
Dynamically Optimize Multicast Tree Structure

Ming Zeng, Hongliang Yu, Feng Yang, Weimin Zheng
Department of Computer Science, Tsinghua University, Beijing China

Abstract

Live-streaming applications based on overlay
multicast have become very popular recently. There
have been many studies on optimizing the overlay
construction and improving multicast performance.
Most of these studies focused on building period of
overlay network or multicast tree. It is not flexible in
the heterogeneous and variable Internet environment.
In this paper, we present DOMT, an overlay multicast
protocol in which the multicast tree can be optimized
dynamically. In DOMT, high capability peers get
better position in the tree and more peers get near
peers as their parents. Most of the previous protocols
didn’t consider dynamic optimization because its bad
impact to stability. In DOMT, we design some
mechanisms to avoid the bad impact. The
experimental results show that the optimization can
decrease the height of multicast tree and shorten the
average source-to-end delay. It also proves that the
bad impact made by the optimization is acceptable.

Keywords: Live Streaming; Overlay Multicast;
Dynamic Optimization; Gossip

1. Introduction

With the improvement of Internet, multimedia
services have become very popular. Live stream is an
important kind of multimedia services. For Live
stream applications, IP multicast [1] is the perfect

solution. However, it has not been widely deployed
for some practical reasons. Application Layer
Multicast, which is also called Overlay Multicast [2],
is a good substitution of IP multicast. How to build
an efficient and scalable overlay multicast
construction has becomes a hot research topic.

There are many problems to be solved in a
practical overlay multicast system, such as large
source-to-end delay, waste of network bandwidth,
churn of the overlay. These problems decrease the
usability of the live steam applications based on
overlay multicast. In order to solve these problems,
there have been many studies on how to optimize the
overlay multicast. The impact of Heterogeneous
Bandwidth [3] is researched for improving the
overlay multicast schemes. Locality aware strategies
[4] are also used in many optimization schemes, such
as AnySee [5]. In the overlay multicast scheme, the
tree structure is often build for delivering data. Live
stream applications have high play continuity
demands, but the peers in the multicast tree can
easily crash or leave the system and impact their
descendent peers. It’s the most important challenge
for Tree-based multicast schemes.

There have been some studies on the impact of
heterogeneous bandwidth constraints on Multicast
Protocols. Many practical multicast protocol and
system have considered it when the overlay multicast
is established. Actually, outgoing bandwidth
capabilities of peers in the overlay can’t be known
precisely when the peers first join the overlay.
Therefore, a peer can’t have an appropriate position

when it just joins the overlay.
In this paper, we design DOMT (Dynamically

Optimize Multicast Tree), a tree-based overlay
multicast protocol with high reliability in the
dynamic environment. In DOMT protocol, we
propose a dynamic optimization scheme to reduce
source-to-end delay and the waste of physical
network bandwidth.

We design the dynamic optimization algorithm
mainly for two objectives. First, reduce the average
hops in the overlay network. Second, let more peers
have better parent in the tree that is near the child
peer in the physical network. It can reduce the
average source-to-end delay and the source-to-end
delay. It can also save the physical network
bandwidth resource because more data packets are
transferred between near peers in physical network.
There is another good result of optimization. The
system will be less influenced when a part of
physical network crash or can’t connect with other
parts because more peers rely on near peers in the
physical network. Dynamic optimization has bad
impact to the stability of the multicast service. For
solving this problem, we design some mechanisms
to alter multicast tree without impact many peers.
The experimental results show that the impact made
by dynamic optimization is much smaller than the
peers leaving and joining.

The rest of this paper is organized as follows.
Section 2 discusses the works related to ours.
Section 3 describes the design of DOMT protocol.
Section 4 presents the experimental results. At last,
we conclude our work and outline our future work.

2. Related Works

There have been significant studies on overlay
multicast these years. Many overlay multicast
protocols and systems employ the tree structure
because it’s simple and efficient. There are two kinds

of tree structure, single tree and multiple tree. There
are many single tree based protocols such as SpreadIt
[6], NICE [7] and ZigZag [8]. And Splitstream [9] is
a multiple tree protocol. Constructing and
maintaining an efficient multicast tree among the
overlay peers is the key issue for tree-based protocols.
The internal peers in multicast tree often leave or
crash in the highly dynamic environment. The peers
leaving have impact to their descendant peers.
Therefore, many algorithms are devised to repair
multicast tree [10]. But the tree-based overlay
multicast systems is still suffering from this. Because
of this problem, some protocols eliminate trees from
overlay multicast, such as Chainsaw [11]. However,
recent studies, such as AnySee, prove that tree
structure is effective and efficient in practice.

Gossip algorithms are good for message
dissemination in p2p systems [12]. The random
choice of gossip targets achieves resilience to
random failures. Therefore, Gossip algorithms fit
dynamic environment such as Internet. However,
gossip algorithms can’t be used as media data
delivery protocol in live streaming applications,
because of the significant redundancy. The DONet
[13] protocol has employed a gossip protocol for
membership management. In DOMT protocol, we
also employ a gossip protocol for membership
management. But we do not eliminate tree-structure.
Furthermore, we use the gossip protocol to maintain
and optimize the multicast tree.

3. Design and Optimization of DOMT

The running of DOMT can be simply
described as follows. First, a reliable gossip-based
overlay is constructed. Second, multicast tree is
established based on the overlay. Third, when the
multicast system is running normally, the
optimization alters the multicast tree. At the same

time, the Buffer manager guarantees the play
continuity during optimization process. The locality
awareness policy is used both when the multicast
tree is build and optimized.

3.1. Gossip-based Overlay Network

 In DOMT, when a peer want to join the overlay
multicast system, it joins a Gossip-based overlay
network first. The overlay is maintained by a
gossip-based membership protocol SCAMP [14]. In
SCAMP, every peer establishes partner relation
with some other peers randomly. Each peer
periodically send heartbeat message to its partners.
In DOMT, the partners could be the parent of the
peer or help it upgrade or degrade in the multicast
tree.

Gossip-based protocols have attractive scalability
and reliability properties. We use the Gossip-based
protocol to maintain an overlay network, and build
multicast tree on it. This scheme is mainly for
enhance the stability of the overlay multicast. When
a peer crash or leave, its child peers can get new
parent from partner list quickly, without long time
pause.

3.2. Building Multicast Tree

After the peer joins the Gossip-based overlay

network, it joins the multicast tree as soon as
possible. When a peer first joins the multicast tree,
fast startup deserves prior attention. When the peer
gets the first partner, it asks the partner to join the
multicast tree as its child. If failed, it will continue
trying another partner until success. When several
partners can be select as parent, the high level ones
in the tree have priority. When a peer leaves the
multicast tree and its child peers lose parent
temporarily, the child peers will soon choose a new
parent from its partners. The high level ones have
priority. If no partner can be a parent, it will ask the

partners recommend a parent from their partner
lists.

In DOMT, a joining peer may not be laid in an
appropriate position in the multicast tree, because
the bandwidth capability of the peer is not clear.
And fast startup is the most important thing for a
new comer, not optimization of the multicast tree.
During the multicast system is running, the
bandwidth capabilities of the peers are clear. And
then DOMT can optimize the multicast tree based
on the peers’ Capability.

3.3. Multicast Tree Optimization

Before describing the optimization algorithm,

we give several definitions clearly. First, We define
a peer’s number of child peer as its contribution to
the system. Second, we define a peer’s level as
follows. The root of the multicast tree is level 0, the
highest level. Its child peers are level 1. The child
peers of a level n peer are level n+1. Third, We
define a peer is full when its bandwidth is not
enough to afford a new child. Then we define two
optimization operations, Degrade and Upgrade. The
optimization algorithm is mainly construct of the
two operations.

3.3.1. Degrade Operation. If a peer doesn’t have
contribution to the system and its level is high (for
example: level < 6), it may be degrade. From Figure
1 we can see that the peer H, which have no
contribution and at a high level, is degraded. The
degraded peer finds a lower level peer as its new
parent and leave the original parent.

3.3.2 Upgrade Operation. If a peer has much
contribution to the system, it may be upgrade.
From Figure 2 we can see that the peer C is
upgraded. The upgraded peer finds a high level
peer as its parent and leave the original parent.

Figure 1. Degrade operation in which H is degraded

Figure 2. Upgrade operation in which C is upgrade

3.3.3. Optimization Mechanism. A peer that is not
full can be the new parent of the optimized peer.
When a peer is degraded or upgraded, it finds a new
parent through its partners. The optimizing peer first
search suitable parent from its partners, If none of
the partners is available as a better parent. It asks its
partners to provide their partners' information, and
search suitable parent from them.

For avoiding ‘orphan child’, the optimization
mechanism is as follows. The upgraded or degraded
peer applies the new parent to take it as a child, but
do not leave the old parent immediately. If the new
parent accepts it as a child successfully, then it
leaves the old one.

3.3.4. Optimization Algorithm. The optimization
is executed periodically during the multicast system
running. It is executed from the top of multicast tree
to bottom like this.
(1) The root messages all of its child peers to start
optimization.
(2) When a peer receives optimization message, if
the peer is full and it has a child with no
contribution, the peer message this child to do the
degrade operation.
(3) At the same time, the peer selects a child with
the most contribution and messages this child to do
the upgrade operation. If there is no child whose
contribution more than 0, no child can be upgraded.
(4) After Sending degrade and upgrade messages,
the optimization process holds for T seconds (for

example: 10 seconds). And then, the peer message
all its child peers to start optimization.

The parameter T and the optimization frequency
can be setup depending on system scale and
network condition. Therefore, the dynamic
optimization is restrained. There are not many peer
altered in the tree during the optimization. Through
the optimization, the high contribution peers get
better parent in the tree. Therefore, the
source-to-end delay of the upgraded peers and their
child peers are shortened.

3.4. Buffer Management

The upgraded peers get new parents that have less
source-to-end delay than the old parents. For
ensuring play continuity, every peer has a buffer that
stores the media data. The video stream is divided
into segments of one-second length. When a peer
gets media data segments, it keeps the segments in
the buffer. After a segment is played, the buffer still
reserves the segment for 30 seconds. When a ‘slow’
child is upgraded to a ‘fast’ parent, it can also get the
segment from the buffer. Therefore, the upgraded
peers can play the video smoothly during the upgrade
operation.

3.5. Locality Awareness

The locality of the peers in the physical network

has impact to the efficiency of the multicast. We use

a very simple Locality aware strategy in DOMT
protocol. We can easily know which Autonomous
System a peer comes from by analyzing its IP
address. We define that the peers in the same
Autonomous System are near peers. When a peer
join the multicast tree or do upgrade and degrade
operation, it will first choose the near peers. This
policy let more data transfer between near peers,
reduce the usage of the physical network
bandwidth.

The locality aware strategy can also help the
system survive from network crash. Figure 3 plots
an example. The peer A, C, D, E belong to
Autonomous System 1. The peer B, F, G, H belong
to Autonomous System 2. If AS2 crash or its
connections to AS1 are break, the connections
between A, C, D, E and B, F, G, H are break. In the
left multicast tree, which has not been optimized,
peer C, D, E are temporarily impacted by AS2’s
problem because B is C’s parent peer. In the right
multicast tree, which has been optimized, C has
been upgraded to a better parent, peer A, which
belongs to the same Autonomous System with C.
Therefore, AS2’s problem can not impact C, D, E
again. The experimental result in Section 4.5 can
show the benefit exactly.

Figure 3. Optimization of the multicast tree in which the

peers belong to two different Autonomous Systems

4. Experimental Results

4.1. Simulation Methodology

We generate a network topology by GT-ITM [15]
and simulate DOMT protocol running on it. We
assume the peers’ bandwidth distribution as [16]
measured. And we assume that the live stream
service is CBR (constant Bit Rate) and the bit rate is
350Kbps. There are about 5000 peers running in the
system simultaneously at most. SCAMP protocol is
used to maintain the overlay network, and most of
the peers have more than 10 partners. The parameter
T equals to 10 seconds.

4.2. Stable Simulation

Firstly, we evaluate the optimization algorithm
in an ideal environment that there are 5000 peers
running in the system, and no peer leave or join
the system during the simulation period. Figure 4
plots the decrease of average source-to-end hop
on the overlay network caused by the
optimization. Figure 5 plots the decrease of
average source-to-end delay. The source-to-end
delay is not always equal to the delay of playing.
For example, an upgraded peer’s source-to-end
delay is shortened, but its delay of playing is not
changed. From Figure 4 and Figure 5, we can see
the effectiveness of the optimization scheme
clearly. The decrease of source-to-end hop and
delay means that the system spends less network
bandwidth and the peers get data from source
faster.

Figure 4. Average source-to-end hop V.S. Run time

Figure 5. Average source-to-end delay V.S. Run time

4.3. Dynamic Simulation

Different from the previous simulation, all of the
rest simulation is based on a dynamic environment.
We design the simulation process as follows. The
overlay network and multicast tree are build as we
described before, but the optimize do not start until
the system is stable. We assume that the number of
peers remains at about 5000 when we start to
optimize the system. The average lifetime of the
peers is 40 minutes, with exponential distribution.

Figure 6 and Figure 7 plots the optimization
result. The results show the difference between the
optimized system and not optimized system clearly.
In contrast to the result of static simulation, the
optimization algorithm got similar effectiveness,
however, the result is a little worse than before. The
experimental results prove that the optimization
algorithm is effective in a dynamic environment.

The simulation results of not optimized system
show that the average hop and delay are fluctuating
during the simulation period. The main reason is the
different property of the leaving peers. In the first 2
minutes, 12 high level peers (level < 4) leave the
system. In the second 2 minutes, the number is 22.
We can see that the optimized system is also
influenced by this factor. The optimization
efficiency in the first 2 minutes is much better than
in the second 2 minutes.

Figure 6. Average hop difference between the optimized

system and not optimized system

Figure 7. Average delay difference between the

optimized system and not optimized system

4.4. Bad Impact of Optimization

Dynamic optimization is a kind of churn of the

multicast tree, and has bad impact to some of the
peers. The experimental result showed in Figure 8 is
to prove the cost of dynamic optimization is
acceptable. We define that if a peer leaves the
multicast system, all of its descendent peers that get
media data from it, no matter directly or indirectly,
are temporarily impacted. When a peer is degraded
during the optimization, its source-to-end delay
increases. Therefore, the playing may be paused,
waiting for media data. We define that the degraded
nodes are temporarily impacted. When a peer is
upgraded during the optimization, its source-to-end
delay decreases. Here we have a mechanism to

ensure the play continuity. As we described before,
every peer has a buffer to keep played media data
for 30 seconds. In the experiment, we find that the
max decrease of source-to-end delay in the
optimization period is less than 15 seconds.
Therefore, the upgraded peer can ask the new parent
to send the needed data that is stored in the buffer.
So the upgraded peers are not temporarily impacted.

In Figure 8，One line shows the number of peers
temporarily impacted by the optimization. The other
line shows the number of peers temporarily
impacted by peers leaving and joining. From this
experiment, we can see that the bad impact of
optimization is much smaller than peer leaving and
joining. So, the cost of the optimization is
acceptable.

Figure 8. The total number of temporarily impacted

peers cause by peers leaving and optimization

4.5. Impact of Autonomous System Crash

Sometimes, some Autonomous System may
crash or have some problem. In the experiment，We
simulate this phenomenon and plot the impact. We
made one of the Autonomous Systems crash once at
different crash time. The Autonomous System has
about 750 peers running in the system. They leave
the system at the crash time. Although the multicast
tree can quickly recover from the crash, there are a
lot of temporarily impacted peers. Figure 9 plots the
number of temporarily impacted peers at different

crash time. We can see that the number of
temporarily impacted peers is decreased by
optimization. This result proved our viewpoint
described in Section 3.5.

Figure 9. The number of temporarily impacted peers

when an Autonomous System crashes

4.6. Optimization Frequency

Optimization frequency has impact to the

system. If the optimization is executed too
frequently, there will be too many peers impacted
by the optimization and the multicast service will be
unstable. If the optimization frequency is low, the
efficiency will be worse. It’s because the peers
leaving churn the multicast tree and interrupt the
optimization strategy. Figure 10 shows the
optimization results at different frequency. If the
optimization is executed every 4 or 8 minutes, the
results are worse.

Figure 10. Optimization Efficiency V.S. Frequency

5. Conclusions and Future Work

In this paper, we propose an overlay multicast
protocol, DOMT. We used a gossip-based protocol
to maintain the overlay network, improving the
reliability and scalability. And we design a dynamic
optimization algorithm to improve the performance
of DOMT. The Heterogeneous Bandwidth of the
peers and Locality aware strategy are considered in
DOMT, and help to optimize the multicast tree. The
experimental results show dynamic optimization
have much benefit to the multicast system, and will
not do harm to the stability of system if we have
good control mechanism.

This work proves that dynamic optimization is
helpful to optimize overlay multicast. However,
there are a lot of progresses we can do to this simple
algorithm. Although we have some mechanisms to
avoid bad impact to the system made by dynamic
alter the multicast tree, there might be some
unknown problem during dynamic optimization in
practice. We will have more experiments to discover
the problem, and solve them.

Acknowledgment

This work is supported by China National Natural

Science Foundation (NSFC) No. 60433040.

References

[1] R. Perlman, "Models for IP Multicast", in Proceedings

of IEEE International Conference on Networks, 2004.

[2] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee,

and S.Khuller, "Construction of an Efficient Overlay

Multicast Infrastructure for Real-Time Applications", in

Proceedings of IEEE INFOCOM, 2003.

[3] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and

H. Zhang, "The impact of heterogeneous bandwidth

constraints on dht-based multicast protocols", in

International Workshop on P2P Systems, 2005.

[4] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang,

"Location-Aware Topology Matching in P2P Systems", in

Proceedings of IEEE INFOCOM, 2004

[5] Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M. Ni, and

Dafu Deng "AnySee: Peer-to-Peer Live Streaming", in

Proceedings of IEEE INFOCOM, 2006

[6] H. Deshpande, M. Bawa, and H. Garcia-Molina,

"Streaming live media over peer-to-peer network",

Technical Report, Stanford University, 2001.

[7] S. Banerjee, B. Bhattacharjee, and C. Kommareddy,

"Scalable Application Layer Multicast", in Proceedings of

ACM SIGCOMM, 2002.

[8] D. Tran, K. Hua, and S. Sheu, "Zigzag: An Efficient

Peer-To-Peer Scheme for Media Streaming", in

Proceedings of IEEE INFOCOM, 2003.

[9] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A.

Rowstron, and A. Singh, "SplitStream: High-bandwidth

Content Distribution in Cooperative Environments", in

Proceedings of ACM SOSP, 2003.

[10] D. A. Tran, K. A. Hua, and T. T. Do, "A peer-to-peer

architecture for media streaming", in IEEE J. Select. Areas

in Comm., vol. 22, Jan.2004.

[11] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A.

E. Mohr, "Chainsaw: Eliminating Trees from Overlay

Multicast", In International Workshop on P2P Systems,

2005.

[12] P. Eugster, R. Guerraoui, A. M. Kermarrec, and L.

Massoulie, "From epidemics to distributed computing", in

IEEE Computer Magazine, 2004.

[13] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shing

Peter Yum, "Data-Driven Overlay Streaming: Design,

Implementation, and Experience", in Proceedings of IEEE

INFOCOM, 2005.

[14] A. J. Ganesh, A. M. Kermarrec, and L. Massoulie,

"Peer-to-peer membership management for gossip-based

protocols", IEEE Transactions on Computers, 52(2), Feb.

2003.

[15] E. Zegura, K. Calvert, and S. Bhattacharjee, "How to

Model an Internetwork", in Proceedings of IEEE

INFOCOM, 1996.

[16] S. Saroiu, P. K. gummadi, and S. D.Gribble , "A

Measurement Study of Peer-to-Peer File Sharing Systems",

In Proceedings of MMCN, 2002.

	Dynamically Optimize Multicast Tree Structure
	Abstract
	1. Introduction
	2. Related Works
	3. Design and Optimization of DOMT
	3.1. Gossip-based Overlay Network
	3.2. Building Multicast Tree
	3.3. Multicast Tree Optimization
	

	3.4. Buffer Management
	3.5. Locality Awareness
	4. Experimental Results
	4.1. Simulation Methodology
	
	4.2. Stable Simulation
	4.3. Dynamic Simulation
	4.4. Bad Impact of Optimization
	4.5. Impact of Autonomous System Crash
	4.6. Optimization Frequency

	5. Conclusions and Future Work
	Acknowledgment
	
	References

