmission are successfully carried out after the hooking.

II. JPEG BITSTREAM AND ITS BYTE STUFFING

A. JPEG Bitstream

Figure 1(a) shows the structure of a JPEG bitstream. SOI
and EOI are the marker codes which correspond to “Start of
Image” and “End of Image”, respectively. JPEG bitstreams
have some marker segments (“Segment” in Fig.1(a)) which
store information to be used for data decoding such as quanti-
zation tables, Huffman tables, and so on. Each marker segment
starts with a marker code. The marker codes are special two-
byte codes where the first byte is “FF” and the second byte is
a value between “01” and “FE”.

Figure 1(b) shows the structure of the “image data” in
Fig.1(a). “Image data” consists of multiple MCUs (Mini-
mum Coded Unit). Figure 1(b) is an example in the case
of 4:2:0 color subsampling. Therefore, each MCU has four
Y(luminance) blocks, one subsampled Cb block, and one

ar
X

iv
:1

80
8.

06
49

5v
1

 [
ee

ss
.I

V
]

 1
7

A
ug

 2
01

8

SOI EOISegment0 Segmentn MCU0 MCUk

image data

(a) JPEG bitstream

DCk ACk,1 ACk,2 ACk,63

Huffman
code (g)

additional
bits

Huffman
code (r, g)

addtional
bits

MCUk-1

Yk,0 Yk,1 Yk,2 Yk,3 Cbk Crk

MCUk

(b) MCU

01101 010101

01101

111110 1001011

DCk ACk,1

101010 11111 0 1001011

8bits 8bits 8bits

Huffman additional bits Huffman additional bits

(c) Representation with byte-aligned code

Fig. 1. Structure of a JPEG bitstream

subsampled Cr block. Moreover, each block has DCk which is
the difference value from the DC coefficient of previous block,
and 63 AC coefficients ACk,n (n = 1 · · · 63). Each coefficient
has a Huffman code part corresponding to the group number
(g) that determines the range of values, and an additional bits
part for uniquely identifying values within the range. In the
case of AC coefficients, the Huffman code also includes the
run length (r) of the zero value until a significant value exists.

Figure 1 (c) is an example of Huffman code and additional
bits. Since each data is composed of variable length bits, they
are stored in byte units.

B. Difficulty of file size preserving

Figure 2 illustrates an example of entropy-coded data seg-
ment, where DCk in Fig.2(a) is entropy-coded DC coefficient
data and ACk,1 is the entropy-coded data of the first AC
component in the k-th block, respectively. Each data have
Huffman code part and additional bits part. To generate the
JPEG bitstream, byte-based packing is first applied to the
entropy-coded data in Fig.2(a), as shown in Fig.2(b). The byte
“FF”, i.e. “11111111”, which corresponds to a marker code,
may be produced due to the byte-based packing. Therefore,
finally, in order to ensure that the marker does not occur within
an entropy-coded segment, any “FF” byte in either a Huffman
or additional bits, is followed by a “stuffed” zero byte, whose
operation is called as ‘byte stuffing’, as shown in Fig.2(c) [18].

Note that the file size of the stream (b), is not the same as
that of the stream (c). We have to consider the byte stuffing
operation to preserve the same file size when JPEG images
are encrypted.

01101 010111 111110 1001011

DCk ACk,1
Huffman additional bits Huffman additional bits

(a) Entropy coded DCT coeffcients

01101 111010 11111 0 1001011

(b) Byte-based packing

01101 111010 11111 0 100101100000000
Stuffed zero byte

(c) Byte stuffing

Fig. 2. Byte stuffing in entropy-coded data segment

extract some
additional

bits
EX-OR

key

concatenate
bitstream

JPEG
bitstream

encrypted
JPEG

bitstream

random binary
sequence

other data
Fig. 3. Outline of the proposed method

III. PROPOSED STRUCTURE

We propose a new bitstream-based JPEG image encryption
method which allows us to exactly preserve the same file size
as the original JPEG bitstream.

A. Outline of the proposed structure

Bitstreams encrypted by the proposed method have not only
the same file sizes, but also the compatibility with JPEG
decoders. Some of only additional bits fields that satisfy
conditions are encrypted to keep the compatibility with JPEG
decoders. Figure 3 illustrates the outline of the proposed
method. The procedure of the proposed method is summarized
as follows.

1) Analysis, byte-by-byte, the entropy-coded data segment
and extract additional bits from a byte that satisfies two
conditions: the byte includes both Huffman code and
additional bits, and the Huffman code includes at least
one “0” bit.

2) Generate a random binary sequence with a secret key.
3) Carry out exclusive-or operation between only extracted

additional bits and the random sequence generated in 2),
and replace the additional bits with the result.

4) Produce an encrypted bitstream by combining the en-
crypted additional bits with other data without any
encryption.

B. Encryption considering occurrences or disappearances of
‘FF00’

If all additional bits are simply encrypted, there is a pos-
sibility to generate or lose “FF”. Therefore, in the proposed
method, only limited additional bits are encrypted based on
exclusive-or operation with a random binary sequence.

01101 xxxxxx 11111 0 xxxxxxx00000000

Fig. 4. Example for determination whether encrypt or not

In Fig.4, the additional bits in Fig.2(c) were replaced with
’x’. Using Fig.4, we describe an outline of determination
whether encryption is possible or not.

1) The first byte: The data consist of a 5-bit Huffman code
and 3-bit additional bits. Even if all the additional bits are 1,
the entire byte never becomes “FF”. Therefore, the additional
bits part is able to be encrypted.

2) The second byte: The data consist of 3-bit additional
bits and a 5-bit Huffman code. In the original data, since the
additional bit was “111” and the remaining Huffman code was
‘111111”, “FF” was composed as the whole byte. If any bit
of the additional bit is changed to 0 by encryption, the entire
byte is not ‘FF’ and ‘00’ of the third byte is not inserted. Since
this causes a file size change, the additional bits of the second
byte are not encrypted.

3) The third byte: The data are padding data because the
second byte is “FF”. Since this is not an additional bit, it is
not encrypted.

4) The last byte: The data consist of a 1-bit Huffman code
and 7-bit additional bits. Even if all the additional bits are 1,
the entire byte never becomes “FF”. Therefore, the additional
bits part is able to be encrypted.

By analyzing the Huffman code in the byte as described
above, it is possible to determine whether encryption is possi-
ble or not. In summary, the following bytes are not encrypted.

1) The whole 8 bits are Huffman codes.
2) The whole 8 bits are additional bits.
3) “00” byte immediately after “FF”.
4) Huffman code and additional bits are included and the

all bits of Huffman code are ‘1’.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Some simulations were carried out to demonstrate the
effectiveness of the proposed method. For the simulations,
we used the reference software distributed by JPEG [19] with
4:2:0 chroma subsampling.

A. Image quality evaluation of encrypted image

First, the image quality of encrypted images was evaluated.
Figure 5(a) and (b) were standard images, “lena” and “man-
drill” encoded by JPEG with Q-factor 80, respectively. Figure
5(c) to (f) were decoded images with a standard JPEG decoder
from the encrypted images by the proposed scheme. In Fig.5(c)
and (d), the additional bits in only DC components were
encrypted. On the other hand, in Fig.5(e) and (f), the additional
bits in both DC and AC components were encrypted.

The encrypted image in Fig.5(b) has slightly visible infor-
mation on the original one, because the AC components were
the same as the original ones. On the other hand, the encrypted
image in Fig.5(c) had less visible information than Fig.5(b).

(a) Original (Q = 80) (b)Original (Q = 80)
(lena) (mandrill)

(c) DC component only (d) DC component only
(lena) (mandrill)

(e) Both Components (f) Both Components
(lena) (mandrill)

Fig. 5. Original and encrypted results (lena, mandrill)

B. The number of bytes to be encrypted

Table I indicates the ratio of encryption applied to additional
bits in “image data”. Data excluded from encryption are data
which satisfy conditions 2) and 4) of III-B. Due to the increase
of Q-factors, the proportion of encryption targets decreased.
This is because the number of bytes corresponding to the
condition 2) necessity increases due to the increase of Q-
factors.

C. File-size preserving

Next, we compare our method with the previous works [1],
[17], in terms of the file sizes. Table II shows the file sizes
of encrypted JPEG images under various conditions. From
this table, JPEG images encrypted by the proposed method
had exactly the same file sizes as those of the original ones.
However, other encryption methods could not preserve the
same file sizes, because they do not consider the effect of
byte stuffing.

TABLE I
THE NUMBER OF BYTES TO ENCRYPT / BYTES TO BE EXCLUDED FROM

ENCRYPTION (LENA IMAGE)

(a) Q = 50

target

of bytes
excluded from

encryption[byte]
of encrypted

bytes[byte]
Percentage of

encrypted bytes[%]
DC only 70 4,729 98.5
AC only 172 9,591 98.2

Both 197 13,467 98.6
(b) Q = 80

target

of bytes
excluded from

encryption[byte]
of encrypted

bytes[byte]
Percentage of

encrypted bytes[%]
DC only 420 6,306 93.8
AC only 460 20,931 97.8

Both 741 26,104 97.2
(c) Q = 95

target

of bytes
excluded from

encryption[byte]
of encrypted

bytes[byte]
Percentage of

encrypted bytes[%]
DC only 1,758 7,152 80.2
AC only 3,225 59,063 94.8

Both 4,336 65,274 93.8

TABLE II
LENGTH OF ORIGINAL AND ENCRYPTED IMAGES (DIFFERENCE)[BYTE],

FOR LENA IMAGE

Q-factor 50 80 95
Original 24,279 43,879 106,548

Proposed 24,279(0) 43,879(0) 106,548(0)
Cheng [17] 24,281(+2) 43,865(-14) 106,553(+5)

EtC [1] 24,767(+488) 44,487(+608) 108,262(+1,714)

V. CONCLUSION

In this paper, we have proposed an encryption method that
allows us to preserve the same file size before and after the
encryption. In the encryption process, the proposed method
considers the effect of byte stuffing and guarantees a constant
file size by providing a mechanism to avoid the occurrence
or disappearance of the JPEG marker code. By preserving the
file size, it can be expected that the image transmission are
successfully carried out after the hooking encryption process.

REFERENCES

[1] Kenta Kurihara, Masanori Kikuchi, Shoko Imaizumi, Sayaka Shiota,
and Hitoshi Kiya: “An Encryption-then-Compression System for JPEG /
Motion JPEG Standard,” IEICE Trans. Fundamentals, vol.E98-A, no.11,
pp.2238–2245, November 2015.

[2] J. Zhou, X. Liu, O. C. Au, and Y. Y. Tang, “Designing an efficient image
encryption-then-compression system via prediction error clustering and
random permutation,” IEEE Trans. on information forensics and security,
vol. 9, no. 1, pp. 39-50, 2014.

[3] O. Watanabe, A. Uchida, T. Fukuhara, and H. Kiya, “An encryption-
then-compression system for JPEG 2000 standard,” IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015,
pp. 1226-1230.

[4] K. Kurihara, S. Shiota, and H. Kiya, “An encryption-then-compression
system for jpeg standard,” Picture Coding Symposium (PCS), 2015, pp.
119-123.

[5] K. Kurihara, M. Kikuchi, S. Imaizumi, S. Shiota, and H. Kiya, “An
Encryption-then-Compression System for JPEG / Motion JPEG Stan-
dard,” IEICE Trans. Fundamentals, vol.E98-A, no.11, pp.2238-2245,
November 2015.

[6] K. Kurihara, O. Watanabe, and H. Kiya, “An encryption-then- compres-
sion system for jpeg XR standard,” in IEEE International Symposium
on Broadband Multimedia Systems and Broadcasting (BMSB), 2016, pp.
1-5.

[7] K. Kurihara, S. Imaizumi, S. Shiota, and H. Kiya, “An encryption-then-
compression system for lossless image compression standards,” IEICE
Trans. Inf. & Syst., vol. E100-D, no. 1, pp. 52-56, 2017.

[8] T. Chuman, K. Kurihara, and H. Kiya, “On the security of block
scrambling-based etc systems against jigsaw puzzle solver attacks,” IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2017, pp. 2157-2161.

[9] T. Chuman, K. Kurihara, and H. Kiya, “Security evaluation for block
scrambling-based etc systems against extended jigsaw puzzle solver at-
tacks,” IEEE International Conference on Multimedia and Expo (ICME),
2017, pp. 229-234.

[10] Tatsuya Chuman, Kenta Iida, and Hitoshi Kiya, “Image Manipulation
on Social Media for Encryption-then-Compression Systems,” Proc. AP-
SIPA Annual Summit and Conference, Kuala Lumpur, Malaysia, 14th
December, 2017.

[11] Tatsuya Chuman, Kenta Kurihara, and Hitoshi Kiya “On the Security
of Block Scrambling-based EtC Systems against Extended Jigsaw Puzzle
Solver Attacks,” IEICE Trans. Inf. & Sys., vol.E101-D, no.1, pp.37-44,
January 2018.

[12] Ikeda, H., Iwamura, K.: Selective encryption scheme and mode to avoid
generating marker codes in JPEG2000 code streams with block cipher.
In: Proceedings of IEEE WAINA, pp. 593–600 (2011)

[13] H. Kiya, S. Imaizumi, and O. Watanabe, “Partial-Scrambling of Image
Encoded Using JPEG2000 without Generating Marker Codes,” Proc.
IEEE International Conference on Image Processing(ICIP), no.WA-P1.3,
17th September, 2003.

[14] Hitoshi Kiya, Shoko Imaizumi, and Osamu Watanabe, “Partial-
Scrambling of Image Encoded Using JPEG2000 without Generating
Marker Codes,” Proc. IEEE International Conference on Image Process-
ing, no.WA-P1.3, Barcelona, Spain, 17th September, 2003.

[15] Unterweger, Andreas and Uhl, Andreas: “Length-preserving Bit-stream-
based JPEG Encryption, ” Proceedings of the on Multimedia and Security,
MM&Sec ’12, pp. 85–90, 2012.

[16] X. Niu, C. Zhou, J. Ding and B. Yang, “JPEG Encryption with File Size
Preservation,” 2008 International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, Harbin, 2008, pp. 308-311.

[17] Cheng, Hang and Zhang, Xinpeng and Yu, Jiang and Zhang, Yuan:
“Encrypted JPEG Image Retrieval Using Block-wise Feature Comparison,
” J. Vis. Comun. Image Represent., Vol.40, pp. 111–117, 2016.

[18] “Information technology–Digital compression and coding of continuous-
tone still images: Requirements and guidelines,” International Standard
ISO/IEC IS-10918-1, Feb. 1994.

[19] “Text of CD ISO/IEC 18477-5 (Reference Software),” ISO/IEC JTC
1/SC 29/WG 1 N69019, Jun. 2015.

	I Introduction
	II JPEG Bitstream and Its Byte Stuffing
	II-A JPEG Bitstream
	II-B Difficulty of file size preserving

	III Proposed Structure
	III-A Outline of the proposed structure
	III-B Encryption considering occurrences or disappearances of `FF00'
	III-B1 The first byte
	III-B2 The second byte
	III-B3 The third byte
	III-B4 The last byte

	IV Experimental Results and Discussion
	IV-A Image quality evaluation of encrypted image
	IV-B The number of bytes to be encrypted
	IV-C File-size preserving

	V Conclusion
	References

