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Abstract—The use of machine learning techniques for encoding
complexity reduction in recent video coding standards such as
High Efficiency Video Coding (HEVC) has received prominent
attention in the recent past. Yet, the dynamically changing nature
of the video contents makes it evermore challenging to use rigid
traditional inference models for predicting the encoding decisions
for a given content. In this context, this paper investigates the
resulting implications on the coding efficiency and the encod-
ing complexity, when using offline trained and online trained
machine-learning models for coding unit size selection in the
HEVC intra-prediction. The experimental results demonstrate
that the ground truth encoding statistics of the content being
encoded, is crucial to the efficient encoding decision prediction
when using machine learning based prediction models.

Index Terms—HEVC, intra-prediction, machine learning, sup-
port vector machines, coding unit

I. INTRODUCTION

The High Efficiency Video Coding (HEVC) standard, which
was introduced in 2013, has shown a significant coding
efficiency improvement (≈50%) compared to its immediate
predecessor H.264/AVC [1]. This is attributed to the assort-
ment of novel coding modes and features, and the quad-tree
based hierarchical partitioning structure that encompass the
new standard. However, the brute force approach of analyzing
every possible combination of coding modes and partitioning
structure using Rate-Distortion (RD) optimization in order
to select the optimum coding modes for a given content,
adversely affects the encoding complexity of HEVC encoders.

Therefore, the recent literature proposes numerous ap-
proaches to reduce the HEVC’s compelling encoding com-
plexity. These include knowledge based methods that utilize
statistical [2], [3], texture and motion analysis information
[4], [5], and learning based methods that utilize machine
learning based inference models [6]–[8], to predict the coding
information for a given content thereby skipping the brute-
force RD optimization. However, recent advancements in data
science and deep learning frameworks have popularized the
use of machine learning based inference models to early
predict the coding modes and coding structure for a given
content and reduce the exorbitant complexity of the encoders.

That being said, the properties of the contents are subjected
to continuous and dynamic changes, which make the offline
trained machine learning based prediction models less flexible
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for complex video sequences. Therefore, it is vital to investi-
gate the possibilities of extending the offline trained models to
dynamically adapt with the changing video contents, such that
coding decisions predicted from the models are relevant to the
content being encoded. In this context, this paper investigates
the impact on the coding efficiency and the coding complexity
in the HEVC intra-prediction, when using offline trained and
online trained Support Vector Machine (SVM) models for
Coding Unit (CU) size selection.

The remainder of the paper is organized as follows. Sec.
II provides a detailed overview of the state-of-the-art encod-
ing complexity reduction methods that use machine learning
techniques. Sec. III briefly describes the implication of using
offline and online trained models for CU size selection. Sec.
IV presents the experimental results followed by a discussion
and finally, Sec. V states the concluding remarks and future
work.

II. BACKGROUND AND RELATED WORK

The complexity reduction using machine learning based
models is achieved by intelligently predicting the optimal cod-
ing parameter combinations for a given content. This includes
the prediction of coding parameters ranging from prediction
mode, reference pictures, and quad-tree hierarchy to filtering
parameters, etc. However, the selection of quad-tree hierarchy
for a given content (in particular the CU size) is considered the
major source of the increased encoding complexity in HEVC
encoders. For example, the CU size decision (i.e., 8 × 8 to
64 × 64) in the quad-tree structure is traditionally decided
at CU depth level (i.e., 0, 1, 2, 3), where a decision is taken
whether to split or not split the current CU into sub-CUs based
on the RD cost at each level [1]. Thus, the objective of using
a prediction model is to skip the brute-force evaluation of all
possible CU sizes and to predict the optimal CU size that
minimizes the RD cost for a given content.

The following sub-sections introduce some of the state-of-
the-art methods that fall under two major supervised machine
learning techniques; Support Vector Machines (SVM) and
Neural Networks (NN) that have been widely adopted in
encoder complexity reduction.

A. SVM-based approaches

Zhang et al. [4] propose a two-stage SVM approach to
determine the CU size. In the first stage, eight SVMs are
used, with two SVMs for each of the four CU depth levels
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(i.e., 0, 1, 2, 3). These SVMs are built offline using a large
amount of training data. During the encoding process, one of
these two SVMs takes the decision for early split (ES) and the
other SVM takes the decision for early terminate (ET). The
decision of the first stage is a combined outcome of these two
SVMs. When the predictions of the two models disagree, the
decision making is passed down to the second stage, where a
single SVM is used at each depth level. The SVM classifiers
of the second stage are online classifiers, that are built after
encoding the current depth level. The training data for these
models are calculated during the encoding process. Here, the
binary SVM classifier at each depth level decides either to
stop at the current CU depth level or to continue to evaluate
the sub-CUs.

On the other hand, the fast CU size decision using algorithm
proposed by Liu et al. [9] uses two SVMs (one for the split
decision and one for the non-split decision) to categorize CUs
in to 3 classes; CUs with high texture complexity (split),
CUs with less texture complexity (do not split), and CUs
with average texture complexity (difficult to predict). In this
approach, the CUs that are categorized into latter are subjected
to traditional RD optimization to determine their split decision.

Similar approaches that utilize SVMs to reduce the HEVC’s
encoding complexity in intra coding are reported in [6], [8],
[10].

B. NN-based approaches
Liu et at. [11] propose a Convolutional Neural Network

(CNN) based approach that predicts the CU split decision.
The CNN architecture has two convolution layers and two
fully-connected layers. The CU is classified into one of three
categories; homo (terminate at the current depth level), split
(skip the current depth level and evaluate the next depth level),
and comb (evaluate with traditional RD optimization).

A similar approach has been adopted in [12] with a CNN
architecture that constitutes three convolution layers and three
fully-connected layers. Here, one CNN per each CU depth
level has been used, as opposed to using a single CNN for all
CU depth levels.

The algorithms presented in [13], [14] also use similar CNN
architectures for predicting the CU size for a given image
block, thereby reducing the encoding complexity in HEVC
intra-prediction.

C. Other machine learning based approaches
In addition to the widely adopted SVM and NN based

approaches, several other machine learning techniques have
been utilized to develop fast encoding algorithms for HEVC.
For example, logistic regression [15], decision trees [16], [17],
random forest [18], and Bayesian classification [19] are some
of the state-of-the-art learning based approaches that have been
considered in the literature for reducing HEVC’s encoding
complexity.

III. EVALUATING THE IMPLICATIONS OF OFFLINE AND
ONLINE TRAINED MODELS

In order to investigate the impact on the coding efficiency
and encoding complexity, when using offline and online

trained SVM models for CU size selection, we utilize two
different encoding algorithms; one that predicts the CU sizes
based on decisions of offline trained models and another that
predicts CU size decisions using online trained models which
are created at runtime during the encoding process.

The CU split decision can be modeled as a binary classifi-
cation problem, with classes split and non-split. Here we use
SVMs as the machine learning technique because it can handle
binary classification with significant computational advantages
[20]. Furthermore, SVMs are widely been used in the context
of CU split decision prediction, thus, the proposed analysis
will be beneficial for a large number of algorithms. However,
we also believe that similar implications are expected for any
other machine learning technique since the data collection and
training will become common factors regardless of the learning
technique been adopted.

SVMs can utilize a range of features available in the
encoding loop as input features which are mapped to the output
that decides whether the CU is split or not. In this case, the
feature set proposed in [4] has been adopted for both offline
and online trained SVM models which have been utilized for
the following evaluation. The CU level feature set proposed in
[4] constitute context features from the neighbouring CUs, CU
complexity information and coding information for the current
CU depth level, thus, covers every aspect of the CU.

A. Online-only training

1) Data collection: In the case of online training, the
data set for SVM training is accrued from the content being
encoded, during the encoding process. For instance, the video
sequence is initially encoded using RD optimization until 2000
data samples are collected for each CU depth level. The data
constitutes the feature vector described in (1) and CU split
decision obtained from the RD optimization. Once the number
of expected data points are gathered, two models (split and
non-split ) are created for each depth level.

The model pair, split and non-split for a given CU depth
level, is independent from the models in other depth levels.
Therefore, data collection takes place independently resulting
in the models being created at different points in time, de-
pending on the video resolution and Quantization Parameter
(QP ). For example, when encoding a low resolution video
(e.g., 416×240), models for lower CU depths (i.e., 0, 1) are
likely to be generated after encoding several frames. On the
contrary, models for higher CU depths (i.e., 2, 3) may become
available much sooner.

Each data sample includes a set of features F i defined as,

F i := {θi, πi, τ i}, (1)

where θi, πi, and τ i refer to texture, pre-analysis (encoding
with PLANAR mode), and context information, respectively.
The features collected during this process are described in
detail in [4]. Here, i ∈ {0, 1, 2, 3} denotes the CU depth level.

2) Weight calculation: The optimal weights for the
weighted SVMs are determined during runtime for each depth
level independently. This is done by testing a range of weight
value pairs ranging from 1:5 and 5:1, for the two SVMs (split
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Fig. 1. Sample hyperplane positioning of the SVMs for two features

and non-split) in a given depth level. The best model pair is
selected by evaluating the precision, which is calculated for
split model (ϕs) and non-split model (ϕns) as,

ϕs =
Tp

Tp + Fp
(2)

and
ϕns =

Tn
Tn + Fn

, (3)

respectively. Here, Tp, Tn are the numbers of True Positive and
True Negative samples, whereas Fp and Fn are the numbers
of False Positive and False Negative samples, respectively.

Maximization of the precision for both models results in
SVM split model minimizing the categorization of non-split
samples as split while SVM non-split model minimizing the
categorization of split samples as non split.

Fig. 1 for example, depicts logical separation for the CU
size decisions made by the corresponding SVMs at a particular
depth level for two sample features. The data samples that
fall in the region between the hyperplanes are sent to RD
optimization to determine the CU split decision.

3) Updating the models: After a certain number of predic-
tions are made, the SVM models are discarded and re-created
in order to ensure that the models are content-adaptive. The
ratio between the number of training samples and the number
of predicted samples in this paper is maintained at 1:200.

B. Offline-only training

1) Data collection: The SVM models generated in this
approach use the data collected offline prior to the current
encoding process. The process followed is similar to that of the
online-only approach, however, the whole process is carried
offline.

The number of training samples used to create the offline
models was also limited to 2000, in order to match the num-
bers in the online approach. Using higher number of training
samples increases the model accuracy, but it also increases the
number of support vectors resulting in an increased prediction
complexity. This can drive away the implications of differences
between offline and online model building.

2) Weight calculation: An approach similar to that of online
training is carried out to determine the optimal weights for the
offline weighted SVM models. However, neither the sample
data nor the weights are updated for the offline trained models,
thus, the initial models are continuously maintained throughout
the encoding process.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The two SVM models (online trained and offline trained),
are implemented within the HM16 [21] reference encoder. For
SVM implementation, the optimized libSVM [22] library has
been used with Radial Basis Function(RBF) kernel and C set
at 100 in both online and offline training. RBF is chosen given
the fact that it can handle non-linear decision boundaries and
it performs well with smaller number of features [22]. Having
C = 100 enables generalization of the models to avoid over-
fitting.

Both algorithms are compared against HM16 to measure
the encoding complexity reduction and coding efficiency im-
pact. In this case, the encoding time performance ∆T (%) is
evaluated using,

∆T(%) =
THM − Tρ
THM

× 100, (4)

where THM , and Tρ are the encoding times of the HM
reference encoder and the evaluating algorithm, respectively,
for QP ∈ {22, 27, 32, 37}. The impact on coding efficiency for
the two algorithms is measured using the Bjøntegaard Delta
Bit Rate (BDBR) increase [23]. The Table I illustrates the
experimental results of the two approaches.

The experimental results show that offline-only model
achieves a significant complexity reduction in the range of
74.34% on average, yet at the same time resulting in significant
coding losses, 9.74 % BDBR increase on average. On the other
hand, the online-only model demonstrates negligible coding
losses, i.e., 0.96 % BDBR increase, yet at the same time results
in less encoding complexity reductions (56.36%), compared to
the offline-only model.

The relatively inferior encoding time saving of the online-
only SVM model approach compared to the offline-only SVM
model approach can be intuitively explained as follows.

• Online-only models gather training data during the en-
coding process, while using the RD optimization to
determine the CU split decision

• Selecting the optimal weights for the SVM models re-
quire analysis of a range of weight value pairs in runtime

However, the online-only approach demonstrates a negligi-
ble BDBR increase due to the following reasons.

• Training and testing data (i.e., encoding data in this case)
for the SVM models come from the same dynamic data
distribution

• SVM models are being discarded and re-created period-
ically, which ensures that the CU split decisions more
relevant to the content being encoded
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TABLE I
COMPARISON BETWEEN STATIC AND CONTENT-ADAPTIVE MODELS (ALL

INTRA MAIN).

Sequence Online vs HM Offline vs HM
∆T
(%)

BD-
Rate
(%)

BD-
PSNR
(dB)

∆T
(%)

BD-
Rate
(%)

BD-
PSNR
(dB)

BasketBallDrillText 36.6 0.45 -0.02 64.36 15.82 -0.84
Kimono 70.2 2.32 -0.08 81.23 5.8 -0.19
BasketBallPass 52.68 0.56 -0.03 72.33 10.71 -0.65
BQTerrace 74.57 0.91 -0.05 73.94 7.01 -0.38
Traffic 47.73 0.56 -0.03 79.84 9.38 -0.46
Average 56.36 0.96 -0.04 74.34 9.74 -0.5

V. CONCLUSION

Reducing the encoding complexity while keeping the coding
efficiency of HEVC intact is a compelling challenge for
resource constrained consumer electronic devices. Therefore,
utilizing ground truth data in a given video sequence for
training the decision making models results in more accurate
CU split decisions. However, depending only on ground truth
information can adversely affect the encoding complexity
reduction due to the time consumed for online model training.
In this context, future work will focus on developing hybrid
decision making models that utilize both offline and online
trained inference models that can make fast decisions while
being adapted to the dynamic nature of the video contents.
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