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Abstract—Federated learning is a learning method for training
models over multiple participants without directly sharing their
raw data, and it has been expected to be a privacy protection
method for training data. In contrast, attack methods have
been studied to restore learning data from model information
shared with clients, so enhanced security against attacks has
become an urgent problem. Accordingly, in this article, we
propose a novel framework of federated learning on the bases
of the embedded structure of the vision transformer by using
the model information encrypted with a random sequence. In
image classification experiments, we verify the effectiveness of
the proposed method on the CIFAR-10 dataset in terms of
classification accuracy and robustness against attacks.

Index Terms—Federated Learning, Vision Transformer, Pri-
vacy Preserving

I. INTRODUCTION

Deep neural networks (DNNs) have been deployed in various
applications. Training high-performance DNN models requires
a huge amount of training data, and training data include
sensitive information such as personal information in general.
Accordingly, it is difficult to prepare an amount of data to train
DNN models, so privacy-preserving methods for deep learning
have become an urgent problem [1], [2]. Federated learning
(FL) has been excepted as one of the solutions [3]. FL is a type
of distributed machine learning. It is a model learning method
that reflects all clients’ data by sharing only the updated
information of each local model without directly sharing each
client’s training data. However, it has been pointed out to be
vulnerable to state-of-the-attacks [4]–[6]. In particular, vision
transformer (ViT) models [7], which are known to have a high
performance, are highly vulnerable as discussed in [6].

Therefore, various privacy-preserving methods have been
proposed to enhance security in FL so far. Differential privacy
[8] is one of the state-of-the-art, in which the values of
model parameters are hidden by adding noise with a specific
distribution. However, there is a trade-off relation between
the level of privacy protection and model performance, so
if we want to strongly protect model parameters, the use of
differential privacy degrades the performance of models.

Accordingly, in this paper, we propose a novel framework
for enhancing the security of ViT models in FL. In the
proposed framework, focusing on the embedding structure
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of ViT, each updated local model is encrypted by using a
random matrix generated with a secret key, which has been
inspired by privacy-preserving deep learning with encrypted
images for ViT [9]–[12]. Encrypted local-model information is
extracted from each encrypted model, and the encrypted local-
model information is shared with clients to perform model
integration directly in the encrypted domain. In experiments,
the proposed method is demonstrated not only to maintain
the same accuracy as that of FL without any encryption but
to also enhance robustness against an attack called Attention
Privacy Leakage (APRIL) [6], which aims to restore the
visual information of training images from updated local-
model information.

II. RELATED WORK

A. Federated Learning

Before discussing the proposed method, we summarize the
general procedure of FL.

i) A server provider distributes an initial global
model to all clients.

ii) Each client updates the global model with their
training data.

iii) Each client sends the updated model to the
server.

iv) The server provider integrates the model infor-
mation received from all clients and updates the
global model.

v) The server provider sends the updated global
model to all clients.

vi) Repeat ii) to v) multiple times.

FedAvg (Federated Averaging) [3] and FedSGD (Federated
Stochastic Gradient Descent) [3] are typical methods for
updating global models. In FedAvg, each client computes the
gradient of an image and updates the local model with the
gradient. After that, the client sends the parameters of the local
model to the server. The server integrates the model parameters
from clients to update the global model. In FedSGD, the client
computes gradients from an image and sends them to the
server. The server updates the model based on the gradients
from each client. The proposed method can be adapted to both
methods.
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Fig. 1. Overview of ViT

B. Vision Transformer

ViT is mainly used for image classification tasks and is
known to have high classification performance [7]. As shown
in Figure 1, it consists of three components: embedding layer,
transformer encoder, and MLP (Multi-Layer Perceptron) Head.
In this paper, we focus on the embedding layer, which is a
layer for converting an image into a feature vector.

An input image x ∈ RH×W×C is first divided into patches
with a size of P×P where H , W , and C are the height, width,
and number of channels of the image. The number of patches
N is given as N = (W/P ) × (H/P ) as an integer. After
that, each patch is flattened as xi

p = [xi
p(1), x

i
p(2), ..., x

i
p(L)],

where L = P 2C. Finally, a sequence of embedded patches is
given as

Z0 = [xclass;x
1
pEpat; · · ·xi

pEpat; · · ·xN
p Epat] + Epos (1)

where,

Epos =
((

e0pos
)T · · ·

(
eipos

)T · · ·
(
eNpos

)T)T
,

xclass ∈ RD, xi
p ∈ RL, eipps ∈ RD,

E ∈ RL×D, Epos ∈ R(N+1)×D.

xclass is the classification token, Epat is the embedding (patch
embedding) to linearly map each patch to dimensions D, Epos

is the embedding (position embedding) that gives position
information to patches in the image, e0pos is the information of
the classification token, and eipos, i = 1, ..., N , is the position
information of each patch.

III. PROPOSED METHOD

A. Overview

The proposed method aims to prevent the visual information
of plain training images from being restored from model
parameters sent from each client to the server. Figure 2 shows
the framework of the method, where we assume that ViT is
used and a secret key for encryption is shared with all clients.
The procedure of the method is summarized below.

1⃝ A server provider distributes an initial global
model to all clients.

Fig. 2. Framework of proposed method

2⃝ Each client updates the global model with their
training data.

3⃝ Each client encrypts the parameters of the up-
dated model with a common key and sends it to
the server.

4⃝ The server provider integrates the model infor-
mation received from clients and updates the
global model in the encrypted domain.

5⃝ The server provider sends the updated global
model to all clients.

6⃝ Each client decrypts the global model with a
common key.

7⃝ Repeat 2⃝ to 6⃝ multiple times.
In this framework, a malicious external third party and cloud
provider (untrusted) have no secret key, so they cannot restore
training data from updated model information sent from
clients. The main contribution of this paper is to propose
a method that allows us to update a global model in the
encrypted domain for the first time.

B. Model Encryption

Model encryption is carried out in 3⃝. In the method, patch
embedding Epat and position embedding Epos in Eq.(1) are
encrypted by using random matrices, respectively.

1) Patch Embedding Encryption: The following transfor-
mation matrix Ea is used to encrypt patch embedding Epat.

Ea =


k(1,1) k(1,2) · · · k(1,L)

k(2,1) k(2,2) · · · k(2,L)

...
... k(i,j)

...
k(L,1) k(L,2) · · · k(L,L)

 , (2)

where

Ea ∈ RL×L, detEa ̸= 0,

k(i, j) ∈ R, i, j ∈ {1, ..., L}.



Note that the element values of Ea are randomly decided, but
Ea has to have an inverse matrix.
Then, by multiplying Epat by Ea, an encrypted patch embed-
ding Êpat is given as

Êpat = EaEpat. (3)

2) Position Embedding Encryption: Position Embedding
Epos is encrypted as below.

1 Generate a random integer vector with a length
of N as

lt = [le(1), le(2), ..., le(i), ..., le(N)], (4)

where

le(i) ∈ {1, 2, ..., N},
le(i) ̸= le(j) if i ̸= j,

i, j ∈ {1, 2, ..., N}.

2 Calculate m(i,j) as

m(i,j) =

{
1 (j = le(i))

0 (j ̸= le(i)).
(5)

3 Define a random matrix as

Eb =


1 0 0 · · · 0
0 m(1,1) m(1,2) · · · m(1,N)

0 m(2,1) m(2,2) · · · m(2,N)

...
...

...
. . .

...
0 m(N,1) m(N,2) · · · m(N,N)


(6)

where

Eb ∈ R(N+1)×(N+1).

.
4 Transform Epos to Êpos as

Êpos = EbEpos. (7)

C. Global Model Update
The cloud server updates the global model by using the

model information received from each client.
For example, when using FedSGD, a global model is updated
below.

Let M be the number of clients, W (t) be the parameters
of the global model after t updates, θ(t)i be the model update
information (gradients) computed by client i and τ be the
learning rate. In this case, the global model is updated as
follows;

W (t+1) = W (t) − τ
1

M

M∑
i=1

θ
(t)
i . (8)

Since the model is updated independently in each layer, model
parameters in patch embedding and position embedding can
be updated from Eq.(8) as

W
(t+1)
pat = W

(t)
pat − τ

1

M

M∑
i=1

E
(t)
pat,i , (9)

W (t+1)
pos = W (t)

pos − τ
1

M

M∑
i=1

E
(t)
pos,i . (10)

E
(t)
pat,i and E

(t)
pos,i are the parameters of patch and position

embeddings updated by client i.
According to Eqs.(3) and (9), the parameters of patch

embedding are updated as

Ŵ
(t+1)
pat = Ŵ

(t)
pat − τ

1

M

M∑
i=1

Ê
(t)
pat,i

= Ea

(
W

(t)
pat − τ

1

M

M∑
i=1

E
(t)
pat,i

)
= EaW

(t+1)
pat . (11)

According to Eqs.(7) and (10), the parameters of position
embedding are updated as

Ŵ (t+1)
pos = Ŵ (t)

pos − τ
1

M

M∑
i=1

Ê
(t)
pos,i

= Eb

(
W (t)

pos − τ
1

M

M∑
i=1

E
(t)
pos,i

)
= EbW

(t+1)
pos . (12)

Eqs.(9) and (10) show that the global model on the cloud
server can be updated in the encrypted domain.

D. Model Decryption

An encrypted global model is decrypted by each client as
shown in 6⃝.

To decrypt patch embedding, Ŵ (t+1)
pat is multiplied by the

inverse of matrix Ea used for model encryption as

E−1
a Ŵ

(t+1)
pat = E−1

a EaW
(t+1)
pat = W

(t+1)
pat . (13)

In contrast, to decrypt position embedding, Ŵ (t+1)
pos is multi-

plied by the inverse of matrix Eb used for model encryption
as

E−1
b Ŵ (t+1)

pos = E−1
b EbW

(t+1)
pos = W (t+1)

pos (14)

From the above equations, we see that the updated parameters
of the unencrypted model can be obtained from the updated
parameters of the encrypted model. Accordingly, the proposed
method is verified to obtain the same parameters as those of
models trained without any encryption.

IV. EXPERIMENT RESULTS

A virtual server and five clients were set up on a single
machine to verify the effectiveness of the proposed FL. All
experiments were carried on an open source framework called
Flower [13], and FedSGD [3] was used as an aggregation
algorithm. The CIFAR10 dataset, which consists of 50,000
training and 10,000 test color images with a seize of 32 ×
32, was also used to fine-tune the ViT model pre-trained with
Image-Net. In experiments, each client was given randomly
selected 10,000 images as training data without duplicates,



where images were resized from 32 × 32 × 3 to 224 × 224
× 3 to fit the size of images to that of ViT. We evaluated the
classification accuracy by inputting 10,000 test images to the
final global model. In the setting of ViT, the patch size P in
patch embedding was set to 16, the number of split patches in
an input image was N = 196, and the dimensionality of output
feature vectors was D = 384.

A. Classification Performance

In an image classification task, we verified the model perfor-
mance of the proposed method in terms of image classification
accuracy, compared with a standard FL method without any
encryption.

Table 1 shows the comparison between the proposed method
(encrypted) and the standard one (plain). From the table, the
method was verified to maintain the same accuracy as the
standard one. Accordingly, the proposed method did not cause
any performance degradation even when using encryption.

TABLE I
CLASSIFICATION ACCURACY (P = 16, N = 196,M = 5)

w/o Encryption w/ Encryption (proposed)
accuracy (%) 89.77 89.77

B. Evaluation of Robustness against Restoration Attack

To verify the effectiveness of the proposed method in terms
of enhancing security, a visual information restoration attack
was performed on the model information sent from each client.
Attention privacy leakage attack (APRIL) [6], which is a
method proposed for ViT and is known to restore the original
image with high accuracy, was used as an attack method in
the experiment. It was pointed out that the parameters of
FL learned under the use of ViT have privacy vulnerability,
and a method for analytically restoring images from model
information was proposed in [6].

(a)original image (b)without encrypted (c)proposed
Fig. 3. Result of images restored from model parameter with APRIL

Figure 3 shows the results of the experiment. (a) is the
original image, and (b) is the image reconstructed from
model information (gradients) by APRIL attack in FL without
any encryption. From the result, the visual information was
confirmed to be restored. In contrast, (c) is the image restored
from the model information protected by the proposed method.
When applying the proposed method, the visual information
was not restored by using APRIL.

V. CONCLUSION

In this paper, we proposed a novel framework of FL based
on the embedded structure of ViT for enhancing the security
of FL. In the proposed method, the model information shared
between the cloud server and each client is encrypted with a
secret key that the cloud provider does not know, and a global
model is updated in the encrypted domain. In the experiments,
the effectiveness of the proposed was confirmed in terms of
image classification accuracy and robustness against an image
restoration attack called APRIL.
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