arXiv:2009.09371v1 [cs.LG] 20 Sep 2020

Estimation of Individual Device Contributions for
Incentivizing Federated Learning

Takayuki Nishio
Graduate School of Informatics,
Kyoto University,

Kyoto, Japan
nishio@i.kyoto-u.ac.jp

Abstract—Federated learning (FL) is an emerging technique
used to train a machine-learning model collaboratively using
the data and computation resource of the mobile devices with-
out exposing privacy-sensitive user data. Appropriate incentive
mechanisms that motivate the data and mobile-device owner to
participate in FL is key to building a sustainable platform for FL.
However, it is difficult to evaluate the contribution level of the
devices/owners to determine appropriate rewards without large
computation and communication overhead. This paper proposes
a computation-and communication-efficient method of estimating
a participating device’s contribution level. The proposed method
enables such estimation during a single FL training process, there
by reducing the need for traffic and computation overhead. The
performance evaluations using the MNIST dataset show that the
proposed method estimates individual participants’ contributions
accurately with 46—49% less computation overhead and no
communication overhead than a naive estimation method.

Index Terms—Federate Learning, Incentive Mechanism, Con-
tribution Estimation, Contribution Metric

I. INTRODUCTION

The expanded use of machine learning (ML) has empowered
a wide variety of Internet-of-Things (IoT) applications, includ-
ing fine-grained road-traffic and pedestrian prediction, fine-
grained environment prediction, anomaly detection in network
systems, and fraud detection in financial transactions [[1]], [2]].
Generally, ML requires tremendous computational power to
quickly produce the analytical results. The steady growth of
cloud computing platforms (e.g., AWS, Microsoft Azure, and
Alibaba) has supported ‘resource-heavy’ ML computing.

Data used by ML for IoT applications are generated by the
IoT devices themselves, which are located at the network edge
and include sensor devices, smartphones, and smart vehicles.
People engaged in this activity have found this scenario to be
problematic for the following two reasons. First, individuals
and private organizations are concerned about the privacy of
their data when sharing them with an entity that operates
an IoT application. After the EU adopted its general data
protection regulation (GDPR) [3], privacy became a top-
prioritized issue with regard to IoT applications. The second
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reason concerns bandwidth costs, which individuals or private
organizations must bear to support their IoT needs. As the
volume of data increases, such bandwidth costs will become
more problematic [4], [5].

Federated learning (FL) was invented to tackle both of
the above two issues [6]. With traditional ML, the training
dataset is usually stored at a central entity. Data must be
first collected from the data sources to facilitate the learning
process. FL focuses on data integration methods that comply
with privacy and security laws. Under FL, data owners employ
privacy protection techniques (e.g., homomorphic encryption,
secret sharing, and differential privacy) to contribute model
parameters trained on their own datasets to a federation. The
federation then combines these local model parameters to
train a more effective collective ML model. This allows the
learning process to leverage the computational power of the
data sources to train the model, similar to crowdsourcing.

Although FL has shown great advantages in enabling col-
laborative learning while protecting data privacy, it still faces
an open challenge of incentivizing owners of IoT devices to
join the FL effort by contributing their computation power
and data [7]. An intuitive idea is to reward participants
according to their contributions. However, it is difficult to
accurately evaluate their contributions. It has been reported
that the relationship between model accuracy and the amount
of training data is nonlinear. The model accuracy depends
on model complexity and data quality. This accuracy can
hardly be predicted in advance. Generally, in FL, data are
unbalanced and non-i.i.d. between clients: as the training data
present on the individual clients is collected by the clients
themselves based on their local environment and usage pattern,
both the size and the distribution of the local data sets will
typically vary heavily between different clients [8]]. Therefore,
accurate estimation of individual contribution levels with small
computation and communication overhead is a key to the
success of incentivizing participants in FL.

This paper proposes a method that estimates the individual
contribution level of FL participants with no overhead traffic
and little computation overhead. Conventionally, a direct and
accurate way of estimating their individual contribution levels



is to first measure the degradation of model accuracy by
removing the local model provided by each participant. This
method is more computation-and communication-resource
consuming, because it must repeat entire FL processes as many
times as the number of participants. The proposed method
achieves estimation during a single FL process with small
computation overhead and no overhead traffic. This is helpful
for the incentive mechanism of FL when quickly determining
rewards for each participant on the basis of their contribution
levels. Of course, accuracy of the estimation must be also
ensured. In this paper, performance evaluation using a real
dataset is conducted to validate the proposed method in terms
of estimation accuracy.

II. PRIOR WORKS

Several studies on FL incentive mechanisms were published
in 2019 and 2020, suggesting that this research topic is
building momentum. Several basic analyses have been pre-
sented [9]-[12]. Pandey et al. designed a framework in which
FL-participating clients iteratively solved the local learning
subproblems to meet an accuracy level that was subject to an
offered incentive [9]. A communication-efficient cost model
for the participating clients was established to formulate the
incentive mechanism and to induce the necessary interaction
between the mobile-edge computing (MEC) server and the
participating FL clients. Introducing a two-stage Stackelberg
game, they analyzed the game’s equilibria and the response
behaviors of the participating clients. Lee et al. designed a
distributed learning resource management mechanism over
multiple MECs owned by different operators [[10]. They also
presented a game theoretic approach that focused on analyzing
the market behaviors and the economic benefits of FL by for-
mulating and analytically solving a Stackelberg game model.
Kang et al. adopted contract theory to design an efficient
incentive mechanism that mapped contributed resources into
appropriate rewards to entice mobile-device owners possessing
high-quality data to join FL and overcome information asym-
metry issues [11]. They presented the problem formulation
and the optimal contract design of their mechanism and
showed its superiority using the Stackelberg game model.
Chen et al. modeled and formulated the mechanism-design
problem with type-imposed externalities [12]. For quasi-
monotone externality-setting, they provided a revenue-optimal
and truthful mechanism. For the general valuation functions,
they provided both necessary and sufficient conditions for all
truthful and individually rational mechanisms.

The method of determining rewards for clients is a key
issue for FL incentive mechanisms [13]-[15]. Kang et al.
applied reputation as the necessary metric needed to assess the
reliability of an FL-worker candidate, thus ensuring reliable
worker selection. High-reputation workers bring high-quality
data (i.e., high accuracy and reliability) to model training, gen-
erating reliable local model updates for FL tasks. Liu et al. sug-
gested that, to properly incentivize data owners to contribute

their efforts, the Shapley value (SV) was often adopted to fairly
assess their contribution [14]. To help FL systems compute
SVs to support sustainable incentive schemes, they proposed a
blockchain-based peer-to-peer payment system: FedCoin. The
SV of each FL client reflected its contribution to the global
FL model in a fair way. It was calculated using the Proof-
of-Shapley consensus protocol, which replaced the traditional
hash-based protocol in existing blockchain proof-of-works
method. Toyoda and Zhang introduced a competitive model-
update method so that any rational worker who followed the
protocol could maximize their profits. Each worker chosen in
a certain round selects the top model updates submitted by
workers in the previous round and updates their own model.
Here, workers’ reward is decided by the vote of the next
round of workers. The motivation of choosing the models that
achieve the best k models is that their model updates will have
a greater chance to be voted for in the next round, meaning
that more rewards will be obtained. This design will naturally
compel rational workers to behave honestly without any heavy
cryptography or special hardware.

Sustainability and fairness are also key issues of FL in-
centive mechanisms [7], [16], [17]. Yu et al. considered a
method to quantify the payoff for each data owner in order to
achieve long-term systemic wellbeing [16], [17]. Participants
must incur some cost for contributing to the FLL model with
their local datasets. The training and commercialization of the
models take time. Thus, there are delays before the federation
has a sufficient budget to pay the participants. They further
addressed this temporary mismatch between contributions and
rewards. To address the issues of unshared decisions and
ambiguous contribution evaluations, Zhan et al. designed an
algorithm based on deep-reinforcement learning (DRL), which
can learn system states from historical training records [7].
DRLs can adjust the strategies of the parameter server and
edge nodes according to environmental changes that may
impose different requirements on training data.

Incentive mechanisms for FL in heterogeneous resource
environments have also been studied [[18]—[20].

To the best of our knowledge, no prior work has addressed
the reduction of computation and communication overhead for
estimating the individual contribution levels of FL participants.

III. PROPOSED METHOD
A. System model

Figure [I] shows our system model. The system comprises
a server and multiple FL clients. At each client, the sensor
generates data to be used for ML. The receiver receives an
ML model from the server and stores it. The learner performs
the training process to update the ML model using the data
obtained from the sensor. The transmitter uploads the updated
ML model to the server. The server ultimately receives the
updated ML models from all the clients and stores them. The
aggregator performs the model aggregation to update the ML
model using the ML models obtained from the clients. The
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Fig. 1. System model

evaluator estimates the individual contribution level of each
client by comparing the ML models before and after being
updated using the clients’ models. The evaluator sends back
the rewards to each client based on its contribution. Note that
decision making by clients is out of the scope of this paper
and will be included in future work. The decision maker at
each client makes a decision to participate in FL if the reward
is sufficient to compensate the cost of contribution of a client
to the FL. Otherwise, a client leaves the FL.

B. Design metrics to evaluate client contributions

Evaluating the contributions of each client accurately is not
easy, because it is difficult to explicitly describe the actual
improvement of model performance based on the quality of
the clients’ data and model (e.g., data amount, data variety,
noisy label, the number of epochs, and noisy gradients, etc).
Therefore, we next discuss model-performance based metrics
that can be used to estimate the contributions of each client
based on trained model performance.

Let C = 1,...,c be a set of indices that describes ¢
clients. The amount of data samples possessed by client ¢ and
the data distribution are denoted as d; and v;, respectively.
M; (") denotes the model updated by client ¢ at round r, and
Mg ) denotes the model aggregated by those updated by a
subset of clients, S C C. MY is defined as an initial model
the parameters that are randomly determined. P(M) is the
performance score of model M, and the validation accuracy
or loss can be used for the score.

In each round, each client updates Mé U with its own
data and uploads an updated model M, (") The server then
aggregates the models into Mé ). The round is repeated until

the P(Mc(r)) or r achieves a certain threshold.

Naive contribution metric

Let Ms be a global model at the end of the FL where
only clients in S participate in. We define a naive metric for
evaluating contributions of client ¢ as the gain in performance
when the client joins the FL. The gain can modeled as the
relative performance of a model that includes all clients to

that which excludes only client 7. Specifically, the normalized
relative gain is given as:

P(Me) — P(Meygiy)
Pice P(Mc) — P(Me\ (i)’
where P(Me\ ;1) indicates a performance score in which all
the clients excluding client ¢ train the model. The naive metric
is intuitive, reasonable, and calculable. However, calculating
the metric requires additional FL training to obtain Me\ (3,
which causes a large computational overhead and traffic over-
head. Specifically, the computation and traffic overhead of
calculating the naive metric can be given as:

Naive __
Gaive —

ey

Comp. : ZT’cnd server T Z C(]) @)
ieC jec\{i}

Traffic : Z Tend Z QGSZdev @)
ieC jec\{i}

Where Tend 1S the number of rounds at the end of the FL task.
C ) and Cserver denote the amount of computations for model
update, namely stochastic gradient decent (SGD) operations,
at client 5 and the computation at the server, which is model
aggregation and model validation. @model denotes traffic for
transmitting a model from/to client j. The usual FL process
causes computations of model aggregation and model updates
at each client, the sum of which is Cserver+ jec ud , at each
round. Traffic is also generated for distributing and gathering
models to/from FL clients at each round. The round is repeated
Tend times. For calculating the naive metric for client ¢, the FL
process with C \ {7} must be conducted individually, and thus
the additional computation and traffic are as shown in (Z) and
(3). The computation cost and traffic can be huge since the
number of clients are expected to be large in mobile networks
and the data size of the model could be huge, especially when
using deep neural networks.

Therefore, we require an intuitive and reasonable, but more
computation-and communication-efficient metric to evaluate
clients’ contributions.

Step-wise contribution

We propose a light-weight but intuitive contribution estima-
tion method based on step-wise contribution calculation. The
metric used in the proposed method is defined as the sum of
gains that include the client model in each round, calculated
as:

Ten (m) (r)
T PO PO

Sice Trmt P(ME) = P(ME),)

where the denominator is used for normalization. The metric
evaluates how much the client’s model improves the global
model at each round and regards the sum of the step-wise
contributions as the contribution of the FL client. This is based
on the intuition that a client that improves model performance
at each round will also contribute to the improvement of the
final overall model performance.
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used to obtain M&) i is calculated from Mér_l)

the effect of .M,i(r_1 while (M 1;3) never involves the effect
of client ;. However, the proposed metric can be calculated in
Tend FL training rounds, i.e. the FL operator does not need the
additional FL training rounds while the Naive metric requires
(¢+1)-7eng FL training rounds. The proposed method requires
an increase in model aggregations, model validations and gain
calculations by a factor c - 7enq compared to the original FL
training process. The computation and traffic overhead caused
by the proposed method is described as

that involves

Comp' . Tend * C- Cvserverv (5)
Traffic : 0. (6)

The additional computation, that is (¢ — 1)-times model aggre-
gation, is caused at the server at each round. The calculation
is completed by the server, and no traffic overhead is caused.
Comparing with the naive metric, the computation overhead
is reduced by

c: Cserver

¢ Cserver + Ez‘ec ZjeC\{i} Cl(xzi)
Generally, because the computation power of the server is
much higher than those of clients, the additional computation
of the proposed method is not a critical issue.

Besides incentive/reward selection, the proposed metric can
also be used for other mechanisms such as e.g., a client
selection problem where the FL operator selects a subset
of clients to participate in a FL round for reducing latency
for model distribution and uploading with maintaining the
improvement of model performance by the FL [21]].

(N

Other heuristic metrics

Based on the intuition that the clients having copious and
diverse data improves the global model, two heuristic metrics
can be defined:

Heuristicl : GH! = Dl/z D;, 3
i€C
Heuristic2 : GH? = D, - v;/ Z D - vy, )
i€C

where D; denotes the number of data sample stored by client
1. v; denotes the varieties of the data owned by client ¢, which
refers specifically to the number of classes of the data samples
stored by client 7 in classification tasks and the range of the
target values in the regression tasks. These metrics are intuitive
and easy to calculate. Furthermore, it can be obtained prior to
FL training process. However, the metrics do not work in some
cases. Supposing that there are three clients having the same
number of data with four classes at each client, the client’s data
class differs from those of the others. The other clients’ data
classes overlap somewhat. In this case, the heuristic metrics
become the same value for each client. However, their actual
contributions may differ.

IV. EXPERIMENTAL EVALUATION
A. Setup

A total of ¢ = 3 clients participated in the FL and joined
all the FL rounds. The clients trained their local models using
their own data, uploading them to a server that aggregated the
models into a global model. We adopted an image classifica-
tion task leveraging MNIST dataset [22], which is a dataset of
handwritten digits and is commonly used as a benchmark. The
MNIST dataset consists of 60,000 training images and 10,000
testing images with digits of 0-9 stored as 28x28 pixels.

The small portions of the training dataset were distributed
to ¢ = 3 clients. The total number of data samples stored
by Client 3 was fixed to D3 = 350, and those of Client 1
and 2 were D1, Dy € [50,200,350]. We considered a non-
i.i.d setting, wherein each client possessed data samples from
specific classes of the 50,000 training samples. Specifically,
Client 1 stored D; samples by randomly sampling from vy = 7
classes of digits (i.e., 0-6). Client 2 stored D, samples by
randomly sampling from vo = 7 or 5 classes of digits (i.e., 0
or 2 to 6). Client 3 stored 350 samples by randomly sampling
from v3 = 3 classes of digits that did not overlap the classes
Client 1 (i.e., 7-9). In these settings, Client 1 stored samples
of the most various classes (v > vy > v3), and Client 2
stored digits that were stored by Client 1. The digits of 7—
9 were stored by only Client 3. Therefore, the contributions
of Client 2 were expected to trend smaller than those of the
other clients. The 10,000 testing images were used for the
model validation at each round.

We implemented convolutional neural networks as global
and local models with TensorFlow [23]]. Specifically, the model
consisted of two 3 x 3 convolution layers of 16 and 32
channels, each of which was activated by a ReLU and batch
normalized. Each convolution layer was followed by 2 x 2
max pooling. The last max pool layer was followed by two
fully-connected layers of 64 units with ReLU activation and
another 10 units activated by soft-max. The batch size, the
number of epochs for local training E, and the number of FL
rounds were set to B = 50, EF = 30, and 30, respectively. A
SGD having a learning rate of 0.25 was used for the optimizer
of each client.

We evaluated the errors of the metrics defined in Sect.
from the Naive contribution metric. The error was defined as
Euclidean distance between the metrics, which is written as
follows:

E = \/(Gll\laive _ G*{)Q + (GQNaive _ G§)2 + (G?l:Iaive _ G§)2
(10)

B. Results

Figure [2] depicts a total computation time required for
the FL and evaluating contributions, which did not include
latency for model transmissions. Thus, this result indicates
the computation load of each method. Since the computation
load to calculate heuristic metrics was negligible, which was
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Fig. 2. Total computation time for the FL and evaluating contributions.

hundreds microseconds in the experiments, the computation
time of the heuristic methods were almost the same as the
usual FL. On the other hand, the naive and proposed method
increased in the computation time. However, the proposed
method increases much shorter time than the naive method,
which means that the proposed method requires much smaller
computation overhead as discussed in Sect[lII-B}

Figure [3| depicts the contribution scores of each client when
Clients 1 and 2 had 350 training samples of 0-6 digits, and
Client 3 has 350 samples of 7-9 digits. In the every methods,
the contribution scores of Clients 1 and 2 were nearly the same.
This is reasonable scoring, because Clients 1 and 2 had the
same number and variety of training samples. On one hand, the
score of Client 3 was higher than the others according to the
naive and proposed methods. This is also reasonable, because
the data stored by Client 3 was unique, whereas training data
for integers 0—6 were stored at both clients. When Client 3
left the FL, the global model could not achieve an accuracy
higher than 0.7. The model could, however, achieve greater
than 0.7 if the Clients 1 or 2 left, because both had training
data of 0—6 digits. The heuristic methods for Clients 1 and
2 did not consider the data uniqueness and gave the same or
lower score to Client 3, which is unreasonable in this scenario.

Figure [ depicts the contribution scores of each client when
Clients 1,2, and 3 had 350 training samples of 0-6 digits,
2-6 digits, and 7-9 digits, respectively. In this setting, the
contributions of Client 2 must have been smaller than Client
1, because Client 2 had a smaller variety of training samples.
The naive and proposed methods gave the lower score to Client
2 as expected, whereas the heuristic methods did not.

Figure [3] depicts that errors of scores from the naive method
when changing the data amount of Clients 1 and 2, D1, Ds.
Here, Clients 1 and 2 had training samples of 0—6 and 2-6
digits, respectively. The proposed metric achieved a smaller
gap from the naive method when the training samples of
Clients 1 and 2 became larger, whereas the gaps in the other
methods became larger.

I Naive
0.77 v Proposed

0.6+ I Heuristicl
[ Heuristic2

Clientl Client2 Client3

Fig. 3. Client contribution scores when Clients 1 and 2 had 350 training
samples of 0-6 digits, and Client 3 had 350 samples of 7-9 digits.
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Fig. 4. Client contribution scores when Clients 1,2 and 3 had 350 training
samples of 0-6 digits, 2-6 digits, and 7-9 digits, respectively.

Figure [6] depicts that the errors that occurred when Clients
1 and 2 had the same classes of training samples. This result
shows cases in which the proposed method achieved larger
errors than other methods. When D; and D, were larger
than 200, the proposed method achieved lower errors than
other methods as with the results shown in Figs. BH3 On
the other hand, when D; or D5 was 50, the error of the
proposed method became larger than other methods. When
Dy or Dy was 50, the proposed method estimated that the
contribution of the client with 50 data samples was less than
other clients but not zero, while the naive method estimated
that its contribution was almost zero, which made the larger
gap. This is because that the model improvement at each
round by a client with small but diverse data samples is little
but unstable, which could cause large but temporal model
improvement and increase in the step-wise contribution metric
employed in the proposed method. This drawback of the
proposed method can be mitigated by restricting clients with
so small amount of data, which are not expected to improve
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the global model, from participating the FL.

V. CONCLUSION

This paper proposed an intuitive and computation-and
communication-efficient method to estimate the individual
contribution levels of participants in FL so as to determine
appropriate incentive mechanisms for participation in FL. The
proposed method enabled the evaluation during a single FL
training process, there by reducing the need for traffic and
computation overhead. The performance evaluations using the
MNIST dataset showed that the proposed method estimated
the contributions of the individual clients with much smaller
computation and communication overhead than those of the
naive method.
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