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Abstract—In this work we focus on evaluating the effectiveness
of two non-Gaussian operations, photon subtraction (PS) and
quantum scissors (QS) in terms of Continuous Variable (CV)-
Quantum Key Distribution (QKD) over lossy channels. Each
operation is analysed in two scenarios, one with the operation ap-
plied transmitter-side to a Two-Mode Squeezed Vacuum (TMSV)
state and a second with the operation applied to the TMSV
state receiver-side. We numerically evaluate the entanglement
and calculate the QKD key rates produced in all four possible
scenarios. Our results show that for a fixed value of initial
squeezing in the TMSV state, the states produced by the non-
Gaussian operations are more robust to loss, being capable of
generating higher key rates for a given loss. More specifically, we
find that for values of initial TMSV squeezing below 1.5dB the
highest key rates are obtained by means of transmitter-QS. On
the other hand, for squeezing above 1.5dB we find that receiver-
PS produces higher key rates. Our results will be important for
future CV-QKD implementations over free-space channels, such
as the Earth-satellite channel.

I. INTRODUCTION

There is great interest in the use of continuous variable (CV)
photonic states for quantum information processing [1], [2]. In
many CV-based protocols, CV entanglement plays a pivotal
role [3]. However, perfectly entangled bipartite CV states,
represented by two-mode squeezed vacuum (TMSV) states
with infinite squeezing are non-physical. Nonetheless, finite-
squeezed TMSV states (producing non-perfectly correlated
measurement outcomes) are still valuable resources for CV
quantum communication protocols, and can be readily created
experimentally [4].

In current experiments TMSV squeezing up to 16dB is
achievable, albeit difficult to produce [5], [6]. However, states
produced up to 5dB are easily achievable in the laboratory [7],
[8]. Besides practical limitations in squeezing, imperfections in
the devices used to create the TMSV states and the unavoid-
able interaction of the state with the environment (photonic
loss) both introduce unwanted noise, eventually lowering the
amount of entanglement that can be utilised. To correct for
these effects and to increase the amount of entanglement
shared between communicating parties we require some form
of entanglement distillation [9]. Such distillation can be con-
sidered a special form of quantum error correction [10].

However, when dealing with CV quantum states certain
restrictions need to be considered when we investigate distil-
lation. A significant result in this regard is the no-go theorem

for Gaussian entanglement distillation [11], which states that
it is impossible to distil Gaussian quantum states by means of
Gaussian operations and Gaussian measurements only. This
is of great importance as many of the errors that arise in
naturally occurring channels are Gaussian [12]. To remedy
this situation, non-Gaussian operations are often turned to as
a means of delivering entanglement distillation within quantum
information protocols [13].

For Gaussian states, CV quantum key distribution (QKD)
[14] - arguably the most important quantum information
protocol - has been well investigated both experimentally
and theoretically [15]. Nonetheless, CV-QKD delivered by
means of non-Gaussian states has shown great potential,
largely due to the fact that for a given TMSV state non-
Gaussian operations acting on it can probabilistically increase
the entanglement [16], [17]. Previous works along these lines
have analysed the effectiveness of non-Gaussian operations
such as photon subtraction (PS) in increasing entanglement
[13], [16], [18]. In addition, the subsequent improvement in the
key rates of QKD schemes via PS has been investigated, e.g.
[19], [20]. Another non-Gaussian operation known as quantum
scissors (QS) [21] has also surfaced as a prominent tool for
entanglement distillation of CV states [22], [23]. QS has also
been proven to increase the key rates in QKD protocols under
specific conditions [24].

However, what is currently lacking in the present literature
is a systematic comparison, under lossy channel conditions,
between the effectiveness of PS vs QS in terms of the
resultant QKD rates, and whether transmitter-side or receiver-
side operations are best in this regard. Such a systematic
comparison is the contribution of this present work.

II. SYSTEM DESCRIPTION

We consider two parties, Alice and Bob, who are connected
via a lossy channel. As shown in Fig.1(a), Alice is capable of
generating an entangled TMSV state from which she will com-
municate one mode to Bob via the channel (whilst retaining
the other mode). Before transmitting a mode to Bob, Alice can
choose to apply either QS or PS to it; we call this scenario
the transmitter-operation. Conversely, in the receiver-operation
scenario Alice can choose to transmit a mode without acting
on it operationally, and on receipt Bob applies an operation.
Alternatively, neither Alice or Bob can apply any operation
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and simply use the TMSV state in the protocol. Thus, we
have five different scenarios: TMSV, receiver-PS, transmitter-
PS, receiver-QS and transmitter-QS.

When dealing with Gaussian states and Gaussian operations
there exists a well developed theoretical formalism based on
the first two statistical moments of the Gaussian states [15].
However, for non-Gaussian states the leading two statistical
moments are not enough to fully represent the states, and
we are forced into more complex calculations based on, say,
the density matrix formalism. In this work we adopt this
latter formalism and numerically simulate the evolution of
the quantum states in order to determine the effects of non-
Gaussian operations and photon loss.

For a single mode the Hilbert space is represented in the
Fock number basis {|n〉∞n=0}. In the calculations presented we
limit the Hilbert space of each individual mode to the first 20
number states of the Fock basis. This limited Hilbert space is
still large enough to include all the most important coefficients
in the Fock basis for the states we consider.

A. Evolution of the quantum states
Here we describe the evolution of the bipartite quantum

state as one mode is transmitted though the channel and a
non-Gaussian operation is applied to it in the receiver-side
case. For the case where the operation is applied transmitter-
side the same description applies with the difference that the
non-Gaussian operations act before the channel.

We begin with a TMSV state previously prepared by Alice
in the modes A and B. The TMVS with real squeezing
parameter rAB , is represented in the Fock number basis as:

|ψ〉AB =
1

cosh(rAB)

∞∑
n=0

(− tanh(rAB))n |nn〉 . (1)

In the results presented below we will measure the squeezing
in dB as rdBAB = 10 log10(exp(2rAB)).

An important operation in optics is the beam splitter (BS),
which we will use as component of the non-Gaussian opera-
tions, and as a means to model the lossy channel. In general,
the evolution of two modes i and j interacting in a BS of
transmissivity t is defined by the operator:

Û ijt := exp[arccos (
√
t)(â†i âj − âiâ

†
j)], (2)

with âi and âj the annihilation operators of modes i and j,
respectively.

As shown in Fig.1(b), when Alice transmits mode B to
Bob we model the loss in the channel by means of a BS of
transmissivity η in which mode B interacts with a vacuum in
mode E′. The evolution of the state is obtained by applying
the operator ÛBE

′

η , following eq. 2. After the interaction in
the BS the environment mode E′ is traced out, resulting in a
mixed state. Therefore, the output state after the effect of the
lossy channel M is

ρ′AB = TrE′(ÛBE
′

η (|ψ〉 〈ψ|AB ⊗ |0〉 〈0|E′)Û
BE′

η
†). (3)

Throughout this work we measure the attenuation caused by
photon loss in dB using −10 log10(η). Next, we describe the
two non-Gaussian operations that are the focus of this work.

B. Noiseless linear amplification via quantum scissors

The QS operation considers an input mode and two auxiliary
modes, a vacuum and a single photon. As shown on Fig.1(c),
two auxiliary modes C ′ and C interact via a BS with trans-
missivity κQS , and input mode B interacts with mode C in a
50/50 BS resulting in the state:

ρ′′AB = ÛBC1/2 Û
CC′

κQS
(ρ′AB ⊗ |10〉 〈10|CC′)Û

CC′

κQS

†ÛBC1/2
†. (4)

Thereafter, modes B and C are measured by a pair of single-
photon detectors, DB and DC , respectively. If detector DB

successfully detects a photon, while DC does not (or vice-
versa), then the protocol is successful. The measurement is
represented by the action of the projector Π10 = ΠB

1 ⊗ ΠC
0

(or Π01 = ΠB
0 ⊗ ΠC

1 ), with Πb∈{0,1} = |b〉 〈b|, which causes
the state to collapse to

ρout =
Π10ρ

′′
ABΠ†10

Tr(Π10ρ′′AB)
. (5)

The QS operation is a probabilistic heralded operation with
a probability of success Ps = Tr((Π01+Π10)ρ′′AB). The effect
of the operation is a resulting state truncated over the Fock
space. Explicitly, given any input state |φ〉 = α0 |0〉+α1 |1〉+
... the QS operator QS acts in the following manner

QS(g, α0 |0〉+ α1 |1〉+ ...) = Γ(α0 |0〉+ gα1 |1〉), (6)

with g the gain parameter set by κQS = 1/(1 + g2) [21],
and Γ a normalization factor. When the input state |φ〉 is
such that it mainly resides in the subspace onto which the
QS truncate, then QS effectively produce noiseless linear
amplification (NLA), namely QS(g, |φ〉) = |gφ〉. That is, for
any input state |φ〉, it is required that

|φ〉 ≈ α0 |0〉+ α1 |1〉 (7)

for QS to approximate NLA. On the contrary, for states that
do not satisfy eq. 7 the QS operation will not be described by
QS(g, |φ〉) = |gφ〉.

As a side note, a more complex scheme involving multiple
QS has been introduced [25]. In this scheme, multiple QS op-
erations are involved to implement NLA for any general input
state. We will restrict our analysis to an operation consisting
of a single QS, since in the generalized NLA the probability
of success of the entire operation drops exponentially with the
number of QS used.

C. Photon subtraction

The second non-Gaussian operation of interest is PS. As
shown in Fig.1(d), PS over a single mode begins by mixing
the input mode with a vacuum state in a BS of transmissivity
κPS , resulting in

ρ′′AB = ÛBDκPS
(ρ′AB ⊗ |0〉 〈0|D)ÛBDκPS

†. (8)

Thereafter, a single-photon detection takes place, collapsing
the state to

ρout =
ΠD

1 ρ
′′
ABΠD

1
†

Ps
, (9)



Fig. 1. a) A single mode of a TMSV pure state is transmitted from Alice
to Bob over a lossy channel. b) We model the lossy channel by a vacuum
interacting with the input mode in a BS. c) The QS operation consists of an
input mode, single photon injection, two BSs and single photon detectors. d)
In PS the input mode interacts with a vacuum state in a BS, afterwards if a
single-photon is detected the operation was successful.

with the probability of success of the operation Ps =
Tr(ΠD

1 ρ
′′
AB). Just like QS, PS is a heralded operation. For

simplicity, in both QS and PS we assume single-photon
detector efficiencies of 100% and that single photons can be
generated on command.

III. CALCULATING THE KEY RATE IN CV-QKD

We compute the secret key rate for the entanglement-based
CV-QKD protocol described in [14]. As pictured in Fig.2, in
our protocol Alice generates a TMSV state in modes A and B
and transmits mode B to Bob, with a non-Gaussian operation
applied to B (either transmitter-side or receiver-side).

To compute the key rate we follow the procedure presented
in [19]. Since we are considering that the states involved
are non-Gaussian, the calculations of the key rates are more
complex relative to those required to obtain key rates using
Gaussian states. Nonetheless, it has been proven that for any
given covariance matrix associated with a non-Gaussian state,
the key rate calculated from it corresponds to a lower bound
[26]. Thus, we will make use of this result emphasizing that
the key rates presented here represent only a lower bound of
the real values. For a complete discussion of how to calculate
the key rate when non-Gaussian states are involved we refer
the reader to [19], [20].

During the QKD protocol we assume there is an eaves-
dropper, Eve, performing a collective attack [27]. In one form
of a collective attack we consider that Eve starts with a
weakly squeezed TMSV state |ψ〉EF . We set the variance
of |ψ〉EF to 1.002 to model additional channel noise. Eve
mimics the channel by using a BS of transmissivity η in which
the transmitted mode B interacts with her mode E. After the
interaction in the BS, Eve keeps her modes E and F , and
is capable of performing any measurement on them or storing
them indefinitely as required. In this way Eve can obtain all the

Fig. 2. The entanglement based CV-QKD protocol [14]. Alice transmits the
mode B of a TMSV state to Bob. Separately, Eve prepares a TMSV state of
her own, and sends modeE through a BS that mimics the channel. Afterwards,
she can utilize any measurement on her modes to extract all the information
possible. Here OP = QS or PS, HOM = homodyne measurement and QM =
quantum measurement.

information lost during the transmission of mode B through
the channel.1

When all the considerations above are accounted for, the
key rate in the asymptotic limit of infinitely many uses of the
channel is lower bounded as follows [14]

K ≥ Ps(IAB − χBE), (10)

with Ps the probability of success of the used operation (QS
or PS), IAB the mutual information between Alice and Bob,
and χBE the Holevo information that Eve can extract from her
measurements. In the calculation of IAB we are assuming an
efficiency of 1 in the classical post-processing. Additionally,
we are considering only the successful applications of the non-
Gaussian operations are used in our QKD protocol.

Now we compute the quantities IAB and χBE . We define
the vector containing the quadrature operators q̂i =

âi+â
†
i√

2
and

p̂i =
âi−â†i
i
√
2

(~ = 1) of all the modes

x̂ := (q̂A, p̂A, ...., q̂F , p̂F ). (11)

The elements of the covariance matrix of the state are defined
as

Vij := 〈{∆x̂i,∆x̂j}〉ρout , (12)

with ∆x̂i = x̂i−〈x̂i〉 and {.} the anti-commutation operation.
Using eq. 12 to calculate the covariance matrix entries for the
modes A and B we obtain the following symmetric matrix

MAB =

[
VAAI VABZ
VABZ VBBI

]
, (13)

with I the 2× 2 identity matrix and Z = diag(1,−1). In this
case the mutual information is given by the equation

IAB =
1

2
log2

VBB
VB|A

, (14)

with the conditional variance VB|A = VBB − VAB
2

VAA
.

1This specific form of attack is not optimal for non-Gaussian states [19],
but the bound on key rate we derive remains true.



For the Holevo information χBE , we calculate it as

χBE =
∑
i

g(νEFi )−
∑
i

g(ν
EF |B
i ), (15)

with

g(x) =
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
.

Here {νEFi } and {νEF |Bi } correspond to the symplectic
eigenvalues of the covariance matrices MEF and MEF |B
respectively. The latter corresponding to the case when a
homodyne measurement is made on the mode B,

MEF |B = MEF −
[
VEBI
VFBZ

] [
V −1BB 0

0 0

] [
VEBI
VFBZ

]T
, (16)

with VEB and VFB the elements in the covariance matrix of
the respective modes.

IV. NUMERICAL RESULTS

Now we present the results obtained in terms of the entan-
glement distilled and the QKD key rates produced.

A. Entanglement properties

To quantify entanglement we focus on the logarithmic nega-
tivity, which has been shown to be an entanglement monotone
and an upper bound to the distillable entanglement, besides
being remarkably easy to compute [28]. The logarithmic
negativity quantifies how much a multipartite state is separable
by measuring how much it fails to satisfy the positivity of the
partial transpose with respect to its partitions. In this case,
computed as

EN (ρ̂out) = log ||ρ̂TB
out||1. (17)

However, for Gaussian states it can be computed from the
symplectic eigenvalues {νi} of the respective covariance ma-
trix as

EN (ρ̂out) =
∑
i

F (νi), (18)

with F (x) = − log(x) for x < 1 and F (x) = 0 otherwise.
We compute EN for different values of initial squeezing in

the TMSV state and for three fixed values of photon loss in
the channel. Here the transmissivities of the BSs in the non-
Gaussian operations are optimal to maximize EN , with the
values κPS = 0.95 and κQS = 0.05. We will fix these values
throughout the rest of this work unless stated otherwise.

In the case with no photon loss, shown in Fig.3 (top), it
makes no difference if the operations are applied receiver-
side or transmitter-side, as both scenarios are equivalent. We
observe that for squeezing below 2dB QS outperforms PS in
the amount of entanglement distilled. Under 5dB and 10dB of
photon loss, we see in Fig.3 (middle and bottom respectively)
that receiver-QS becomes capable of increasing the entangle-
ment at increasingly higher levels of squeezing. This fact is
due to the photon loss causing the TMSV states to satisfy eq. 7.
Conversely, this is not the case when the operation is applied
transmitter-side, in this scenario we see that transmitter-QS

PS

TMSV

QS

TMSV
receiver-PS

transmitter-PS

transmitter-QS

receiver-QS

receiver-QS

TMSV
receiver-PS

transmitter-PS

transmitter-QS

Fig. 3. The logarithmic negativity EN for PS and QS in the cases where
each operation is applied successfully transmitter-side or receiver-side. The
parameters of both operations are optimized to maximize EN , PS is optimized
at a value of κPS = 0.95 and κQS = 0.05 for QS.

reduces the entanglement of highly squeezed TMSV states.
On the other hand, we see that for every level of photon loss
both receiver-PS and transmitter-PS are capable of increasing
by a small margin the entanglement of the TMSV state.

Since both PS and QS are non-deterministic operations,
we must also analyse the entanglement rate 〈EN 〉 achieved
over multiple uses of the operations. To compute this quantity
we weight the values of EN obtained for each state by
the probability of success of the corresponding operation. In
general, for the non-Gaussian operations we see that 〈EN 〉



Fig. 4. The entanglement rate obtained after multiple applications of a
receiver-QS, as a function of the initial squeezing of the TMSV and the
parameter κQS . The photon loss is fixed at 10 dB.

is lower that EN for the TMSV. In Fig.4 we plot 〈EN 〉 for
receiver-QS as a function of κQS and the initial squeezing. We
can see that the maximum value of 〈EN 〉 that can be reached
is ≈ 0.1, compared with the value of ≈ 0.27 (Fig.3 bottom)
obtained for the TMSV state. Additionally, we repeated the
calculation presented in Fig.4 for both transmitter-PS and
receiver-PS and we found 〈EN 〉 never exceeds the values
of EN obtained from the TMSV state. This fact is largely
because optimal values κQS and κPS correspond to very low
probabilities of success.

B. Key rates

We present the values of the key rates obtained under the
different operations. In the case of 8dB of initial squeez-
ing (Fig.5 top), using receiver-PS we obtained non-zero key
rates for higher photon loss relative to the other operations.
Nonetheless, the magnitude of the key rate of receiver-PS is
lower than the one obtained by means of the TMSV state. This
result was originally presented in [19]. For the squeezing value
of 8dB we see that QS at both receiver-side and transmitter-
side are not effective, being unable to recover any non-zero key
rates for any non-zero photon loss. On the other hand, we see
that when the TMSV state has a low squeezing of 1dB (Fig.5
bottom) the best results where obtained by means of QS, with
transmitter-QS producing the highest key rates between both
transmitter-QS and receiver-QS. This is despite receiver-QS
showing the greater increase of entanglement, as presented in
Fig.3. In this case receiver-QS also causes the entanglement
between the mode B and Eve’s mode E to increase. The
increase in entanglement translates as an increase in Eve’s
Holevo information χBE involved in the calculation of the
key rates.

To further investigate the key rates produced by transmitter-
QS and receiver-PS, in Fig.6 we compare the key rates as func-
tion of both squeezing and photon loss. Here we see the main
result of this paper, the fact that for a given initial squeezing
the non-Gaussian operations are capable of generating non-
zero key rates at photon losses for which the Gaussian TMSV

Fig. 5. Key rates for the operations as a function of photon loss. The initial
squeezing of the TMSV is set at 8dB and 1dB.

Fig. 6. Contour plots of log10(Key rate) as a function of photon loss and
the initial squeezing of the TMSV states. The key rate is presented in units
of bit/pulse. The areas in green, red and blue represent the areas in which
the highest key rates are achieved by transmitter-QS, receiver-PS and TMSV
states respectively. The area in grey corresponds to the parameters for which
no key rates can be obtained by any operation.



states are incapable of doing so. Additionally, we see for initial
squeezing levels below 1.5dB higher key rates are obtained by
transmitter-QS. In these conditions transmitter-QS produces
non-zero key rates for higher magnitudes of photon loss up
to 12dB. On the contrary, for values of squeezing beyond
1.5dB receiver-PS is capable of obtaining non-zero key rates
for increasingly higher levels of photon loss, albeit at the cost
of reduced key rate magnitudes.

As a side note, we point to the work presented in [24],
[29]. In these works the authors make use of the QS operation
in the receiver side to improve the key rates during the CV-
QKD protocol introduced by Grosshans and Grangier [30].
The results presented in both works show that the QS enhanced
QKD protocol can tolerate additional noise compared to the
purely Gaussian QKD protocol.

V. CONCLUSIONS

We have studied the performance of non-Gaussian states in
the entanglement based CV-QKD protocol. The non-Gaussian
states considered were produced by means of applying the
QS or PS operations to TMSV states. For each operation
we considered scenarios where the operations are applied
either transmitter-side or receiver-side. In particular, we have
calculated the secure key rates produced by QKD as functions
of photon loss and the initial squeezing of the TMSV states.

For PS, we observed that receiver-PS produced states that
are more robust to loss compared to their Gaussian coun-
terparts. Robust meaning that the states were capable of
producing non-zero key rates for higher values of photon loss.
Conversely, we did not find any benefit in using transmitter-
PS, since the states it produced resulted in lower secure key
rates relative to those produced by the initial TMSV states.

For QS, we observed that the operation can increase the
key rates obtained when used over TMSV states with initial
squeezing below 2dB. Between receiver-QS and transmitter-
QS, we observed that transmitter-QS yields the best results
in terms of both the magnitude of the secure key rates and
robustness against photon loss.

The main result of this work is that for a given ini-
tial squeezing of TMSV states, the non-Gaussian operations,
receiver-PS or transmitter-QS, increased the range of photon
loss over which non-zero key rates could be obtained. We
found a threshold of 1.5dB in the initial TMSV squeezing,
above which receiver-PS becomes the preferred operation.
Alternatively, for an initial TMSV squeezing below 1.5dB,
we found that transmitter-QS produces the highest secure key
rates. The results obtained here should help us understand how
non-Gaussian operations can be deployed in Earth-satellite
channels when maximisation of secure key rates is the goal.

REFERENCES

[1] S. L. Braunstein and P. van Loock. Quantum information with contin-
uous variables. Rev. Mod. Phys., 77:513–577, 2005.

[2] S. Lloyd and S. L. Braunstein. Quantum computation over continuous
variables. Phys. Rev. Lett., 82:1784–1787, 1999.

[3] M. B. Plenio and S. Virmani. An introduction to entanglement measures.
Quantum Info. Comput., 7:1–51, 2007.

[4] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and
G. Camy. Observation of quantum noise reduction on twin laser beams.
Phys. Rev. Lett., 59:2555–2557, 1987.

[5] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel. Detection
of 15 db squeezed states of light and their application for the abso-
lute calibration of photoelectric quantum efficiency. Phys. Rev. Lett.,
117:110801, 2016.

[6] S. Ma, X. Li, J. Xie, and F. Li. Two-mode squeezed states of two
separated nitrogen-vacancy-center ensembles coupled via dissipative
photons of superconducting resonators. Phys. Rev. A, 99:012325, 2019.

[7] K. Mølmer. Non-Gaussian states from continuous-wave Gaussian light
sources. Phys. Rev. A, 73:063804, 2006.

[8] S. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone,
S. Pirandola, and J. H. Shapiro. Quantum illumination with Gaussian
states. Phys. Rev. Lett., 101:253601, 2008.

[9] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher.
Concentrating partial entanglement by local operations. Phys. Rev. A,
53:2046–2052, 1996.

[10] W. Dr and H. J. Briegel. Entanglement purification and quantum error
correction. Reports on Progress in Physics, 70(8), 2007.

[11] J. Eisert, S. Scheel, and M. B. Plenio. Distilling Gaussian states with
Gaussian operations is impossible. Phys. Rev. Lett., 89:137903, 2002.

[12] A. S. Holevo. One-mode quantum Gaussian channels: Structure and
quantum capacity. Problems of Information Transmission, 43(1):1–11,
2007.

[13] H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka,
K. Hayasaka, A. Furusawa, and M. Sasaki. Entanglement distillation
from Gaussian input states. Nature Photonics, 89:178181, 2010.

[14] C. Weedbrook. Continuous-variable quantum key distribution with
entanglement in the middle. Phys. Rev. A, 87:022308, 2013.

[15] C. Weedbrook, S. Pirandola, R. Garcı́a-Patrón, N. J. Cerf, T. C. Ralph,
J. H. Shapiro, and S. Lloyd. Gaussian quantum information. Rev. Mod.
Phys., 84:621–669, 2012.

[16] A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles. Entanglement
evaluation of non-Gaussian states generated by photon subtraction from
squeezed states. Phys. Rev. A, 73:042310, 2006.

[17] S. L. Zhang and P. van Loock. Distillation of mixed-state continuous-
variable entanglement by photon subtraction. Phys. Rev. A, 82:062316,
2010.

[18] J. Wenger, R. Tualle-Brouri, and P. Grangier. Non-Gaussian statistics
from individual pulses of squeezed light. Phys. Rev. Lett., 92:153601,
2004.

[19] M. He, R. Malaney, and J. Green. Quantum communications via satellite
with photon subtraction. IEEE GC Workshops, 2018.

[20] M. He, R. Malaney, and J. Green. Photonic engineering for CV-
QKD over Earth-satellite channels. IEEE International Conference on
Communications (ICC), 2019.
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