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Abstract—Different neural network (NN) architectures have
different advantages. Convolutional neural networks (CNNs)
achieved enormous success in computer vision, while recurrent
neural networks (RNNs) gained popularity in speech recognition.
It is not known which type of NN architecture is the best fit
for classification of communication signals. In this work, we
compare the behavior of fully-connected NN (FC), CNN, RNN,
and bi-directional RNN (BiRNN) in a spectrum sensing task. The
four NN architectures are compared on their detection perfor-
mance, requirement of training data, computational complexity,
and memory requirement. Given abundant training data and
computational and memory resources, CNN, RNN, and BiRNN
are shown to achieve similar performance. The performance of
FC is worse than that of the other three types, except in the case
where computational complexity is stringently limited.

Index Terms—cognitive radio, spectrum sensing, neural net-
work

I. INTRODUCTION

A cognitive radio aims to exploit white space in exist-

ing licensed communication systems. Spectrum sensing, or

detection of the white space, is a key focus of research in

this field. Classic spectrum-sensing techniques, such as en-

ergy detection, matched-filter-based detection, cyclostationary-

feature detection, and covariance-matrix-based detection were

established decades ago. More advanced detection schemes

such as cooperative sensing were proposed to further improve

the performance by exploiting spatial, temporal and/or spectral

correlations. A review of conventional spectrum sensing tech-

niques can be found in [1]. More recently, machine learning

has been applied in spectrum sensing [2]. Our previous work

[3], [4] shows potential benefits of using artificial neural

networks (NNs) in spectrum sensing, and reviews relevant

literature.
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Andrew Gilman was supported by Massey University Research Fund.

In this work, we address the choice of NN architectures for

spectrum sensing. The two most well-studied NN architecture

types today are the convolutional neural network (CNN)

and the recurrent neural network (RNN). CNNs consist of

stacked shift-invariant local filters (kernels) and are particu-

larly effective in capturing spatially-local features arranged

hierarchically. An RNN uses recurrent connections that allows

it to extract and utilize empirical autocorrelations in sequential

data. Modern RNNs are equipped with gated operations and

are able to capture correlations across long intervals of time in

the input sequence. The NN architectures have different levels

of popularity in different tasks: Variants of CNN dominate

in computer vision, while RNNs are widely used in speech

recognition and natural language processing (NLP) .

Various examples of NN architecture comparison for spe-

cific applications can be found in the literature. In [5], [6],

CNN and RNN are compared on NLP tasks. The authors of [5]

report that bi-directional RNN (BiRNN) outperforms CNN in

relation classification, while in [6], CNN and RNN each show

advantages in different tasks/scenarios. Authors of both works

attribute their observations to the intuition that CNN puts more

emphasis on local features, while RNN is able to learn long-

term dependencies. In [7], CNN and RNN are compared on

environmental-sound-based scene classification. They found

that RNN is less effective on average, presumably because of

the lack of long-term correlations in the natural environmental

sound. In [8] and [9], CNN and RNN are trained to predict

stock price changes. Both works report CNN as the winner.

In [10], RNN is found to be superior than CNN in detecting

internet attacks based on payload data, and [11] finds that a

fully-connected NN (FC) performs comparably to an RNN in

a power grid identification task.

In spectrum sensing, a preference among the NN architec-

tures has not yet been established. Communication signals

have both, similarities to and differences from, the types of
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signals considered in typical applications of CNN and RNN.

Similar to images and speech signals, a communication signal

sampled in time consists of ordered and correlated samples.

However, it may lack some common characteristics present

in images and speech signals. Without assuming a specific

transmitted data sequence (for example, a known pilot signal)

or a specific channel-coding scheme, it is uncertain whether

the communication signal has strong long-term correlations,

or whether it contains strong local features, such as corners

and edges in images. Like many other applications, the choice

among NN architectures for spectrum sensing is not obvious

and requires empirical comparisons.

This work aims to provide a preliminary performance

comparison of CNN, RNN, BiRNN, and FC in spectrum

sensing. The communication signal simulation setup and the

performance metrics are explained in Section II. In Section

III, we compare the best performance of each of the NN

architecture types, and the computational complexity and

memory requirements to achieve this performance. In Section

IV, we compare performance of NN architectures under a com-

putational complexity constraint. We summarize and conclude

in Section V.

II. COMMUNICATION SIMULATION AND PERFORMANCE

METRICS

A. Simulation Setup

Simulation data generated with GNU Radio are used to train

and test the NNs. Consider the following spectrum sensing

task:

x =

{

s+ n , y = 1
n , y = 0

(1)

where the complex vector x is the sampled low-pass equivalent

of the received waveform in a sensing interval, and s and n are

the signal and noise components of x. x may either contain

the signal component s or not, reflected by the label y. The

received waveform is assumed to have been filtered by an ideal

bandpass filter, whose passband matches the primary signal’s

bandwidth exactly. Parameters of the simulation are listed in

Table I. The sampling rate is set beyond the Nyquist rate of

the band-limited x so that no information loss is incurred by

sampling. Equal numbers of busy (y = 1) and idle (y = 0)

examples are generated. The dataset is divided into three parts:

a training set containing 8E+06 examples, and validation and

test sets, each containing 1E+05 examples. We train different

types of NNs on the training set to predict label y from x,

after fine-tuning architecture and training hyperparameters on

a validation set and compare final performance on the test set.

B. Performance Metrics

As suggested in [12], besides the detection performance,

resource consumption such as computation and memory are

also important NN performance aspects. We evaluate each

NN’s performance on four characteristics: detection perfor-

mance, amount of training data required, forward-pass (in-

ference) computational complexity, and forward-pass memory

requirements.

TABLE I
COMMUNICATION SIGNAL SIMULATION PARAMETERS

Primary Modulation QPSK
Signal Pulse Shape root-raised-cosine (RRC) pulse

with roll-off factor 0.35
Source Data random, uncorrelated bits

Noise AWGN

SNR 3dB

Sampling Rate 10 times the symbol rate

Sensing Duration 111 samples

a) Detection Performance: The detection performance

is reflected by the detection probability, Pd, which is the

probability of correct decision conditional on ground truth

y = 1, and the false alarm probability, Pfa, which is the

probability of incorrect decision conditional on y = 0. In this

work, we fix Pfa at 1% by choosing the classifier’s threshold

(on the validation set), and evaluate the detection performance

using the false dismissal probability Pfd = 1− Pd.

b) Amount of Training Data: In the real world, training

data could be a precious resource, depending on the expense

of data collection and labeling. The amount of training data

could be limited, which may render NN models that require

huge training sets impractical. To examine the influence of

the training dataset size on performance, we train each NN

not only on the entire 8E+06 training set, but also on subsets

of size 1E+03 and 1E+05.

c) Computational Complexity: Computational complex-

ity is closely related to energy consumption and decision

latency, both of which are important for spectrum sensing.

The operation count, which is the number of floating point

operations (FLOPS) in one forward pass on a single input,

is used as a performance metric. We ignore the computation

cost associated with non-linear activation functions as it is

negligible in comparison to the number of FLOPS in the

linear operations. The operation counts of FC, CNN, RNN and

BiRNN are listed below. The symbols are defined in Table II.

N (FC)
op =

K
∑

k=1

(2Nk−1Nk) + 2NKNout (2)

N (CNN)
op =

∑

k∈Kconv

2Ck−1CkN
(kernel)
k Nk

+
∑

k∈Kpool

CkNk(N
(pool)
k − 1)

+
∑

k∈Kbn

2CkNk

+ 2CKNKNdense + 2NdenseNout

(3)

N (RNN)
op =L ·

K
∑

k=1

(8(Nk−1 +Nk)Nk + 4Nk)

+ 2NKNout

(4)



N (BiRNN)
op =2L ·

K
∑

k=1

(8(Nk−1 +Nk)Nk + 4Nk)

+ 4NKNout

(5)

TABLE II
NOTATION

Symbol Definition

K Number of hidden layers

Nk Layer width / feature vector length of the
k-th hidden layer

N0, Nout Input and output size

Ndense Size of the dense layer (CNN only)

N
(kernel)
k

Kernel size of the k-th hidden layer (CNN
only)

N
(pool)
k

Pooling factor in the k-th hidden layer (CNN
only)

Ck Layer depth / number of filters (output chan-
nels) in the k-th hidden layer (CNN only)

Kconv Set of indices of convolutional layers (CNN
only)

Kpool Set of indices of pooling layers (CNN only)

Kbn Set of indices of batch-normalization layers
(CNN only)

L Input sequence length (RNN only)

d) Memory Requirement: NN memory requirements de-

pend heavily on the specific implementation. We consider two

memory requirement metrics corresponding to two extreme

cases. The peak instantaneous memory requirement, Mpeak,

reflects the peak memory requirement of the most memory-

efficient implementation, which reallocates memory after each

operation and holds only necesary content in memory at each

moment. The total memory requirement, Mtotal, is the amount

of memory that would be rquired if no reallocation happens

and memory is pre-allocated for all parameters and interme-

diate states in advance. To avoid ambiguity, we assume that

operations such as addition of bias term, nonlinear activation,

and batch normalization are performed in place. We assume

maximum parallelism, so operations in the same layer are

executed in parallel. The unit of the memory metrics is the

size of a floating point variable. The expressions for Mpeak

and Mtotal for FC, CNN, RNN, and BiRNN are listed below.

M
(FC)
peak = max

k
Nk−1 ·Nk + 2Nk +Nk−1 (6)

M
(CNN)
peak =max

{

M (conv)
max ,M (bn)

max,M
(dense)

}

M (conv)
max = max

k∈Kconv

{Ck−1Nk−1 + CkNk

+ Ck(Ck−1N
(kernel)
k + 1)}

M (bn)
max = max

k∈Kbn

3CkNk

M (dense) =CKNKNdense + CKNK + 2Ndense

(7)

M
(RNN)
peak = max

k
4(Nk−1 +Nk)Nk +Nk−1 + 6Nk (8)

M
(BiRNN)
peak = 2M (RNN)

max (9)

M
(FC)
total =N0 +

(

K
∑

k=1

(Nk−1 ·Nk + 2Nk)

)

+ (NK ·Nout + 2Nout)

(10)

M
(CNN)
total = C0N0

+
∑

k∈Kconv

(

Ck(Ck−1N
(kernel)
k + 1) + CkNk

)

+
∑

k∈Kpool

(Ck−1Nk−1 + CkNk) +
∑

k∈Kbn

2CkNk

+ (CKNKNdense + 2Ndense) + (NdenseNout + 2Nout)
(11)

M
(RNN)
total =N0 +

∑

k

(4(Nk−1 +Nk)Nk + 10Nk)

+ (NKNout + 2Nout)

(12)

M
(BiRNN)
total =N0 + 2

∑

k

(4(Nk−1 +Nk)Nk + 10Nk)

+ (2NKNout + 2Nout)

(13)

III. COMPARISON OF OPTIMIZED NNS

As performance is multi-dimensional, ideally, the perfor-

mance of each NN architecture type should be characterized

by the Pareto frontier in the multi-dimensional space. To obtain

one point on the Pareto frontier requires solving a constrained

optimization problem, in which the training data size, com-

putational complexity and memory requirement are fixed, and

the architecture and learning hyperparameters are optimized to

maximize the detection probability. Due to limited time and

computational resources, instead of searching for the Pareto

frontier, we resolved to the following protocol: For each

of the four NN architecture types, the hyperparameters are

manually tuned to maximize the detection probability on three

training set sizes (1E+03, 1E+05, and 8E+06). Complexity

and memory were ignored during this tuning process, but are

compared on the best set of hyperparameters.

In tuning the hyperparameters, the following constraints

are imposed. For CNN, we consider a type of architecture

adopted from VGGNet [13]. The CNN consists of multiple

homogeneous blocks in a sequence, followed by a single dense

layer. Each block consists of two convolutional layers (kernel

size=3, stride=1, padding=‘same’ mode, ReLU activations)

alternating with batch normalization layers and followed by

a max-pooling layer with a small pooling factor (2-4). Both

convolutional layers within a block contain the same number

of channels and the number of channels increases by a factor

of 2 in each consecutive block. The output of the last block

is flattened into a vector and passed to a dense layer of the

same size. The output of the dense layer is fed to the output

layer. For RNN, we confine our search within the long-short-

term-memory (LSTM) architecture. Because VGG and LSTM

are state-of-the-art models in the CNN and RNN families

respectively, we believe that these constraints do not cause

much performance loss in detection probability.



We manually optimized the following hyperparameters to

the best of our ability: the number of hidden layers (FC

and RNNs only), the size of hidden layers (FC and RNNs

only), number of blocks (CNN only), the pooling factor (CNN

only), the learning rate, and the batch size (see Table III for

details). Adam optimizer with learning-rate scheduling and

early termination are used for all training. The learning rate

is reduced by a factor of 10 each time when the validation

loss sees no notable decrease in 10 consecutive epochs. Early

termination is triggered if the validation loss sees no notable

decrease in 15 consecutive epochs. Due to the stochastic nature

of initialization and training, we repeat training on the two

smaller training sets 10 times, and 5 times on the largest

training set. The maximum and median detection probabilities

are then computed.

TABLE III
TUNED HYPER-PARAMETERS

Arch.
Type

Training
Data

Size

Learning
Rate

Batch
Size

Model Specification

FC 1E+03 1e-3 20 4 hidden layers, each of
size 64

1E+05 5e-4 1000 Same as above
8E+06 5e-4 1000 Same as above

CNN 1E+03 1e-3 1000 2 blocks with 32, 64 filters
respectively. Pooling fac-
tor is 4.

1E+05 5e-4 1000 Same as above
8E+06 5e-4 1000 3 blocks with 16, 32, 64

filters respectively. Pooling
factor is 2.

RNN 1E+03 1e-4 50 1 hidden layer of size 64
1E+05 5e-4 100 1 hidden layer of size 128
8E+06 5e-4 100 Same as above

BiRNN 1E+03 5e-4 50 1 hidden layer of size 64
1E+05 5e-4 1000 Same as above
8E+06 5e-4 1000 1 hidden layer of size 128

The false dismissal probabilities of the NNs with tuned

hyperparameters are compared in Fig. 1. The FC gives the

worst performances among the four architecture types across

all of the training set sizes. The FCs trained on the two smaller

training sets perform either worse than or similar to the energy

detection, and have no practical value considering that the

energy detection is much simpler and requires no training.

Unlike CNN, RNN or BiRNN, the FC does not observe the

inherent order and adjacency of samples in the input, which

makes it much harder to learn local patterns, no matter how

wide/deep the FC is. The performances of the CNN, RNN

and BiRNN are notably better than that of the FC, and can be

considerably better than energy detection when the training

set is large enough. The false dismissal probabilities of the

CNN, RNN and BiRNN trained on the size-8E+06 training

set are lower than that of the energy detection by at least

a factor of 8. The performance gaps between CNN, RNN,

and BiRNN are less defined, and not consistent across the

training set sizes. Considering that our hyperparameter tuning

is relatively coarse, no distinction can be comfirmed between

CNN, RNN and BiRNN’s abilities in this detection task.
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Fig. 1. False dismissal probabilities of the optimized NNs tested on
SNR=3dB, QPSK test data

The operation counts and memory requirements of the

tuned NNs are shown in Figs. 2 and 3. These metrics were

not taken into consideration in the hyperparameter tuning

process, so the tuned NNs could be highly inefficient in

computation and memory. It is likely that by carefully chang-

ing the hyperparameters, the operation counts and memory

requirements shown in Figs. 2 and 3 could be somewhat

reduced without impairing detection performance. Despite

these limitations, some qualitative obervations can be made

from the figures. First, in Fig. 2, the operation count of the FC

is lower than that of the other NNs by 2 orders of magnitude

on average. While the tuned FC gives the worst detection

performance in Fig. 1, it also consumes the least amount of

computational resources. Inspired by this observation, further

comparisons between the FC and the other NN architecture

types are conducted in Section IV. Second, while the RNNs

and BiRNNs require more computation than the CNNs (Fig.2),

their memory requirements are notably lower than that of

the CNNs (Fig. 3). Considering that the memory for storing

the parameters constitutes most of the total memory, this

observation likely implies that the RNN has a higher level

of parameter sharing than the CNN, which would potentially

make the RNN more memory efficient. On the 1E+05 training

set, the RNN requires more computation and memory than the

BiRNN. This is because the RNN tuned on the 1E+05 training

set has a larger layer size than the BiRNN tuned on the same

training set.

IV. COMPARISON UNDER A COMPUTATION CONSTRAINT

In the previous section, we compared the NNs whose

hyperparameters were tuned with no constraint on their com-

putational complexity or memory. The comparison shows a

large gap between the computational complexity of the FC

and that of the other NNs. While the FC clearly has the

disadvantage that it was not able to approach the same level
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of performance of the other NNs in the hyperparameter tuning

process, it is unclear how its performance compares to CNN,

RNN and BiRNN with the same computational complexity.

We scaled down the CNN, RNN and BiRNN used in the

previous section so that their operation counts roughly match

that of the FC. The modified NNs are described in Table IV.

The four NNs with roughly the same level of computational

complexity are trained on the three training sets, and their

false dismissal probabilities are plotted in Fig. 4. The CNN,

RNN, and BiRNN perform worse through the modification,

particularly on the largest training set, where they all perform

worse than the FC.

Because of the limitations of our parameter tuning process,

the NNs which gave the performances in Fig. 4 are not

necessarily the most computationally efficient in the CNN,

RNN and BiRNN families. In particular, the constraints we

imposed on the CNN and RNN architectures in Section III

could have limited their computational efficiency. It is highly

possible that there exist some CNN, RNN and BiRNN which

can achieve lower false dismissal probability without violating

the computation constraint. However, the observation in Fig. 4

suggests that unlike in the general case where the FC is clearly

worse than the other architecture types, there is a possibility

that an FC can achieve a performance comparable to that of the

more advanced architectures when the computational resources

are stringently limited.

TABLE IV
HYPER-PARAMETERS MODIFIED TO MEET THE COMPUTATIONAL

COMPLEXITY CONSTRAINT

Arch.

Type

Model Specification

FC 4 hidden layers, each of size 64

CNN 1 CONV-CONV-POOL block with 4 filters. Pooling
factor is 4.

RNN 1 hidden layer of size 6

BiRNN 1 hidden layer of size 4
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Fig. 4. False dismissal probability of NNs under computational complexity
constraint

V. CONCLUSION

In this work, we compared detection performance, computa-

tional complexity, and memory requirements of four different

types of NN architectures in a spectrum sensing task. We

found that with abundant computation and memory resources,

CNN, RNN and BiRNN are able to achieve a performance

significantly better than that of the energy detector. CNN, RNN

and BiRNN architectures resulted in very similar detection

performance. The RNN/BiRNN possibly have an advantage

over the CNN in terms of memory efficiency. Experimental

results also show that FC should not be used in spectrum

sensing unless in the special case where the computational



resource is stringently limited. One factor not considered in

this work is the correlation in the data carried by the signal,

which commonly exists because of the error correction coding

and correlations in the source content. The effect of these

correlations on detection performance of the NN architectures

is a potential topic of future research.
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