
Integration of Existing Grid Tools in Sakai VRE

Xiaobo Yang, Xiao Dong Wang, Rob Allan
CCLRC e-Science Centre, Daresbury Laboratory, Warrington WA4 4AD, UK

{x.yang, x.d.wang, r.j.allan}@dl.ac.uk
Matthew Dovey

JISC Executive, 2nd Floor, Beacon House, Queens Road, Bristol BS8 1QU, UK
m.dovey@jisc.ac.uk

Mark Baker
ACET, University of Reading, Reading RG6 6AY, UK

mark.baker@computer.org
Rob Crouchley, Adrian Fish, Miguel Gonzalez, Ties van Ark

e-Social Science Centre of Excellence, Lancaster University, Lancaster LA1 4YT, UK
{r.crouchley, a.fish, m.gonzalez, t.vanark}@lancaster.ac.uk

Abstract

The integration of existing Grid tools into the Sakai VRE
(Virtual Research Environment) will be discussed in this pa-
per. In particular we describe the integration of the business
logic and JSR 168 compliant portlets through presentation-
oriented Web Services, via WSRP (Web Services for Re-
mote Portlets). A set of JSR 168 compliant portlets were
developed for the UK NGS (National Grid Service) Por-
tal and have been published using WSRP4J and consumed
within Sakai successfully, which proves re-use of portlets as
web components is a practical option. With the help of the
WSRP consumer tool, the Sakai VRE has been successfully
extended to support the JSR 168 specification.

1 Introduction

The Virtual Research Environment (VRE) concept has
recently been developed to help researchers manage in-
creasingly complex tasks to help assist in today’s research
activities. By integrating existing resources and tools, as
well as being flexible and adaptable to changing require-
ments, VREs can help research teams to collaborate with
more versatile and flexible access to resources. A set of
projects [8] has been funded by the JISC (The Joint Infor-
mation Systems Committee), which aim to engaging the re-
search community in building and deploying VREs. The
Sakai VRE Portal Demonstrator is such a project, which

aims to address the requirement for a single point of access
to a comprehensive set of Grid and collaboration services. It
is based on Sakai [10], a Collaboration and Learning Envi-
ronment (CLE) for higher education developed by the Uni-
versity of Michigan et al. Sakai provides a set of collabora-
tion tools such as chat and discussion forum. Although the
JSR 168 [9] Java portlet standard is currently not supported,
Sakai provides its own portal interface through which end-
users benefit from single sign-on (SSO), role-based autho-
risation support and much more. With the help of Sakai,
not only course material, but also real-time communica-
tions are now available through the Web, which helps im-
proves the efficiency of a Virtual Learning Environment
(VLE). With its innate merits, such as role-based authori-
sation and tool integration, Sakai was selected as the basis
of our VRE project, a joint project led by the University of
Lancaster, with other partners being the CCLRC e-Science
Centre (Daresbury Laboratory), the universities of Oxford
and Portsmouth (now Reading).

Whilst communication tools, such as a whiteboard and
a audio conferencing system have been developed as native
Sakai tools from scratch (Lancaster), a set of Grid tools that
were previously developed for the UK National Grid Ser-
vice (NGS) Portal [20] at Daresbury to provide users with
seamless access to multi-site computational and data re-
sources are now being deployed into Sakai. These tools are
JSR 168 compliant portlets deployed under a customised
version of StringBeans, an open-source portal framework
with MyProxy logon support (see [20] for details). Al-



though, to re-design these tools for Sakai to realise the
same functionality is always possible, it would be better if
these NGS portlets could be remotely maintained and re-
utilised directly. This is becoming even more important in
the e-Science community today as there are many indepen-
dent software tools and services coming out from different
projects.

During the portlet development, we realised that al-
though simple business logic can be included into portlets, a
clear separation of the business logic from the portlets will
benefit developers by providing a more convenient mainte-
nance and development path. An investigation have been
performed using the EJB technique [19]. Because there is
no presentation layer in EJB, Sakai tools can be developed
to present data provided by these EJBs. Whilst re-use of the
business logic is the preferred approach in today’s informa-
tion systems, a further investigation showed it was possible
to re-use even the presentation layer. This can be realised
through presentation-oriented Web Services, e.g. Web Ser-
vices for Remote Portlets [13], an OASIS specification.

In this paper, we will first discuss our recent survey on
service-oriented portals and VREs. Then we provide a de-
scription of our VRE architecture and outline the two ap-
proaches for integration of business logic and the presenta-
tion layer. Here we show examples of our work. We then
conclude and outline our future work.

2 Related work

As defined by Fraser [16], a ”VRE is best viewed as a
framework into which tools, services and resources can be
plugged.” According to this definition, the core function of
a VRE is the ability to integrate existing, emerging and even
future tools, services and resources. These services and re-
sources are normally distributed and heterogeneous, which
naturally suggests the idea of today’s service-oriented archi-
tecture (SOA). The most important aspect of a SOA is the
ability to compose new or re-factor existing software sys-
tems on top of loosely coupled services. Specifically within
a VRE, besides the integration of resources, real-time com-
munication tools are required to provide a more convenient
and efficient research environment for collaboration.

In the US, cyberinfrastructure is used rather than VRE,
but we consider the terms to be synonymous. The overall
aim is to provide a collaborative platform with integrated
services and resources that will benefit research communi-
ties. GEON [4], the Geosciences Network, is trying to build
up such a service-oriented architecture for research and ed-
ucation in Geosciences, by linking a number of US uni-
versities, federal agencies, industry and international part-
ners. GEON provides a set of services such as ”intelligent”
searching, semantic integration, and visualisation in Geo-
science. Similar projects are ongoing now to develop VREs

for different subjects such as CIPRES for Phylogenetics [3],
IBVRE for cancer and heart modelling [7] and BVREH for
humanities research [1].

Whist these projects are subject focused, VREs can be
built up for general purpose. With campus grids, for ex-
ample the UT Grid [11], the focus is on integrating di-
verse computational, visualisation, storage, data and instru-
ment/device resources of the universities or other research
institutions. The UT Grid aims to provide a comprehen-
sive platform to support all types of research and education.
Similar initiatives in the UK include CamGrid [2] and the
e-Minerals mini-Grid [15].

No matter how complex a VRE could be, web-based por-
tals are normally developed for communications between a
VRE and end-users. For example, the GEON Portal is used
to provide a convenient gateway to access various resources
within GEON. With the help of portals, a uniform single
entry-point is provided to end-users with all complex busi-
ness logic and persistence layer hidden. As a web compo-
nent, portlets provide a mechanism to generate markup frag-
ments for portals to construct whole web pages. Extended
from the Servlet specification, portlets brings functionality
such as customisation to end-users. Advanced portals are
now service oriented. The basic idea is to treat the portal
as a presentation layer to services and resources inside the
VRE. This brings web and Grid services together as they are
treated the same way. Typical resources include databases,
computational facilities, such as HPC in addition to campus
Grid, and even experimental facilities. The business logic
is now hidden inside the services, which normally advertise
an interface using XML-based such as WSDL documents
linked to a UDDI server. This makes it possible to construct
loosely coupled large-scale application systems, which are
platform- and language-independent.

GridPort v4.0 [6] is such a service-oriented toolkit de-
signed to enable rapid construction of highly functional
Grid portals. It simplifies the use of underlying Grid ser-
vices for both developers and end-users. Similar to the NGS
Portal, GridPort has a set of portlets which wrap the low-
level backend Grid and information services. Through these
portlets, customisable web interfaces are provided for eas-
ily making use of the underlying Grid technologies and ser-
vices such as displaying resource information, scheduling
jobs and transferring data. Some of the components in Grid-
Port are designed as web services, for example, GPIR (Grid
Portal Information Repository), is developed as a storage
and retrieval of Grid data with web service interfaces.

Within such a service-oriented application system, the
relationship among services is always data-centric. It is
up to a user’s client to render the data in an appropriate
way. Although this brings the maximum interoperability
for communications among services, it is possible to pro-
vide presentation-oriented Web Services. Such a service



returns markup fragments, for example, HTML markup,
to the client. This eliminates repetitive user interface re-
design work. Web portals can then construct web pages
using mark-up from either local or remote portlets.

3 Sakai Demonstrator VRE architecture

The Sakai VRE Demonstrator project is aiming to build-
ing up a general-purpose demonstrator using the Sakai
framework. To meet the requirement of sharing tools and
services among different projects, the Sakai VRE is de-
fined as a pluggable architecture, which makes it possible
to ”plug” existing, emerging and even future tools and ser-
vices into the framework.

Figure 1. Pluggable Sakai VRE architecture.

In Fig. 1, tools are shown directly plugged into the Sakai
framework to extend its capability. More importantly, a
tool can be developed to enable integration of external tools
that Sakai does not understand. Such an agile architecture
makes it possible to support standards additional to those
native to Sakai and also to adapt to future standards.

In the next section we give two examples: 1) extending
Sakai by developing a native tool; 2) extending Sakai to
support the JSR 168 portlet standard through WSRP.

4 Integration of Grid tools in Sakai

Portlets that can support tasks such as proxy credential
management, remote job submission and monitoring have
been developed in the Grid Technology Group at Daresbury
Laboratory. These portlets have been successfully deployed
in the UK National Grid Service Portal and cloned in other
portals, for example the IBVRE. In some sense, a VRE is
in fact built on top of Grid, which is a good candidate for
integration of distributed resources. Whilst not directly in-
tegrated with Sakai, there is still a need to access Grid tools

similar to those developed for the NGS Portal. In this sec-
tion, we will discuss two approaches to make use of our
existing work.

4.1 Integration of business logic

A practical approach in software development is to sep-
arate the business logic from the presentation. This also
applies to portlet development. The first approach we are
going to discuss is to re-use the business logic developed
for portlets. In this example, the business logic is imple-
mented as some Enterprise Java Beans (EJBs), see Fig. 2.
These EJBs can then be utilised to construct either portlets
or Sakai tools. In EJB 2.1, stateless session beans can also
be exposed as Web Services. This brings more flexibility
for other platforms to link to J2EE components, which is
important for construction of a SOA.

Figure 2. Integration of business logic.

A LDAP browser (see Fig. 3) for querying the NGS Grid
information service has been developed as a native Sakai
tool, which makes use of a LDAPQueryBean deployed in-
side JBoss, the chosen J2EE application server. A detailed
discussion of applying the J2EE/EJB technologies in por-
tal/portlet development for Grid users was described in [19].

Although, in this example EJBs are used, the business
logic represented in other formats, for example Web Ser-
vices and as Java Objects (POJOs) can follow the same pro-
cedure as all of them are data-centric. Web Services provide
a good opportunity to keep software components language-
and platform-independent. This is vital for constructing
large-scale complex service-based systems. For example,
after several years of development, many e-Science projects
now have their own special software components to solve
particular scientific problems in area such as Biology or



Figure 3. LDAP browser tool running in Sakai.

Chemistry. If these components are designed as, or con-
verted to Web Services, it would be easy to construct more
complex software systems, potentially supporting multi-
disciplinary collaborations.

4.2 Integration of both business logic and
user interface

4.2.1 JSR 168 portlets

Whilst exposing software components as Web Services
makes it possible for different software systems to commu-
nicate, user interfaces are normally required for those ser-
vices to interact with end-users. A portal with portlets pro-
vides a customisable user interface for presenting informa-
tion. The portlet specification, JSR 168 [9] was designed to
solve the interoperability issue between portlets and portlet
containers. This has been proven to work fairly well as we
have moved portlets developed using StringBeans to other
portal frameworks such as GridSphere.

To solve the interoperability issue between portal frame-
works, another portal standard, Web Services for Remote
Portlets (WSRP), was released by OASIS in 2003. As men-
tioned earlier, Sakai does not support JSR 168, therefore it
cannot consume JSR 168 portlets directly, rather only EJBs
or Web Services exposed as Sakai tools. Unfortunately,
this means that existing portlets could not easily be used in
Sakai. For this reason we took the decision to write a WSRP
consumer for Sakai. When equipped with this consumer
it is possible for Sakai to consume portlets published by
WSRP producers, which are Web Services. Furthermore,
Sakai has the ability to integrate existing web programs,
such as servlets and JSF (JavaServer Faces) applications. It
would even be practical to develop a WSRP consumer out-

side of Sakai. Then it can be integrated within Sakai with
only few modifications to meet the Sakai’s requirements.

4.2.2 Web Services for Remote Portlets

WSRP makes use of the web service concept to trans-
fer markups from a remote portlet container. Therefore it
benefits from aspects of traditional web services such as
platform- and language-independence. Producer and Con-
sumer are two important actors defined in the WSRP 1.0
specification [13]. While taking the responsibility for man-
aging portlets, a producer provides a set of web service
interfaces through which a consumer can then access its
portlets. There are altogether four interfaces defined, with
two of them optional.

Self Description: a required interface provides metadata
for a consumer to interact with each portlet the pro-
ducer hosts. It also gives information about the pro-
ducer’s capabilities.

Markup: a required interface for interacting with user re-
quests and generating markup fragments.

Registration: an optional interface to set up a relationship
between a producer and a consumer. A producer could
response to a consumer according to its capabilities.

Portlet Management: an optional interface used for both
managing the life-cycle of hosted portlets and portlets’
persistent state.

Figure 4. Integration of both business logic
and user interface.

As illustrated in Fig. 4, a WSRP producer is modelled
as a portlet container, while at the same time it publishes
its Web Service interfaces. A consumer sitting between
end-users and a producer acts as a broker. Such a con-
sumer is responsible for collecting end-user’s requests and
re-directing them to the corresponding producer. Once a
response is received, the consumer has to handle and ren-
der it for end-users. WSRP consumers can be attached to



other frameworks, for example portals and Sakai, as shown
in Fig. 4. Once these frameworks have the ability to handle
the markup provided by consumers, they are able to con-
sume remote portlets as easily as local ones.

4.2.3 WSRP sequence flow

As mentioned early, the WSRP 1.0 specification defines
Producer and Consumer to complete the remote portlet’s
publication and consumption. In this section, a description
of the sequence flow is given for better understanding of
how producer and consumer work together to complete the
portlet’s exposition and consumption.

Fig. 5 gives a simplified sequence flow of WSRP com-
munications. In this figure, communications such as
clonePortlet and deregister are omitted to make it more
readable. A detailed description of WSRP communications
between consumer and producer can be seen in the WSRP
1.0 Primer [12] and other introductory materials [17]. A
consumer first talks to the producer’s description interface
to retrieve metadata. This includes a description of the pro-
ducer and portlets it handles. During this stage, the con-
sumer may be asked to register itself. According to the con-
sumer’s capabilities, the producer may provide markup in
different formats. The consumer can then select the port-
let it wants to access. A unique portlet handle returned for
communications between producer and consumer so that
the portlet can be identified. The producer will first pro-
vide a default view of the portlet. The consumer needs to
add to the markup fragment so that a full (usually HTML)
web page can be constructed and rendered. The consumer
also needs to collect requests, such as form input, and re-
direct them to the producer. This is the most important task
of the consumer. Only when a user request is transferred
correctly, will a correct response be produced. As reported
in [21], many WSRP consumers could not handle such a re-
direction correctly which makes them currently unpractical.

4.2.4 WSRP consumer for Sakai

Although WSRP support is claimed by many portal frame-
works, it is currently far from being mature in open-source
portal frameworks, such as the eXo platform and Liferay,
due to the complexity of the specification [21]. Interoper-
ability between producers and consumers, especially from
different vendors, is still immature.

Based on the sequence flow shown in Fig. 5, a servlet-
based web application has been developed on top of a
ProxyPortlet, an Apache WSRP4J [14] reference consumer.
Currently portlet metadata, such as name and handler, is
published using the service description interface. The con-
sumer needs to know each producer’s interface to get the
metadata. As end-users are normally not interested in these

Figure 5. Simplified WSRP sequence flow.

Web Services interfaces, a more flexible approach is to pub-
lish the metadata to central UDDI registry where producers
together with their portlets can be registered [18]. A servlet
has been written to execute such a query, and to get a list
of remote portlets and related producer interface URLs that
may meet the end-users’ requirements.

This WSRP consumer has been ported to Sakai and acts
as an embedded tool. It has been successfully tested to ac-
cess the NGS Portal portlets published by a WSRP4J pro-
ducer. In order to execute Grid tasks, for example to submit
a job to a remote computing resource, a user first retrieves
his proxy credential using the ProxyManager portlet from
the UK Grid Support Centre MyProxy server. The creden-
tial is then stored in the session, which is shared by different
portlets within the same portlet application. Once a job is
finished, the user can transfer his data to another server us-
ing the FileTransfer portlet, see Fig. 6.

Referring to Fig. 1 - assume that the ”Sakai tool” below
the ”Sakai framework” is a WSRP consumer, then those ex-
ternal tools are remote portlets. Although not necessarily
JSR 168 portlets, JSR 168 is supported if the WSRP pro-
ducer makes use of a JSR 168 portlet container. For in-
stance WSRP4J, used in our example, makes use of Pluto’s
reference implementation of JSR 168. In this way the Sakai
framework has been extended to support JSR 168 through
WSRP.

As mentioned earlier, e-Science has already produced
a lot of software components in different domains. The
service-oriented architecture is becoming dominant for the
construction of large-scale systems, such as VLEs and
VREs. It is, therefore, recommended to adopt Web Services
at the minimum if possible, and may be move to Grid ser-
vices, such as WSRF (Web Services Resource Framework)
in the future. Furthermore, if these components are exposed



Figure 6. GridFTP-based file transfer portlet
running in Sakai through WSRP.

as JSR 168 portlets, developers will also benefit by not hav-
ing to re-designing the complex UIs, but use WSRP as it
matures – plug-and-play complex web portals will then be-
come real. Besides all these benefits, WSRP is in fact not
limited to re-usage of JSR 168 portlets, since it makes use
of normal Web Services, which are language independent.
An investigation into developing a Perl-based WSRP imple-
mentation has been performed by the Go-Geo! Project team
[5]. This opens up a promising approach for integrating ex-
isting applications.

4.2.5 Integration of Sakai in JSR 168 portal frame-
works

This article has so far talked about the integration of JSR
168 portlets into the Sakai framework, this is however only
one side of the scenario. On the other side, there is a need
to integrate Sakai tools in JSR 168 portal frameworks which
may already be in use by e-Science projects. Sakai has fo-
cused on collaboration and learning and it glues together a
number of collaborative tools which can be very useful in
constructing fully-functional web portals. The Sakai devel-
opment team has released a JSR 168 portlet by which the
Sakai data structure can be used through web service inter-
faces and their output rendered in portal frameworks like
uPortal and GridSphere. This gives an approach to inte-
grating Sakai collaboration tools and even workspace with
portals. Fig. 7 shows a user is editing his Sakai account
information within uPortal through the portlet mentioned
above.

Sakai 2.1 also provides a WSRP producer to expose
some of its tools. This gives yet another approach for in-

Figure 7. Sakai JSR 168 portlet running in-
side uPortal.

tegration of these tools in portal frameworks which have
working WSRP consumers. Using our Sakai WSRP con-
sumer it is also possible to expose tools hosted in one Sakai
instance in a separate Sakai instance.

5 Conclusions and future work

In this paper, re-use of existing Grid tools in the Sakai
VRE Demonstrator Project has been discussed. Besides the
traditional re-use of business logic, a presentation layer has
also been successfully integrated into Sakai. This has been
done using WSRP to consume remote JSR 168 compliant
portlets that were originally developed for the UK NGS Por-
tal. This approach eliminates the effort of re-designing user
interfaces for different projects, and makes re-use of the un-
derlying core services.

Our prototype work on integrating existing software
components through WSRP highlights a promising ap-
proach for today’s e-Science projects. If components can
be exposed as Web Services or JSR 168 portlets, they can
in the future be re-utilised without much effort. With the
help of the WSRP consumer tool, Sakai has effectively been
extended to support the JSR 168 specification.

Whilst portal frameworks are adopting WSRP, it is still
immature especially when considering producers and con-
sumers are from different vendors. WSRP also does not
solve all the issues; for example, in the WSRP 1.0 specifi-
cation, security is not touched upon, except by making use
of SSL/TLS or Web Services security mechanisms. Inter-
portlet communication is also not addressed. Also there is
issue with file upload/download function in a portlet, for ex-
ample the FileTransfer portlet shown in Fig. 6, since remote



portlets are no longer facing end-users directly. Some of
these issues are now under consideration in WSRP 2.0.

Our future work will include securing remote portlets us-
ing mechanisms such as Shibboleth, although this will prob-
ably require Shibboleth 2.0 to address the N-tier authentica-
tion/authorisation issues. More advanced registration inter-
faces may also be considered to provide customised user
interfaces for different clients. Further investigation is also
required to determine how mature it is to integrate Sakai in
JSR 168 portal frameworks.

Acknowledgements

We thank the anonymous reviewers for their insightful
comments helped to improve this paper. This work was un-
dertaken at the CCLRC e-Science Centre, Daresbury Lab-
oratory supported by UK JISC (The Joint Information Sys-
tem Committee).

References

[1] BVREH: Building a Virtual Research Environment for the
humanities. http://bvreh.humanities.ox.ac.uk/.

[2] CamGrid: Building a university-wide
grid across the University of Cambridge.
http://www.escience.cam.ac.uk/projects/camgrid/index.html.

[3] CIPRES: Cyberinfrastructure for phylogenetic research.
http://www.phylo.org/.

[4] GEON: The geosciences network.
http://www.geongrid.org/.

[5] Go-Geo! portlet work.
http://www.gogeo.ac.uk/geoPortal10/PortletInfo.html.

[6] GridPort. http://gridport.net/.
[7] Integrative Biology Project.

http://www.integrativebiology.ox.ac.uk/.
[8] JISC Virutal Research Environments Programme.

http://www.jisc.ac.uk/index.cfm?name=programme vre.
[9] JSR-168 Portlet Specification.

http://jcp.org/aboutJava/communityprocess/final/jsr168/
index.html.

[10] Sakai: Collaboration and learning environment for educa-
tion. http://sakaiproject.org/.

[11] UT Grid Project. http://utgrid.utexas.edu/.
[12] Web Services for Remote Portlets

1.0 Primer. http://www.oasis-
open.org/committees/download.php/10539/wsrp-primer-
1.0.html.

[13] WSRP Specification 1.0 by OASIS. http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-
wsrp-specication-1.0.pdf.

[14] WSRP4J. http://ws.apache.org/wsrp4j/.
[15] M. Dove, E. Artacho, T. White, R. Bruin, M. Tucker,

P. Murray-Rust, R. Allan, K. K. van Dam, W. Smith,
R. Tyer, I. Todorov, W. Emmerich, C. Chapman, S. Parker,
A. Marmier, V. Alexandrov, G. Lewis, S. Hasan, A. Than-
davan, K. Wright, C. Catlow, M. Blanchard, N. de Leeuw,

Z. Du, G. Price, J. Brodholt, and M. Alfredsson. The eM-
inerals project: Developing the concept of the virtual organ-
isation to support collaborative work on molecular-scale en-
vironmental simulations. In UK e-Science AHM 2005, avail-
able on CDROM, Nottingham, UK, September 2005.

[16] M. Fraser. Virtual Research Environments: Overview and
activity. Ariadne Magazine, 44, July 2005.

[17] P. Gupta. WSRP: Dynamic and real-time integration. Web
Services Journal, 5(8):10–19, August 2005.

[18] X. D. Wang, X. Yang, and R. Allan. Plug-and-play remote
portlet publishing. In GCE05: Portals Workshop, Seattle,
USA, November 2005.

[19] X. Yang, A. Akram, and R. Allan. Developing portal/portlets
using Enterprise JavaBeans for Grid users. In GCE05: Por-
tals Workshop, Seattle, USA, November 2005.

[20] X. Yang, D. Chohan, X. D. Wang, and R. Allan. A web
portal for the National Grid Service. In UK e-Science AHM
2005, available on CDROM, Nottingham, UK, September
2005.

[21] X. Yang, X. D. Wang, and R. Allan. Investigation of
WSRP support in selected open-source portal frameworks.
In GCE05: Portals Workshop, Seattle, USA, November
2005.


