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Abstract—A novel precoding method based on supervised deep
neural networks is introduced for the multiple-input multiple-
output Gaussian wiretap channel. The proposed deep learning
(DL)-based precoding learns the input covariance matrix through
offline training over a large set of input channels and their
corresponding covariance matrices for efficient, reliable, and
secure transmission of information. Furthermore, by spending
time in offline training, this method remarkably reduces the
computation complexity in real-time applications. Compared to
traditional precoding methods, the proposed DL-based precoding
is significantly faster and reaches near-capacity secrecy rates. DL-
based precoding is also more robust than transitional precoding
approaches to the number of antennas at the eavesdropper. This
new approach to precoding is promising in applications in which
delay and complexity are critical.

Index Terms—Physical layer security, deep learning, MIMO
wiretap channel, precoding, covariance.

I. INTRODUCTION

Wiretap channel [1], [2] is a three-node network, consisting
of a transmitter, a legitimate receiver, and an eavesdropper,
in which encoding is designed to transmit the legitimate re-
ceiver’s message securely and reliably. This model, which lays
the foundation of physical layer security, is then extended to
multi-antenna nodes. The capacity of multiple-input multiple-
output (MIMO) Gaussian wiretap channel under an average
power constraint is established in [3]–[5]. This capacity ex-
pression is abstracted as a non-convex optimization problem
over the covariance matrix of the input signal. This problem
is fundamental in the study of physical layer security in the
MIMO settings and thus has attracted extensive research in the
past decade and has been explored in different ways. Despite
this, the closed-form covariance matrix is known only in some
special cases [6]–[8], and optimal signaling to achieve the
capacity is still unknown, in general.

There are several sub-optimal and iterative solutions for this
problem. Generalized singular value decomposition (GSVD)-
based precoding, which splits the transmit channel into several
parallel subchannels, provides a closed-form solution [3], [9].
This closed-form solution is, however, far from capacity in
some antenna settings, e.g., when the legitimate receiver has a
single antenna [8]. Alternating optimization and water filling
(AO-WF) algorithm [10] is another well-known solution which
converts the non-convex problem to a convex problem and
solves it in an iterative manner. However, the complexity of
this method is high and the solution is not stable under certain
antenna settings [11]. Recently, a new parameterization of the

covariance matrix was proposed for two-antenna transmitters
and its optimal closed-form solution was obtained in [8].
This method is then extended to arbitrary antennas in [11].
Although the new reformulation of the problem based on the
rotation matrices is optimal, the way to find the parameters
is iterative and time-consuming, especially for large number
of transmit antennas. Overall, despite extensive research and
fundamental importance of this problem, the existing signaling
methods, except for closed-form solutions, suffer either from
a high computational complexity or performance loss.

Motivate by the above shortcomings and recent successful
applications of deep learning (DL) in communication over
the physical layer [12], in this work, we exploit DL for a
secure and reliable signaling design in the MIMO Gaussian
wiretap channel. DL is a new emerging sub-field of machine
learning (ML), and similar to ML, provides a data-driven
approach to tackle traditionally challenging problems [13]. It
holds promise for performance improvements in complex sce-
narios that are difficult to describe with tractable mathematical
models or solutions. While DL prevails in computer vision,
speech and audio processing, and natural language processing,
its introduction to communication systems is relatively new.
Nonetheless, DL is increasingly being used to solve commu-
nication problems in the physical layer. Particularly, DL is
being applied to typically hard and intractable problems such
as encoding and decoding schemes, beamforming, and power
allocation in MIMO, etc. [12], [14]–[17].

Recent research efforts have shown that DL is useful
in many sophisticated communications problems. In [12],
a neural network (NN)-based autoencoder is proposed for
end-to-end reconstruction and communication system design.
Although the above work is limited to a differentiable channel,
[18] shows that it is possible for autoencoders to work well
over the air. Supervised reinforcement learning is proposed to
characterize communication architecture with a mathematical
channel model absence in [19]. In a more relevant paper to our
work, [20] proposes learning encoding and decoding schemes
by NN to realize confidential message transmission over the
Gaussian wiretap channel. These successful examples applying
DL to communication systems mainly exploit the classification
ability of the DL.

In this paper, we develop a DL-based precoding using a
residual network [21] to reliably and securely transmit infor-
mation over the MIMO wiretap channel with near-capacity
rates. With multiple hidden and intermediate layers of neurons,
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Fig. 1: The MIMO wiretap channel.

the proposed DL-based precoding can effectively characterize
the precoding matrix. Multiple hidden layers and non-linearity
properties of the deep neural networks (DNN), enables the
proposed DL-based precoding to learn sophisticated mapping
between inputs (channel matrices) and output (covariance
matrix). Via offline training, the proposed DL-based precoding
learns from a large number of near-optimal covariance ma-
trices and performs well in fitting, regressing and predicting
precoding and power allocation matrices. Once trained well,
the network achieves a near-capacity secure rate very quickly
and with a little memory. Hence, this approach is promising
to be applied into Internet of things (IoT), which intrinsically
have limited computation abilities and battery life.

The performance of the proposed precoding, in terms of
complexity and achievable rate, is compared with the exiting
analytical and numerical solutions, namely, GSVD and AO-
WF. It is shown that similar or better performance can be
achieved significantly faster. Moreover, unlike existing so-
lutions, the proposed DL-based precoding is robust to the
change in the number of antennas at the eavesdropper. This
is meaningful progress towards secure communication in a
more practical setting in which the number of antennas at the
eavesdropper is unknown.

The remainder of this paper is organized as follows. In
Section II, the system model of the MIMO wiretap channel is
described. In Section III, a novel DNN is designed to learn the
input covariance matrix. The training phase and experimental
results are discussed in Section IV, and the paper is concluded
in Section V.

II. SYSTEM MODEL

The MIMO wiretap channel is a model for reliable and se-
cure communication over the air which includes a transmitter
equipped with nt antennas which sends a message to a legit-
imate receiver with nr antennas while keeping it confidential
from an eavesdropper equipped with ne antennas. The system
model is shown in Fig. 1 in which s ∈ Rnt is the information
vector, x ∈ Rnt is the transmitted signal, yr ∈ Rnr and
ye ∈ Rne are the received signal at receiver and eavesdropper
sides. The received signals at the legitimate receiver and the
eavesdropper sides at time m can be, respectively, expressed

as

yr[m] = Hx[m] + wr[m], (1a)
ye[m] = Gx[m] + we[m], (1b)

in which H ∈ Rnr×nt and G ∈ Rne×nt are the channel
matrices corresponding to the receiver and eavesdropper, wr ∈
Rnr and we ∈ Rne are Gaussian white noises with zero means
and identity covariance matrices. The channel input is subject
to an average total power constraint [5], i.e.,

||x||2 =
1

M

M−1∑
m=0

(x[m]Tx[m]) ≤ P, (2)

where M is the length of x. The capacity expression of the
MIMO wiretap channel (1) under the average power (2) is
expressed as [5]

Cs =max
Q

1

2
log |Inr + HQHT | − 1

2
log |Ine + GQGT |,

s.t. Q � 0, tr(Q) ≤ P, (3)

in which the covariance matrix Q = E{xxT } ∈ Rnt×nt

is symmetric and positive semi-definite, and AT , tr(A), and
|A| represent transpose, trace, and determinant of matrix A,
respectively.

Optimal closed-form Q is known only for special numbers
of antenna settings [11]. There, however, are a few well-known
sub-optimal analytical and numerical solutions for arbitrary
numbers of antennas. Among them are GSVD, AO-WF, and
rotation-based precoding, as discussed earlier. We note that
since eigenvalue decomposition of Q results in Q = VΛVt,
we can design the transmitted signal vector as

x = VΛ
1
2 s, (4)

in which

• V is the precoding matrix,
• Λ

1
2 is the power allocation matrix, and

• s is the information signal vector with covariance I.

Thus, knowing the covariance matrix is equivalent to knowing
the corresponding precoding and power allocation matrices.
Hence, these two are used equivalently in this paper.

III. DEEP LEARNING ARCHITECTURE FOR PRECODING

This paper designs a precoder based on a DNN for the
MIMO Gaussian wiretap channel. The inputs of the net-
work are channel matrices (H and G) and their non-linear
combinations. The output is the upper triangular part of the
optimal covariance matrix Q. After the training process, the
network learns the features of optimal covariance matrix Q
over different channels. In this paper, Q used for training is
obtained from AO-WF method and is called optimal Q. In
fact, the network tries to learn how to get a Q similar to that
of AO-WF. Alternatively, rotation-based method [11] can be
used.



𝐇𝑇𝐇
𝐆𝑇𝐆

𝐇𝑇𝐇 𝐆𝑇𝐆

𝐆𝑇𝐆

𝐇𝑇𝐇

𝐯𝟏 𝐯𝟐 𝐯𝟑

cube(𝐯𝟏)

𝐯𝑇 = 0.05𝐯1 0.002𝐯2 0.0001𝐯3

9 × 1 18 × 19 × 1 36 × 1

Fig. 2: The input design.

A. Input Features

For nt = 2, optimal Q is known analytically from [8]. Here
we consider nt = 3 in this paper1. The network input vector
v contains 72 features as shown in Fig. 2. These features
include the elements of channel matrices, i.e., H and G,
and their non-linear combinations as shown in Fig. 2. Note
that sing Sylvester’s determinant identity the arguments of the
logarithms in (3) can be written as∣∣Inr + HQHT

∣∣ = ∣∣Int + HTHQ
∣∣ , (5a)∣∣Ine

+ GQGT
∣∣ = ∣∣Int

+ GTGQ
∣∣ . (5b)

Hence, HTH or GTG can be considered as a whole which
are both nt × nt matrices. In this paper, the input vector v is
designed as

v , [0.05v1, 0.002v2, 0.0001v3]
T , (6)

in which v1, v2, and v3 are defined as

v1 , vec([HTH GTG]), (7a)

v2 , vec([HTH GTG]T [HTH GTG]), (7b)

v3 , cube(v1), (7c)

where vec(·) is the vectorization of a matrix and cube(·) is
the element-wise cube operation. The coefficients of these
vectors are used for normalization and weighting. The sketch
of the input vector is shown in Fig. 2. Here, v1 can be seen
as an original feature whereas v2 and v3 provide additional
nonlinear combination of the original features which increases
the probability that DNN can learn the mapping from input to
desired output.

B. Network Design

The network architecture for nt = 3 is shown in Fig. 3. This
is a fully-connected neural network (FCNN) with parametric
rectified linear units (PReLUs) [22] as activation functions.
FCNN can be seen as a special convolutional neural network
with filter size 1× 1 [23]. PReLU can provide more trainable

1Without loss of generality, the network with arbitrary nt can be realized
by changing the size of inputs.
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+
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PReLU
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+
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FCNN, 6 nodes

Regression Output, 6 × 1

Fig. 3: The proposed DL architecture.

parameters and prevent over-fitting [22]. Besides, we introduce
a few shortcut connections proposed in the residual network
[24]. The shortcut connections are able to reduce the difficulty
of training process and make the network converge better. We
add a PReLU layer with unique trainable parameters to each
shortcut connection.

C. Expected Output

The covariance matrix for nt = 3 is given by

Q =

 q11 q12 q13
q12 q22 q23
q13 q23 q33

 . (8)

The output vector q contains the upper triangular part of the
covariance matrix Q since it is symmetry. More specifically,

q , [q11, q22, q33, q12, q23, q13]
T . (9)

Each Q is given by AO-WF [10]. The network is required to
learn the relation between the channels and Q.

IV. TRAINING PROCEDURE AND SIMULATION RESULTS

The training procedure and regression results are demon-
strated in this section. We also examine the performance of
DL-based precoding in this section.



TABLE I: Details of the Data Sets.

nt nr ne number of samples
TrainingSet-I 3 2 1 2,000,000

TestSet-I 3 2 1 1000
TrainingSet-II 3 4 3 2,000,000

TestSet-II 3 4 3 1000
TrainingSet-III Cascade of TrainingSet-I and TrainingSet-II

TestSet-III Cascade of TestSet-I and TestSet-II

A. Data Set Generation

The experiments are associated with three training sets, i.e.,
TrainingSet-I, TrainingSet-II and TrainingSet-III, as shown in
Table I. TrainingSet-I and TrainingSet-II contain 2, 000, 000
samples. Each sample contains 72 input features contributed
by the channel matrices. The channels are generated randomly
following the standard Gaussian distribution. TrainingSet-I is
for nt = 3, nr = 4, and ne = 3 whereas in TrainingSet-II the
number of antennas are nt = 3, nr = 2, and ne = 1.

Then, AO-WF [10] is used to generate optimal Q for each
set of channels and the total average transmit power constraint
is P ≤ 20W for all cases. The upper triangular part of Q is
the output used for supervised learning. TrainingSet-III is the
cascade of TrainingSet-I and TrainingSet-II with random order
of samples. We also generate TestSet-I and TestSet-II as test
data sets, each of which having 1000 samples with antenna
setting corresponding to TrainingSet-I and TrainingSet-II.

B. Training Process

In the training process, the proposed DL-based precoding
is trained three times using TrainingSet-I, TrainingSet-II and
TrainingSet-III. The training process is executed on a single
graph card (NVIDA GeForce GTX 1080) and Adam [25] is
used as the optimization method. Except for the batch size,
all training process has the same hyper-parameters. The total
epochs are 4, 000, 000. Learning rate is initially set 0.001
and then is decreased 20% after every 80 epochs. The batch
size for TrainingSet-I and TrainingSet-II is 2000 whereas for
TrainingSet-III it is 4000. Considering the number of samples
in TrainingSet-III is twice as many as that in TrainingSet-I and
TrainingSet-II, the doubled batch size will ensure the training
time consumption for all training process was approximately
the same; it was about 20 hours in our experiments.

C. Performance of the DL-based Precoding

The performance of the proposed DL-based precoding can
be evaluated by corresponding training and test data sets, i.e.,
TrainingSet-I with TestSet-I and TrainingSet-II with TestSet-II.
The mean squared error (MSE) for evaluating Q is shown in
Table II. Besides, Fig. 4 illustrates the estimation results and
their expected values for TestSet-I. It is seen that the elements
in Q are estimated with fairly good MSEs.

Once the network “learns” to estimate the optimal Q, it is
ready to be used for precoding and power allocation based on
(4). The achievable rate versus channel realizations is shown
in Figs. 5(a) and 5(b), and is compared with those of AO-
WF and GSVD. Further, the average secrecy rate of each test
process is provided in Table III.
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Fig. 4: Comparison between optimal and estimated elements
in Q when nt = 3, nr = 2, and ne = 1.

TABLE II: MSE of DL-based Precoding with Corresponding
Training and Test Data Sets.

Training Data Set TrainingSet-I TrainingSet-II
Test Data Set TestSet-I TestSet-II
MSE of q̂11 0.1402 0.0779
MSE of q̂22 0.1338 0.0740
MSE of q̂33 0.1479 0.0633
MSE of q̂12 0.1167 0.0770
MSE of q̂23 0.1425 0.0741
MSE of q̂13 0.1220 0.0711

As can be seen from the figures, the proposed DL-based
precoding is able to reach a secrecy rate comparable to that of
AO-WF. Besides, the proposed DL-based precoding performs
better than GSVD in the case nt = 3, nr = 2, and ne = 1.
More importantly, as illustrated in Table IV, the proposed DL-
based precoding is much more efficient than the traditional
methods. Although DL’s training time is long, the training
process is usually realized offline. Accordingly, a well-trained
precoding is a promising tool in the Gaussian MIMO wiretap
problem especially for IoT devices with limited energy and
computing power.

TABLE III: Average Achievable Secrecy Rate.

Training Set Test Set DL-based AO-WF GSVD
TrainingSet-I TestSet-I 3.3980 3.4741 2.5197
TrainingSet-II TestSet-II 2.3381 2.4827 2.4639
TrainingSet-III TestSet-I 3.3947 3.4741 2.5197
TrainingSet-III TestSet-II 2.3267 2.4827 2.4639

TABLE IV: Average Time for One Realization.

DL-based AO-WF GSVD
Time Cost (ms) 0.0255 243 0.513
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Fig. 5: Comparison of achievable secrecy rate using corresponding training and test sets.

D. Cascading Training Sets

If we exchange the test and training data sets in previous
simulation, i.e., if we use TrainingSet-II with TestSet-I and
TrainingSet-I with TestSet-II, the DL-based precoding cannot
estimate Q very well as shown in Table V. This problem
can be solved by cascading the two training sets as a new
one, named TrainingSet-III. From Table VI, it is seen that the
performance becomes much better and reaches a similar level
when training separately without additional training epochs by
doubling the batch size, as mentioned in Subsection IV-B. The
secrecy rates for this case are shown in Figs. 6(a) and 6(b).
The average achievable rate is further shown in the last two
rows of Table III. It is seen that the proposed DL architecture
is able to learn from existing optimal results with different
nr and ne if it is trained with such samples. Overall, the DL-
based precoding can achieve secrecy rate more efficiently than
traditional iterative methods.

TABLE V: MSE of DL-based Precoding with Opposite
Training and Test Data Sets.

Training Data Set TrainingSet-II TrainingSet-I
Test Data Set TestSet-I TestSet-II
MSE of q̂11 2.8353 7.4462
MSE of q̂22 2.8124 7.7543
MSE of q̂33 3.0579 6.8545
MSE of q̂12 2.7646 5.4432
MSE of q̂23 2.3103 4.4098
MSE of q̂13 2.1800 5.0406

E. Applying a Deeper Network

The performance of DL-based precoding can be further
improved by increasing the depth of the NN. The network
architecture in Fig. 3 (denoted as DeepNet) contains 7 FCNN
layers, 9 PReLU activation layers, 4 shortcut connections,
and 4 addition nodes. If we add anther 4 FCNN layers and
repeat the shortcut connections, a deeper network named as

TABLE VI: MSE of DL-based Precoding with Cascaded
Training Sets.

Training Data Set TrainingSet-III
Test Data Set TestSet-I TestSet-II
MSE of q̂11 0.1313 0.1564
MSE of q̂22 0.1234 0.1386
MSE of q̂33 0.1219 0.1364
MSE of q̂12 0.1526 0.1351
MSE of q̂23 0.1057 0.1596
MSE of q̂13 0.1384 0.1123

DeeperNet can be obtained. The DeeperNet contains 7 FCNN
layers, 17 PReLU activation layers, 8 shortcut connections,
and 8 addition nodes. The average achievable secrecy rates
using different data sets are compared in Table VII. The
secrecy rate obtained by the DeeperNet outperforms that of the
DeepNet. However, since the depth of the network is doubled,
the time consumption is increased to 0.0405ms per channel
realization, i.e., it takes two times the DeepNet. Therefore, the
proposed DeepNet compromises between secrecy performance
and time cost.

TABLE VII: Average of Achievable Secrecy Rate.

Training Set Test Set DeepNet DeeperNet AO-WF
TrainingSet-I TestSet-I 3.3980 3.4215 3.4741
TrainingSet-II TestSet-II 2.3381 2.4137 2.4827

V. CONCLUSIONS

In this paper, a DL-based precoding has been proposed for
the MIMO Gaussian wiretap channel. The input features of
the DL-based precoding are generated by channel matrices
and the output have the elements of the covariance matrix.
The network is build up with FCNN, residual connections, and
PReLU. The experiments show that the proposed precoding is
much faster than existing methods and achieves a reasonable
and stable secrecy performance. The method is energy-saving



0 5 10 15 20 25 30 35 40 45 50

Channel Realizations

0

1

2

3

4

5

6

A
ch

ie
va

bl
e 

R
at

e 
(b

ps
/H

z)
DNN
AO-WF
GSVD

(a) TrainingSet-III with TestSet-I

0 5 10 15 20 25 30 35 40 45 50

Channel Realizations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ch

ie
va

bl
e 

R
at

e 
(b

ps
/H

z)

DNN
AO-WF
GSVD

(b) TrainingSet-III with TestSet-II

Fig. 6: Comparison of achievable secrecy rate using combined training set and separate test sets.

and much less complex which makes it a promising approach
to physical layer security of IoT networks.

One practical issue in the context of the wiretap channel is
that the number of antennas at the eavesdropper is assumed
known. This work makes meaningful progress toward elimi-
nating or, at least, being less dependent on this assumption.
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