
OpenSurgery for Topological Assemblies
Alexandru Paler

Johannes Kepler University, 4040 Linz, Austria
Austin G. Fowler

Google Inc., Santa Barbara, 93117 CA, USA

Abstract—Surface quantum error-correcting codes are the
leading proposal for fault-tolerance within quantum computers.
We present OpenSurgery, a scalable tool for the preparation of
circuits protected by the surface code operated through lattice
surgery. Lattice surgery is considered a resource efficient method
to implement surface code computations. Resource efficiency
refers to the number of physical qubits and the time necessary
for executing a quantum computation. OpenSurgery is a first step
towards methods that aid quantum algorithm design informed
by the realities of the hardware architectures. OpenSurgery
can: 1) lay out arbitrary quantum circuits, 2) estimate the
quantum resources used for their execution, 3) visualise the
resulting 3D topological assemblies. Source code is available at
http://www.github.com/alexandrupaler/opensurgery.

I. INTRODUCTION

Practical quantum computing will be almost impossible
in the absence of quantum error correcting codes (QECC),
because the quantum hardware is not as reliable as the classical
hardware. QECCs need to handle comparatively high error
rates, and at the same time the QECCs should introduce
low hardware (physical qubits) and time overheads. An ideal
QECC should have a straightforward structure, such that they
are easy to implement in hardware. One of the realistic QECC
choices that fulfils most of the previous conditions is the
surface QECC, and major quantum computer proposals are
using it to implement reliable quantum computations. Surface
code protected computations can be implemented by braiding
[1], lattice surgery [2], [3], and twists [4].

Lattice surgery seems to be the most resource efficient
option [3], because its overheads are for most of the usual
computations lower than when using braiding [5]. In the
following, we introduce OpenSurgery, the first compiler of
arbitrary quantum circuits to lattice surgery structures. We
describe the design of OpenSurgery, its features and perfor-
mance. Finally, we formulate future work.

This section includes a high level overview of the absolutely
necessary concepts for introducing OpenSurgery. A detailed
introduction to surface codes and lattice surgery is available
in [1] and [2]. Lattice surgery uses patches (e.g. Fig. 1) to rep-
resent logical qubits. Each patch is defined over a rectangular
region of physical qubits arranged in a two-dimensional lattice.
Patch dimensions indicate the distance of the surface code, and
this influences the number of physical qubits as well as the
time necessary for the error-correction. Each patch has two
boundary types, and opposite boundaries are of the same type
(e.g. in Fig. 1 there are green and black boundaries). Quantum
circuit gates are implemented by sequences of merge and split

Fig. 1. Lattice surgery CNOT using three patches. The yellow patch is an
ancilla and intermediates between the red patches. Merge and split operations
are performed along patch boundaries (green and black). Operating a patch for
a given time is abstracted as a cuboid. The back row illustrates the topological
assembly resulting after the two merge and splits. The front row indicates how
boundaries are operated: a) identity operation; b) merge and split along the
green boundary; c) merge and split along the black boundary.

operations along patch boundaries. The types of boundaries
used influences the implemented gate functionality.

Compiling circuits for lattice surgery is a multiple step
procedure. First, circuit qubits are mapped to patches. Second,
gates are decomposed into split and merge operations. Third,
the resulting 3D structures representing qubits and operations
are arranged in a space-time volume according to well define
rules. The compilation result is called a topological assembly
and it is a set of cuboids (e.g. Fig. 1). Two dimensions of
the cuboids are the code distance, and the third dimension the
duration for which error-correction is applied.

The three dimensional bounding box of the assembly is
called the equivalent volume and it is a measure of the re-
sources needed to execute the encoded computation (physical
qubits and the time). The equivalent volume is obtained by
multiplying the area of the layout (e.g. 4 in Fig. 1 because we
consider the footprint being a square of four patches and not
only three) with the number of steps (e.g. three). The assembly
in Fig. 1 has a volume of 12.

II. METHODS

OpenSurgery is a scalable research-grade software tool with
a modular architecture. Fig. 2 includes the major components
and their interaction. The tool has an interface to IBM Qiskit
by the usage of the OpenQASM circuit description language.
Other circuit formats, such as Quipper, can be imported into
OpenSurgery through PyZX. The OpenQASM interface can
be used also for importing from Google Cirq, but for such

ar
X

iv
:1

90
6.

07
99

4v
2

 [
qu

an
t-

ph
]

 2
6

A
ug

 2
02

0

http://www.github.com/alexandrupaler/opensurgery

Fig. 2. The architecture of OpenSurgery. Circuits from different frameworks
can be used in OpenSurgery. The resource estimation engine is based on
zxQentiana, and the compiler of multi-body measurements is ProjQube.

circuits the preferred method is over QUANTIFY1 which is
natively built on top of Cirq.

OpenSurgery generates assemblies starting from Clifford+T
circuits, as well as for circuits including arbitrary rotation
gates. The latter gates are decomposed by a Solovay-Kitaev
algorithm implementation 2 into Clifford+T gates. This can be
done more efficiently using modern techniques. However, our
focus here is on laying out a Clifford+T circuit, not achieving
the smallest circuit. Internally, the Clifford+T circuits are
then transformed into sequences of multi-body (multi-qubit)
measurements which are implemented by merges and splits.

For lattice surgery surface code computation, single qubit
gates can be implemented: a) directly on the patch (e.g. the
Hadamard, or the S gate); or b) by merges and splits. For
example, the T gate requires merges and splits, because it is
implemented by teleportation using a CNOT gate. The CNOT,
an example of a multi-qubit operation, is a sequence of two
circuits implementing multi-body measurements (e.g. Fig. 1).
The functionality of OpenSurgery is controlled through a list
of instructions, which are described in Sec. II-B.

A. Automatic Layout and Routing

The layout of an assembly refers to the footprint of the as-
sembly (the two dimensions for hardware). There are multiple
ways of arranging a layout into regions. OpenSurgery is very
flexible, and discretises the layout into patches (tiles) of one of
four region types: 1) distilleries; 2) queues of distilled states
[6]; 3) logical qubit patches; 4) ancillae patches. For example,
in Fig. 3 the magenta region is for a single distillation. The
queues are where distilled states are stored such that T gates
can be implemented without waiting for the distillation to
finish. This may happen if the consumption rate of distilled
states is not constant.

Circuit qubits are mapped to logical qubit patches. Quantum
gates between the patches are implemented by using the an-
cillae patches. There are three parameters which influence the
resource efficiency of a layout: a) the number of distillations
executed in parallel; b) the total number of logical qubits; c)
the maximum routing overhead. The latter is the ratio between
the number of ancillae and the number of logical qubit patches.
All three parameters can be configured in OpenSurgery. The

1https://www.github.com/quantumresources/quantify
2Python version based on https://github.com/cryptogoth/skc-python

Fig. 3. Layout of a topological assembly. (a) The left region is for distillations
(magenta), data patches are in rows (red), ancilla patches (yellow) are between
the data patches to intermediate multi-body measurements. (b) Patches were
placed in two layers. The ancilla are not used, and the distillation procedure is
being executed. Execution time flows from image background to foreground.

most resource efficient layout includes a distillery for a single
distillation at a time.

Minimising the routing overhead is desireable, too. This is
a function of: a) the average number of logical qubits involved
in gate operations; b) how qubits were mapped to patches (e.g.
it may be more efficient to cluster often interacting patches).
OpenSurgery uses an ancilla arrangement that supports all-to-
all connectivity between logical qubit patches. This simplifies
the realisation of merges and splits, but it is not necessarily the
most resource efficient. Connecting data patches is a routing
problem: finding the shortest path formed of ancillas between
two data patches. OpenSurgery computes the shortest paths
between pairs of data patches using the A* algorithm.

B. OpenSurgery Instruction Set

The assembly is generated by processing a sequence of
multibody measurements. These are obtained from arbitrary
Clifford+T circuit gate lists by using the projCube3 software.

OpenSurgery includes instructions to implement the steps
necessary to achieve the multibody measurements and the
quantum gates. As a result, a topological assembly can be
seen as the result of the OpenSurgery compiler responding to a
sequence of instructions for the reservation, manipulation and
consumption of resources (e.g. distilled states, ancilla patches).
The instruction set will be adapted and improved in future
versions of OpenSurgery.

For single qubit gates which are implementable without an-
cillae in the surface code, the instructions resemble the names
of the gates: V=

√
X , S=

√
Z and H. However, instructions

are more than names for quantum gates. For example, for
a T gate, a distilled A state is necessary. The instruction
NEEDA instructs the queue of distilled states to: a) either
provide a distilled state, or b) to request the distillery to distil
a state. This procedure was described in [6]. For the moment,
OpenSurgery uses layouts that include: a) a queue of capacity
one for distilled states, b) a distillery distilling a single state
a time. Consequently, the NEED_A instruction is blocking, in
the sense that, once called, no other instructions are executed
until a distilled state is available. Once that is the case, to
implement the T gate, the next instruction is MZZ A [qub]
for ZZ-measuring simultaneously the patch of the distilled A
state and the patch of the logical qubit qub. Finally, the MX
A instruction tells OpenSurgery to measure in the X-basis

3https://www.github.com/quantumresource/projqube

https://www.github.com/quantumresources/quantify
https://github.com/cryptogoth/skc-python
https://www.github.com/quantumresource/projqube

the path of the distilled A state. T gate implementation is
probabilistic, and OpenSurgery will automatically provision
an S gate instruction in case a state correction is needed.

Another instruction is INIT [qub], for initialising a qubit
patch in the |0〉 state. The ANCILLA [state] instruction
requests the initialisation of an ancilla patch in |0〉 or |+〉.
The MOVE patch1 patch2 instructs OpenSurgery to move
the logical qubit state from patch1 to patch2. This can be
performed by SWAP gates if along the computed path there
are other occupied patches, or simply by splits and merges
between all the patches on the path connecting patch1 and
patch2. The latter situation is often the case when not all the
ancillae patches are being used. Some instructions require one
time step, while others (e.g. the S gate in Fig. 4) take two
or more steps. This is because of how the different operations
are implemented by physical hardware instructions (e.g. circuit
depth needed for a non-transversal gate).

C. Resource Estimation

The volume of the compiled topological assembly can be
used to estimate the total number of physical qubits and
the time needed to executed the assembly. The estimation
procedure follows [1] and uses the zxQentiana4 software.
Compared to [1], the procedure was improved wrt. to the
number of parameters i.e. distillation box sizes, placement
of distillations in multilevel arrangements, code distances,
physical error-rates, target logical error-rate, automatic com-
putation of number of levels of distillations required, as well
the capability to recommend a minimum distance. The code
assumes that two levels of magic state distillation are possible
and that the distillation surface code distances are different
from the distance of the logical qubits. Default distillation
distances are 15 and 31. Default patch distance is 7, and it is
increased linearly until the target logical error-rate is achieved.

To maintain the scale, the assembly is generated and vi-
sualised (Sec. II-E) with cuboids of size the approximate
largest common divisor of all the distances existing in the
computation. For example, if distances 15 and 7 are used,
distance 15 cuboids are drawn with cuboids of distance 7.

D. Correlation Surface Tracking

Patch boundaries are initialised at predetermined positions.
For example, X-type boundaries in the north and south of
the patch, and Z-type boundaries in the east and west of the
patch. For a shorter implementation of the computations, it is
sometimes advantageous to rotate the patches, meaning that
the position of the boundaries is interchanged by low level
quantum circuits that implement the surface code in a careful
manner not to affect the distance of the error-correction. Patch
rotations do not change the stored logical state.

Bit information along the patch boundaries can be tracked.
This information indicates the sign of the logical operator
of the patch. A correlation surface is defined as the discrete
collection of all the logical operators ordered in space and

4https://www.github.com/quantumresource/zxQentiana

time. The term correlation surface originates from braided
topological code diagrams and is related to the fact that logical
gates are implemented in a measurement-based manner (i.e.
the analogy is the so-called gflow [7]). Correlation surface
interactions can be extracted from the lattice surgery diagrams
as stabilizer truth tables using the ICM formalism [8]. Cor-
relation surfaces are also, more conveniently, called space-
time stabilizers, because they relate the operators of the circuit
inputs to the operators of the outputs.

OpenSurgery keeps track of how the boundaries are po-
sitioned on the patches. This allows the tracking of corre-
lation surfaces/spacetime stabilizers. The tracker includes a
certain degree of automation: it determines automatically if
for a particular multi-body measurement the boundaries are
oriented correctly and, otherwise, these are rotated. In a pair
of neighbouring patches, by rotating one but not the other,
it is possible, for example, to perform an XZ-measurement
instead of only XX- or ZZ-measurements. The work of [3] also
mentions a kind of rotation where a single boundary has both
types at the same time (half of the boundary is of one type, the
other half of a different type) – constructing such boundaries
will be supported in future versions of OpenSurgery.

E. 3D Visualisation

OpenSurgery includes a complete visualisation of the gen-
erated topological assemblies. This can be used for debugging
as well as for visually inspecting potential optimisations of the
resulting assembly. A topological assembly is presented as a
group of cuboids, each being colour coded (e.g. distillation
cuboids have a distinct colour from logical qubit patches),
holding the identification of the gate/measurement that they
belong to, as well as the space and time coordinates. The
core of the visualisation are JSON files storing the assembly
information and custom developed WebGL classes that use
three.js. The performance of the visualisation speed depends
on the computer’s hardware. The figures from this paper are
screenshots of visualised assemblies.

To ease the visualisation of patches and their interaction,
OpenSurgery can automatically scale the patches and introduce
connecting elements between them. An example is Fig. 4b.

The visualisation tool can filter cuboids. For example, it is
possible to see only the output distilled states, or to check how
often a space coordinate is used along the assemblies execu-
tion. Such filters are useful for automating future assembly
analysis and optimisation methods.

III. RESULTS

Previous works analysed the resource efficiency of various
patch arrangements [9], or investigated surgery implementa-
tions of distillation circuits [1], [10]. No work focused on
the automatic compilation of arbitrary circuits which include
distilleries, allowing at the same time the resource estimation
and the 3D visualisation of the topological assemblies.

We analyse the scalability of OpenSurgery using random
circuits (available in the project repository). Two scenarios
are executed: 1) constant number of qubits (100) and linearly

https://www.github.com/quantumresource/zxQentiana

Fig. 4. Compiled assembly that includes a distillation. a) Yellow segments are multi-body measurements. The horizontal empty space between the red segments
(logical qubits) is the ancillae region (cf. Fig. 3). Green boxes represent S gates, and orange segments are qubits re-routed for the S gate to be executed. b)
The same S gate assembly but with a different cuboid scaling and distance between patches in order to ease visualisation.

Fig. 5. Scalability Benchmark. Compilation time for circuits consisting of:
either a fixed number of qubits and increasing number of gates (blue bars), or a
fixed number of gates and increasing number of qubits (red line). Compilation
time grows linearly with number of gates, and is constant with increasing
number of qubits.

increasing number of gates (100, 200, 300, . . . , 1000); 2)
linearly increasing number of qubits (100, 200, 300, . . . , 1000)
and constant number of gates (300). In both scenarios, 50%
of the gate count are T gates.

The gates are translated into multi-body measurements, and
these are compiled sequentially. Parallelisation of such mea-
surements is not, for the moment, performed by OpenSurgery.
Distillations are executed one at a time, and their scale is set
to accommodate two levels. There is a 50% routing overhead
to ensure that all operations can be implemented.

The plot from Fig. 5 illustrates the current scalability
of OpenSurgery. Using an i7 processor and 32GB RAM,
compilation is under 2 minutes for a circuit of 1000 gates
and 100 qubits. The number of qubits does not influence the
compilation time, because measurements are not parallelised.
Implementing parallelisation will be a very complex optimisa-
tion problem, which would influence compilation time. Future
work will focus on such a feature, because it will reduce the
volume of the compiled assemblies. The current version of
OpenSurgery generates a constant overhead associated with
the A* routing such that the total time overhead for computing
routes grows linearly with the number of measurements.

IV. CONCLUSION

We introduced OpenSurgery, a tool for preparing topological
assemblies using lattice surgery. It is, to the best of our knowl-

edge, the first tool that can manipulate arbitrary circuits, and
which has built-in functionality to perform resource estimation
for the resulting assembly volumes. OpenSurgery is a first step
towards faster design automation of practical quantum algo-
rithms. OpenSurgery includes also a 3D visualisation module.
Its scalability was illustrated by preparing large circuits. Future
work will investigate heuristics for compiling more compact
assemblies, and methods for improved assembly analytics.

ACKNOWLEDGEMENT

AP was supported by the Linz Institute of Technology
project CHARON, Google Faculty research awards, and a
Fulbright Senior Researcher Fellowship.

REFERENCES

[1] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Physical
Review A, vol. 86, no. 3, p. 032324, 2012.

[2] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,” New Journal of Physics, vol. 14,
no. 12, p. 123011, 2012.

[3] D. Litinski, “A game of surface codes: Large-scale quantum computing
with lattice surgery,” arXiv preprint arXiv:1808.02892, 2018.

[4] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R. Wootton, “Poking
holes and cutting corners to achieve clifford gates with the surface code,”
Physical Review X, vol. 7, no. 2, p. 021029, 2017.

[5] A. Paler, A. G. Fowler, and R. Wille, “Synthesis of arbitrary quantum
circuits to topological assembly: Systematic, online and compact,”
Scientific reports, vol. 7, no. 1, p. 10414, 2017.

[6] A. Paler and R. Basmadjian, “Clifford gate optimisation and t gate
scheduling: Using queueing models for topological assemblies,” in
2019 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH). IEEE, 2019, pp. 1–5.

[7] S. Perdrix, “Generalized flow and determinism in measurement- based
quantum computation,” New Journal of Physics 9 250., 2007.

[8] A. Paler and S. J. Devitt, “Specification format and a verification method
of fault-tolerant quantum circuits,” Physical Review A, vol. 98, no. 2, p.
022302, 2018.

[9] A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown,
M. Martonosi, and F. T. Chong, “Optimized surface code communi-
cation in superconducting quantum computers,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 692–705.

[10] A. Holmes, Y. Ding, A. Javadi-Abhari, D. Franklin, M. Martonosi, and
F. T. Chong, “Resource optimized quantum architectures for surface
code implementations of magic-state distillation,” Microprocessors and
Microsystems, vol. 67, pp. 56–70, 2019.

	I Introduction
	II Methods
	II-A Automatic Layout and Routing
	II-B OpenSurgery Instruction Set
	II-C Resource Estimation
	II-D Correlation Surface Tracking
	II-E 3D Visualisation

	III Results
	IV Conclusion
	References

