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Identifying Packet Loss and Reordering Packets
in Keyed UDP Transmissions

Fábio Machado Gil, Nuno M. Garcia, Bárbara Matos, Nuno Pombo, Rossitza Goleva and Ciprian Dobre

Abstract—The User Datagram Protocol (UDP) and other similar protocols send the application data from the source machine to the
destination machine inside segments, without foreseeing nor allowing for any type of control on the transmission or success metrics.
These protocols are very convenient for e.g. real time data transmission. But when the reliability of the transmitted data is critical, other
protocols termed as connection-oriented, allow for full control of the data transmission process, assuring that the received data is an
exact copy of the transmitted data, e.g. the case of the Transmission Control Protocol (TCP). To sustain the increased functionality and
features of the connection-oriented protocol, a set of mechanisms is implemented based on some specific fields of the segment
header. These mechanisms result in a significant overhead in terms of the increased number of transmitted packets. This may further
translate into significant delays, because of the additional number of switching and routing tasks, and eventually, because of more
complex communications procedures, such as e.g. transmission window resizing, and of course, acknowledgement and sequence
numbers updating. The two extremes of these communication modalities, one that has no control at all, and the other one that allows
for full control, have resulted in the creation of an intermediate protocol that allows for a limited degree of knowledge on how successful
a transmission was, and even for an eventual reordering of the segments that arrive out of sequence. This paper presents simulation
results that confirm the efficiency of the new almost-reliable UDP protocol, termed Keyed User Datagram Protocol (or KUDP) for
transmission of data that includes the ability to identify which packets were lost and to reorder packets that were received
out-of-sequence, and points future tasks to be pursued in this research.

Index Terms—Keyed User Datagram Protocol, almost reliable protocol, data transmission simulation.
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1 INTRODUCTION

THE high overhead that results from the control
mechanisms of the Transmission Control Protocol [1]

(TCP), specifically in terms of the number of packets that
need to be transmitted to start, assure the confirmation
of successful data reception, and eventually end the
transmission, is opposed to the zero overhead that results
from the total absence of control messages of the lighter
User Datagram Protocol [2] (UDP).

Nevertheless, while data transmitted using TCP is
fully controllable, and both the source and the destination
have information that allows them to validate the success
of the data transmission, or not, with UDP, neither the
sender nor the receiver have information regarding the
success of the data transmission. This oversimplified
introduction omits a large number of other protocols
that, using different strategies, are still able to assure a
successful data transmission. Yet, the existing protocols
can still be considered to be either connection-oriented or
connectionless, the first class giving warranty of the data
transmission process, and the later trusting that sent packets
containing application data will arrive to its destination,
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which often is not the case.

Authors in [3] have proposed a new Keyed UDP
protocol, in which the use of different port numbers, in a
sequence, allow for the destination machine to perceive,
to some extent, how successful the transmission was,
including, what were the packets that were lost, and also to
reorder packets that were received out-of-sequence. While
the description of the base concepts for the Keyed UDP are
described this recent paper [3], its authors did not provide
simulations that proved the advantages of the new protocol.
Please note that Keyed UDP does not imply a change in
the UDP format [2] and [3] foresees compatibility between
applications using UDP and Keyed UDP.

This paper presents, in a very condensed manner,
the explanation of the basics of the Keyed UDP and the
first results obtained by simulation regarding different
configuration parameters for the Keyed UDP, including
varying loss ratios and ratios for packets received out-of-
sequence, and different key lengths for the protocol.

As the purpose of this paper is to present the simulation
results in first hand, the interested reader may want to
refer to [3] for a more complete information on the Keyed
UDP proposal. Moreover, as this paper only addresses
the Keyed UDP, the number of papers cited herein is
extremely reduced. Interested readers are also invited to
contact the authors to further research on this new topic.
Also noteworthy is that although there is a large corpora
of science published on UDP, TCP and in general on all
protocols, the KUDP proposal is radically new in the sense
that uses a sequence of port numbers to transmit data.
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While all existing protocols send data from one source port
to one destination port, KUDP sends data from a sequence
of source ports to a sequence of destination ports in a
round-robin manner, in its most elaborate configuration.
Also, KUDP is not related at all to Multipath TCP (MTCP)
[4] as MTCP is supported by several paths using TCP
to enhance and render more robust the process of data
transmission. A conceptual comparison of KUDP with
similar protocols has been already reported in [3].

The remainder of this paper is organized as follows:
this paragraph concludes Section 1; Section 2 presents a
quick overview of the Keyed UDP; Section 3 presents the
design of the simulations and the obtained results; Section 4
concludes the paper, including the discussion of the results,
the conclusions and future steps.

2 KEYED UDP
While UDP, TCP and other protocols send segments from
one port in the source machine to another port in the desti-
nation machine, the Keyed UDP protocol sends packets, for
example, from one port in the sender machine to a series
of ports in the destination machine. The receiver machine
opens a set of ports and expects the packets to be received
in a given order, e.g. the sender sends the packet using
its IP address and its port, say, port 50000, and sends the
packets to the destination IP address, and to ports e.g. 59000,
59001, 59002, 59003, 59004. After receiving the packets, the
destination machine can forward its payload to the relevant
application. Figures 1 and 2 show a visualization of a data
transmission where all packets were received successfully,
and another where one of the packets was lost.

Fig. 1. Keyed UDP transmission (adapted from [3]).

Fig. 2. Keyed UDP transmission with one packet lost (adapted from [3]).

Yet, if the received packets are received in a different
order, say, 59000, 59001, 59003, 59002, 59004, then the
destination machine can reorder the packets based on the
expected sequence for the port number. Or, if packets arrive
at ports 59000, 59001, 59003 and 59004, the destination
machine can infer that one packet was lost (depicted in Fig.

2). This trivial example considered a key of length 5, being
the key length the number of ports minus one used for the
data transmission. It also considers that the ports were open
in the destination machine, on what authors in [3] termed
destination keyed UDP (dKUDP). Keys can be applied at
the sender side, or in both the sender and the receiver side,
keys can be non-sequential and keys can be dynamic over
time, as authors in [3] propose.

For the sake of simplification of this summary
explanation on the possible working of the Keyed UDP, it
shall be assumed that both the source and the destination
applications have hardcoded information on the ports
that are used during data transmission, much in a similar
manner to a HTTP server that ”knows” that it has to listen
to port 80, and a HTTP client ”knows” that it needs to
address its requests to port 80 of the server. Nevertheless,
authors of [3] considered other means of exchanging or
inferring the information relative to the communication key.

In [3] an algorithm to recover an out-of-sequence and
lossy sequence of packets was also proposed and termed
Stream Reconstruction Algorithm (SRA for short). This
algorithm uses an election process on a list of multiple
iterations on an array of received packets. While other
algorithms may be developed with that purpose, this
research used the proposed election algorithm in the
simulations.

Authors of the Keyed UDP do not consider what hap-
pens at the destination machine after a packet was dis-
covered missing, and leave the actions that may be taken
open for additional contributions. The idea that the Keyed
UDP can to some extent identify which packets are missing,
leaves room to, for example, request them again from the
sender machine, or in the case of real time communication,
to use the data received in the precedent and subsequent
packets to infer the content of the missing packet, by
performing data imputation. In [3] the authors present a
number of open issues, being the ones interesting to this
research as follows:

1) the simulation and validation of the efficiency of
Keyed UDP;

2) the trade-off between the number of ports in a key
and the effort posed to the Stream Reconstruction
Algorithm.

In particular, point 2) refers to another issue that was
not addressed in [3], this being the efficiency of the protocol
and the performance of SRA with different key lengths.
The following section describes how the simulations were
designed to address this question, and in conclusion, allow
the assessment of the usefulness of the Keyed UDP.

Regarding the computational cost for the operating
systems of having a large number of open ports, either
for sending and/or for receiving data, this consists mostly,
in the classical approach of the client-server model,
in the addition of new variables, usually for port or
communication handles, to allow the reception of the
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data forwarded from the TCP/IP protocol stack that is
implemented. This scenario is similar to opening a new
tab in a browser application and making a new web page
request, being therefore quite common. Authors in [3]
considered the alternative of a new design for the TCP/IP
protocol stack, in which case, the segments would be
handed to a transport layer operating in promiscuous
mode, that would receive the communications to all ports,
processing it as adequate.

KUDP may be used in scenarios where data transmission
is important but not critical, such as e.g. in sensor networks,
where a sensor needs to transmit a small amount of data, but
transmitting it at a particular time or at a later time is not
relevant for the solution, or e.g. in applications for real time
voice and/or video communication where data imputation
of a lost parcel of data is feasible. The use of KUDP as a
substitute of TCP is not foreseen at this stage. Finally, to
the authors’ best knowledge, this is the only protocol that
allows for some degree of information regarding the success
and out-of-sequence correction of received packets using an
UDP segment format with transmission zero-overhead.

3 SIMULATION AND RESULTS

To assess the efficiency of the protocol, a number of tests
were devised. Generally the tests can be described as fol-
lows:

1) Generate a number of packets that will be sent to a
destination machine, creating the initial sequence;

2) Using a predefined threshold for loss or for pack-
ets received out-of-sequence, determine if a given
packet is going to be lost or going to be received
out-of-sequence; if the packet is marked to be re-
ceived out-of-sequence, swap it with the subsequent
packet;

3) After the initial sequence has been processed con-
taining missing packets or packets received out-of-
sequence, the destination machine applies the SRA,
creating the reconstructed stream;

4) Compare the reconstructed stream with the initial
stream and compute the errors, these being the
number of missing packets not correctly identified,
or the number of packets received out-of-sequence
not correctly placed in order.

The computation of the efficiency is also here interpreted
in a strict sense, i.e., the success of the algorithm is accounted
for, only if the packet in the final sequence is at the exact
same position in the initial sequence, or if the packet was
lost and the its loss was duly identified. Therefore, the case
of false negatives and the case of false positives are both
considered as errors.

These tests considered only dKUDP, and each simula-
tion for this test was run 100 times. The results shown in
this section are the average of all the runs. Also, as the
probability for a packet loss or out-of-sequence packet was
random and calculated for each packet, so the overall ratio
for induced errors in the transmission is always a number

near the predefined threshold.
The parameters for the simulation were defined as follows:

• Number of generated packets per stream = 4 times
the size of the key

• Number of runs for each simulation = 100
• Key lengths considered = 5, 10, 15, 20, 50, 100 and

200
• Thresholds for packet loss = from 1% up to 25%
• Thresholds for packet received out-of-sequence =

from 1% up to 70%

In this simulation the number of generated packets that
compose the initial stream is limited to four times the size
of the key, particularly because as the SRA is intended to be
used in real time, with the election occurring as the packets
arrive, the effect of the SRA is limited to a range that is never
larger than the size of the key. Yet this is not a real limitation
as each simulation was run 100 times and the results here
shown are the average of all simulations for each scenario.
Also, the lower thresholds for lost packets was set to 25%
for two reasons:

1) the computation of the efficiency metric of the algo-
rithm is strict, i.e., if a packet was expected to arrive
in the nth, and instead arrives at the (n+k)th position,
it is still considered an error. Yet, if a sequence of k
packets is lost, this event should not be interpreted
as an error as long as the k missing packets are
acknowledged for;

2) the goal of this initial simulation was to assess the
higher boundary of success of the algorithm, as
there are yet no criteria that allow the lower bound-
ary of efficiency where the quality of the communi-
cation e.g. of real time multimedia communication
is still acceptable in terms of user experience.

Nevertheless, this research has some limitations. First
and foremost, the joint occurrence of events of loss and out-
of-sequence of packets was not simulated and will be object
of additional research. Additionally, the SRA described in
[3] considered a size for the buffer equal to n-1, where n is
the size of the key. This research also experimented with
varying the size of the SRA buffer as a function of the size
of the key, and the reported results here consider the buffer
size to be half the size of the key, rounded by excess.

A final limitation of this research is the absence of a
method to identify the end of the transmission. Authors
in [3] refer that as an open issue, suggesting that this
can be detected using a timer. As this is relevant to the
simulation because the initial and the final elections are the
least populated, as there are not as many packets as in the
middle of the transmission to allow the election process, the
simulation assumes that the stream of packets is ended as
suggested, by means of a time-out.

The SRA was implemented as suggested in [3]. Consid-
ering k as the length of the key, the basic rules of operation
can be described as follows:

1) The first set of packets of length k is received;
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2) The packets are sorted into place considering its
destination port number; a list is created to hold the
sorted packets;

3) eventually some positions of this list will be empty,
and these are marked as f for ”failure to receive”;

4) The election process takes place; this is performed
as follows:

a) The first packet can be elected after the first
list is created (when in fact there is only one
candidate for the first position);

b) While the number of packets received is less
than k, the election is done with a smaller list
of candidates;

c) The nth packet can be elected after the nth list
is created;

5) If a new packet arrives, and a new list is created,
repeating points 2, 3 and 4;

6) Else, if no more packets arrive, finish the elections
repeating point 4 until all received packets are
elected.

Authors in [3] provide an example of the election pro-
cess. The implemented election process follows these rules:

• For a given position, the candidate with most occur-
rences wins;

• In case of a tie, the candidate with the first occurrence
wins;

• If a packet is received and never elected, it will be
placed in the first available suitable position (hidden
candidate);

• Once elected, a packet can not be candidate to a new
position.

The results described in Tables 3 and 3 are shown in
a graphical manner in Fig. 3 and Fig. 4. Fig. 3 shows the
efficiency ratio of the SRA for different packet swapping
ratios. The ratio of packets that will arrive out-of-sequence
is a parameter in the simulation, which develops as follows:
when a packet is generated, a random number is launched
to determine if that packet is to be swapped with the
subsequent packet or not. If the packet is to be swapped,
then it’s placed in the next position of the received array.
Yet, if the subsequent packet is also market for swapping,
it will occupy the next position, thus making both the
previous and the current swapping operations cancel each
other.

One of the expected results for this simulation if that for
very large swap ratios, a significant number of packets gets
swapped and eventually, they end up composing a correct
sequence again, justifying the inversion of the concavity of
the curve that can be observed with greater evidence in the
curve for key length of 5 (k=5).

Also as expected, for low packet swapping ratios, longer
key length allows the SRA to recover from 100% packet
swaps. For a key length of 5 ports, the shortest simulated
key, and for packet swapping ratios from 1% to 70%, the
SRA allows for the reconstruction of 99.95% of the original

TABLE 1
Efficiency of SRA for packets received out-of-sequence vs. key length.

10% 35% 50% 60% 70%
K=5 96,95% 81,85% 76,90% 75,50% 75,10%

K=10 100,00% 99,12% 95,92% 92,37% 90,07%
K=15 100,00% 99,83% 98,76% 97,61% 94,24%
K=20 100,00% 99,92% 99,63% 99,06% 97,53%
K=50 100,00% 100,00% 100,00% 99,99% 99,97%

K=100 100,00% 100,00% 100,00% 100,00% 99,99%
K=200 100,00% 100,00% 100,00% 100,00% 100,00%

payload down to 75.10%. Table 3 shows some of the most
relevant values for this feature.

TABLE 2
Efficiency of SRA for packets lost vs. key length.

10% 15% 20% 25%
K=5 99,75% 99,10% 97,50% 95,40%

K=10 99,98% 99,50% 97,82% 96,00%
K=15 99,97% 99,90% 99,25% 96,30%
K=20 100,00% 99,98% 99,25% 97,15%
K=50 100,00% 100,00% 99,70% 97,57%

K=100 100,00% 100,00% 99,93% 98,38%
K=200 100,00% 100,00% 100,00% 99,10%

Table 3 shows some of the most relevant values for
the packet loss scenario. The simulated values for packet
loss ratio varied from 1% to 25% (not all shown in the
table). It can be seen that the identification of the missing
packets is in average achieved for over 95% of the packets
independently of the key size and of the packet loss ratio.
This means that the SRA was able to identify more than
95% of the packets that were lost even when 25% of the
packets were lost. This performance peaks 99.10% of lost
packet identification when a key of 200 ports is used.

Fig. 4 shows the plot data for the efficiency of SRA when
the stream of packets is subject to packet loss. As expected,
longer keys return higher efficiencies, i.e., Keyed UDP using
longer keys (100 ports or more) is able to identify more than
98.38% of the packets that were lost at a 25% packet loss
ratio. Also, at this loss ratio, the 50 ports long key enables
Keyed UDP to identify 97.57% of the packets that were
lost, and at a 15% loss rate, the 50 ports key is also able to
identify 100% of the lost packets.

Fig. 3. Efficiency of the SRA for different packets swapping ratios and
different key lengths.
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Fig. 4. Efficiency of the SRA for different packets loss ratios and different
key lengths.

4 DISCUSSION AND CONCLUSIONS

The User Datagram Protocol is used when fast data
transmission is necessary and data transmission success
control can or must be waived, as this protocol does not
provide any type of control and therefore, does not allow
for any success metric. On the contrary, and at the expense
of communication control mechanisms implemented by
control packets, the Transmission Control Protocol allows
for a fully controllable data transmission, including lost
packet re-transmission through the use of sequence and
acknowledgment numbers that both the sender and the
receiver exchange.

The room for an almost reliable protocol seems to exist
in a number of situations, first and foremost in multimedia
real time communications, where the receiving machine
can use the ability to compute transmission success
metrics that may allow for additional features. Other
possibility also described in the Keyed UDP initial paper
considers the use of this protocol in Machine-to-Machine
communications, when data integrity is relevant, but if a
corrupted communication is received, the system is not
compromised and is able to recover in the next transmission
slot.

The Keyed UDP proposal, as described in [3],
maintaining the format of the UDP segment, and promising
a zero overhead data transmission with some degree of
control, was further researched and its efficiency was
assessed using simulation. The scenarios of packet loss
and packets received out-of-sequence were simulated, for
different levels of severity of these transmission hazards,
and for different key lengths.

As expected, longer keys return higher efficiency results,
and for example, a key with length of 50 ports can identify
and correct 99.97% of the packets received out-of-sequence,
and for keys of 100 ports, if a stream is received having 70%
of the packets that were received out-of-sequence, the SRA
can reconstruct the original stream up to 99.99%.

Also in the scenario of packet loss, a key of 50 ports
can identify which packets were lost with 97.57% accuracy,
considering a 25% loss ratio. For a key with 200 ports and

25% lost packets, the success ratio of the reconstruction
algorithm can reach 99.10%.

As main conclusions, it can be noted that the
implemented SRA allows for the demonstration of the
success of the almost-reliable Keyed UDP protocol, given
the rates of success for the reconstruction of the original
sequences with either packets received out-of-sequence and
with packets lost.

Another conclusion may be that, given the degree of
success in the identification of the lost packets, larger keys
need to be researched, and the SRA needs to be further
fine tuned. For example, it would be very interesting to
see what happens when the size of the SRA buffer is not
a linear function of the size of the key, mostly because the
size of the SRA buffer has impact in the delay of the data
being handed over to the application layer.

Also as additional research, the combined occurrence
of packets received out-of-sequence and packets lost needs
to be addressed, keeping the ratios for these two types of
events at a realistic level. Unfortunately, it was not possible
to search the literature for realistic levels of packets arriving
out-of-sequence not for packets that were lost.

Finally, it is also believed that the length of the
simulations need to be defined not in function of the
length of the key, but for a predefined set of numbers of
transmitted packets.
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