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Abstract—The COVID-19 pandemic has put a strain on
health facilities world-wide. However, remote screening can
lessen the burden on medical resources. If done manually,
screening does not scale to the large number of people that
require it.

We are constructing an automated remote screening system
for Romania. The system needs to support simultaneous
use by many persons (presumably a significant part of the
population). Considering the urgency, we propose a light-
weight web-based platform that can run on low-end server
infrastructure. One auxiliary goal of the platform is for it to
use machine learning (ML) to be able to adapt its screening
results (recommendations) to the evolution of pandemic.

We considered using cloud services, however, due to
privacy considerations regarding medical data and legal
issues we designed the platform to be able to run, but to
not require cloud services. Some of the decisions that we
made were to offload computation (ML model inference) to
the browser, minimize the number of requests to the server,
as well as the code size, and construct a server architecture
that uses buffers for writing to the database and which can
scale on demand.

I. INTRODUCTION

The identification of COVID-19 in China in November
2019 launched global efforts to develop effective tools for
epidemiological investigation, diagnosis, and treatment
(including a vaccine). Many countries have addressed
the COVID-19 pandemic by building mobile or web plat-
form. Although the resulted impact of these platforms
varies, for almost all of them, a common issue remained:
the low number of people that use the platforms.

We are currently developing a screening platform for
Romania. To ensure that it is used by as many individu-
als as possible we have focused on making it accessible
and simple to use.

The proposed platform is web based and will work
on both desktop and mobile systems, to be accessible
by as many users as possible. The platform will present
the user with a set of questions. We limit the number of
questions to make sure that the user does not get dis-
couraged while going through the questionnaire. Based
on the answers that the user gives on the questionnaire,
a machine learning model is used to calculate what is
the best recommendation. The recommendations can be
to go to a hospital emergency room, contact the family
doctor or continue to practice social distancing.

The system we are building, when finished, may be
used on a large scale. Following the solution proposed

in [1], we will not require user login. There will be
no registration, no users, and no passwords. This is
meant to remove an important barrier in the way of user
acceptance. However, this makes the system more vul-
nerable to denial of service (DOS) type attacks. We must
ensure the system’s scalability, to guarantee continuous
operation even during such conditions. Furthermore, we
must ensure efficient use of the resources so that each
server resource can serve as many users as possible.

In this paper, we present the architectural design
decisions that were taken to ensure the reliability of
our platform. The main features are making use of a
distributed, lightweight design, moving as much of the
processing to the user and making use of buffers.

II. SURVEY OF THE GLOBAL TECHNICAL RESPONSE TO
COVID-19

At present, most information on specific and pre-
dictive clinical features of COVID-19 is related to the
hospitalized patients [2], [3]. A recent work [4] highlights
the limitations of current diagnostic and prognostic pre-
diction tools.

In response to the lack of information on COVID-19,
many countries have developed IT platforms that ad-
dress the issue. We conducted a short survey of existing
IT platform solutions aimed at wide population use. The
results of our analysis are summarized in Table I. As
can be observed, the main functionality of the platforms
varies significantly. In countries like the US, France, or
Germany the platforms are non-intrusive, taking the
form of Chatbots that gather information on the user
to provide recommendations. More intrusive platforms
use the phone sensors to determine the individuals with
which the user has been in physical contact. This data is
called contact tracing data and it can be used to trace the
spread of the pandemic. Contact tracing data can take
the form of GPS locations, proximity records (gathered
when two devices using WiFi or Bluetooth are within a
short distance) or presence logs (gathered by manually
scanning QR codes). These QR codes are specifically
encoded and placed at interest locations.

The analysis of data gathered using these platforms
has already showed interesting results. Data gathered
with a platform developed in the UK [5], in which
individuals tracked COVID-19 related symptoms, was
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Table I: National IT platforms in response to COVID-19

Country Beneficiary (Developer) Technology Reference Results/Number of Users
Hong Kong CHP, Department of Health App limit quarantine movement StayHomeSafe 10k+ - imposed
Singapore Government Technology

Agency
Phone alerts + Whatsapp + Tracing
bluetooth

TraceTogether 500k+

Taiwan NHI Health card + colors + rations - NA - imposed
China (Alibaba) App trace QR + Colors + Limit ac-

cess
AliPay QR ex-
tension

NA - imposed

South Korea Government Public maps traces of infected coronamap.site
+ Co100

-

Australia DTA App screening + Notifications of
quarantine

Coronavirus
Australia

500k+

New Zealand Ministry of Health NZ App trace QR NZ COVID
Tracer

5+

India NIC eGov Mobile Apps Trace Bluetooth + GPS Aarogya Setu 100M +
United Kingdom (Zoe Global Limited) Self record symptoms COVID Symp-

tom Study
1M+

Germany DRK (Tyntec, Future of
Voice)

Whatsapp Chatbot - -

France Gouvernement Whatsapp Chatbot - -
Norway Folkehelseinstituttet Contact tracing GPS + Bluetooth +

Public database of infected
Smittestopp 100k+

SUA (IBM, CDC, Microsoft, Ap-
ple, Google)

Chatbot Screening symptoms Apple
COVID-19,
projectbase-
line, CDC
Coronavirus
Self-Checker

-

Brazil Ministério da Saúde Whatsapp Screening Chatbot + pop-
ulation education

- -

analyzed and enabled the identification of anosmia as a
possible diagnostic predictor of COVID-19 [6].

In the last column of Table I we have estimated
the adoption rate of the platforms based on publicly
available data (number of installs on Google Store).
Some countries introduced mandatory use: China re-
stricts access to shops and inter-city transportation; In
Hong Kong, all quarantined people are obliged to use
the application and alerts are set if they leave their
home. When considering countries where the use of the
platform is not mandatory, the adoption rates are small.
India has the highest number of users. However, even
in this case, users remain a small percentage of the total
population.

We focus our efforts in developing a non-intrusive,
accessible self-screening solution. Our goal is to develop
a platform that will be used by many people, and,
with user agreement, will collect a significant amount
of data. This is key to improving the accurate clinical
recognition of the pathology of COVID-19 and predict-
ing its evolution. However, due to the low world-wide
adoption rate of COVID-19 related platforms, we believe
user acceptance to be a primary concern. We aim for
our platform to support and encourage the use by a
large fraction of the Romanian population. Unlike other
COVID-19 platforms [7] we need to insure that we
offer a scalable solution. The benefit of this platform is
both at the individual user and at the societal level, by
improving the management of the COVID-19 pandemic.

III. SCOPE AND GENERAL DESCRIPTION OF THE
PLATFORM

The platform will consist of a component exposed to
the user as a web application and an administrative com-
ponent to be used by operators (eg. medical specialists).
The administrative component will allow the operator
to re-estimate the parameters of the machine learning
model, to visualize statistics and interactive maps as well
as be alerted based on configured triggers. The operator
will be able to start mass notifications, via personalized
SMSs (e.g. to all people in a certain city with certain
symptoms or who are over a certain age).

A user accessing the platform will be greeted with a
set of questions. These will be displayed consecutively,
along with possible answers. The answers given by the
user will be used to generate a recommendation. The
questionnaire will address the following topics:

• Demographic data
• Geographical location
• Environmental risk factors
• Direct or indirect contact with infected persons
• Medical history
• Information on user recent testing, confirmation,

and evolution of an already known COVID-19 dis-
ease

Based on the answers, the application offer one of the
following recommendations:

• Practice social distancing (GREEN)
• Contact family doctor by phone (YELLOW)
• Call emergency services (RED)
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Figure 1: General architecture

The questionnaire will also include items for verifying
the veracity of information. The aim is to label the
data with different confidence levels. Furthermore, the
confidence levels will increase if the phone number has
been verified and it will automatically decrease when
the data is identified as having a malicious source (eg.
multiple entries with the same source, DOS).

At the beginning of the questionnaire the user will
be informed that based on his willingness to share his
phone number and data, he will receive notifications
about the next steps he should follow (e.g. reusing the
platform, consulting a doctor). The phone number will
be verified using a unique code, One Time Password
(OTP) sent via SMS. To those people who have reported
symptoms suggestive of COVID-19, automatic notifica-
tions are sent guiding them to answer a different set of
questions on the evolution of the disease.

The platform has the following components:

• Screening application will be designed as both
a smartphone app and a web page, using cross-
platform technologies. The application displays the
questionnaire (which can be configured) and collects
the answers.

• Data collection module will provide simultaneous
usage by a large number of users. Scalability will
be ensured by using Docker containers [8]. The data
coming from the users will be temporarily stored in
a Redis server [9] before being moved to a MySQL
database. The Redis server is a type of in-memory
data storage, assuring fast reads and writes. In the
event of a sudden increase in traffic, the Redis server
will act as a buffer, storing answers before they can
be written to the database. If this is not sufficient,
new Docker containers with Redis servers will be
started.
With the consent of the user, location data can be
collected by using GPS (directly from the browser

via HTML Geolocation API); IP-based geo-location
(via an IP Lookup service); or user input.
The website uses no cookies and the user can opt
out of sending any data. This insures we comply
with GDPR guidelines. Because the inference is done
in the browser (see next bullet point) the platform
remains completely functional for those who opt out
from data collection. This ensures that the platform
can reach a wider audience (even those who are
concerned about their privacy) and important data
can be collected from those willing to share it.

• Machine Learning Module (AI) will take the form
of a neural network which will determine the risk
of a possible infection based on the user answers.
Based on the level of risk a specific recommendation
is displayed. To collect training data, we plan to
launch the platform with an expert system (decision
tree) designed by a medical team. The collected data
(with possible changes to the recommendations de-
termined by the operator) will be split in a training
and test set. After the neural network is trained the
accuracy is measured on the test set and the result
is presented to the operator. Depending on how it
compares to the expert system, the operator can then
choose to use the trained neural network. Regardless
of the model used, it will be encoded in a JSON
format and sent to the browser, which will conduct
the inference on the user’s answers. The neural
network can be retrained as needed. Furthermore,
we will use machine learning to detect the misuse of
the platform, by labeling data that is likely to come
from malicious sources as untrustworthy. Clustering
of locations will be used to build interactive maps.

• User Notification Module will send customized
messages, on demand. The messages will be sent
via SMS to those who gave their consent and whose
phone numbers have been verified.
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Figure 2: User facing architecture
(LB - Load balancer; VM - Virtual machine)

IV. USER FACING SYSTEM DESIGN

As we showed in Section II, a screening platform
is effective only if it is used by a large part of the
population. As such, we aimed to build a platform that
can scale on demand. To facilitate its extension with
more physical or cloud resources, we decided to make
use of Docker containers as is shown in Figure 2.

Docker Swarm is configured to run over multiple vir-
tual machines (VM). When deployed, it is possible to
add physical machines, however, the use of virtual ma-
chines allows us to add resources faster and to make
use of cloud systems. The number of machines in our
platform is limited only by the Docker system and the
load balancer. Currently we are using the default load
balancer provided by Docker Swarm.

Due to the design of our platform, when we serve
the user webpages, we do not extract anything from
the database. Furthermore, we only make one insertion
when the user submits the answers. We know that
MySQL databases can be slow when handling insert
requests, therefore, we added a buffer between the
database and the webserver in the form of Redis in-
memory data store. When we need to serve many si-
multaneous users, the buffer will gather all the data.
Eventually the data will be offloaded to the database.

Between each layer (user, webserver, buffer, database)
we use a load balancer. This means that we can scale
each layer independently and that requests are spread
over the entire infrastructure. Furthermore, having a
load balancer ensures that if any of the machines stops
functioning others will automatically take over.

The data is stored in the MySQL database only tem-
porarily. Once per night, a batch service will move and
process the data. This is also the moment in which we

create backups. We have not yet considered using a
backup MySQL database due to the costs implied (the
rest of the architecture uses open source solutions) and
because data needs to be stored in MySQL for only one
day.

If hardware resources from multiple sources are re-
quired to serve a high number of users, we plan to use
the DNS system on top of the first load balancer, the
one placed between the users and the webservers. DNS
type A records can support multiple IP addresses and
the browser should randomly choose one when making
a request. This allows the resources to be completely
separated, both in physical location and control plane.

On top of designing the architecture to support heavy
load, even with few resources, we model the front-end
of the questionnaire so that it makes a minimum number
of requests. This helps to maximize the number of users
that we can serve simultaneously.

As previously described, the website displays the ques-
tions one at a time, and it allows the user to answer by
choosing from a list of possibilities. Finally, a score is
computed, and a message is displayed. A naive approach
would have the web client make a request to the server
after every question, sending the answer and receiving
the next question. Finally, when all questions have been
answered the server would compute a score and send
the recommendation to be displayed by the client.

Our approach is to move as much as possible of
the computational load to the client. All the questions,
the possible answers and the model used to make the
inference and decide what recommendation to display,
as well as all possible recommendations, are sent to the
browser in the initial set of requests (requests for the
HTML, CSS, JavaScript and image files). The sum of all
files totals to under 60KB, making the requests very short.
The browser displays all the questions, one after the
other, and determines which recommendation message
to display to the user. When finished, all the answers are
submitted to the server in one request.

An important advantage of using this technique re-
sides in the fact that all the content which is given
to the client in the initial requests is somewhat static.
We say "somewhat static" because we expect that the
model used to determine the recommendation message
will change in time. However, we do not expect this
change to undergo more frequently than once per day.
This means that the file holding both the questions and
the model can be cached and, in the case of a heavy load,
it can be served by a content delivery network with an
expiration timer of one or several hours. All other files
(Images, JavaScript, CSS, HTML) are completely static,
making them trivial to cache. Based on the work in [10],
we decided to pre-load the machine learning model file
used for the screening procedure and to employ the CPU,
rather than the GPU when running the inference process.

The application collects the phone numbers of will-



ing participants, to be able to message them at a later
time (asking them to take another questionnaire or to
send specific recommendations). The phone number can
also serve as user identification. However, before we
send any messages, we want to confirm that the phone
number belongs to the person using our application. To
confirm the phone numbers, we make use of one-time
passwords (OTP), sent over SMS.

Classically, a system that confirms phone numbers
uses multiple requests to the server. The initial request
sends the phone number and triggers the generation of
a One Time Password (OTP). In the browser, the user is
asked to enter the OTP (received by SMS). Once the user
fills in the OTP field and presses a confirmation button,
a request is made to the server and the OTP is compared
to the generated one. If they do not match, the user is
asked to re-enter it and the procedure is repeated. Every
time the procedure is repeated a new request is made.

In our platform, the phone numbers are meant for later
use. This means they do not need to be immediately
verified. Similarly, to the classical model, the phone
number is sent to the server and a OTP is generated
and sent to the user via SMS. However, when the OTP
is generated, the value is hashed, and the hashed value
is sent in the reply to the browser. When the user enters
the OTP in the browser, we can calculate its hash and
make the verification in the browser. If it is incorrect, we
can alert the user and have him enter it again without
making any requests to the server. The OTP is stored in
the browser and sent with all the other answers to be
verified again by the server.

We considered brute force attacks for discovering the
OTP (e.g. generating all possible combinations and com-
paring them to the given hash). However, this approach
would require both significant computing resources and
time. We believe that this balances with the small secu-
rity impact of having a recommendation SMS sent to the
wrong recipient. Furthermore, the OTP expiration time
frame remains small.

V. RESULTS

We tested our platform using three virtual machines.
These virtual machines had assigned 2 Intel Xeon CPU E5-
2640 cores and 2 GB of RAM each. The VMs have limited
specifications in order to both ensure that our solution is
efficient even when only few resources are available and
to make the results easily reproducible. As previously
described, on top of these VMs, we ran the Docker Swarm
infrastructure. The alert and the monitoring components
are separated from the questionnaire web service and
the data gathering platform. We plan to move the data
in batches from the user facing part of the platform to
the operator facing one, at a specific hour of the night.
As such, we do not consider the operator part in our
analysis.
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Figure 3: Comparison between different architecture choices
(A - Apache, R - Redis, 3X - three X containers)

To validate our architecture design, we compared
its performance with a classical one as well as with
intermediate ones (further presented). This allows us to
validate that each individual component increases the
performance of the overall system and is not superflu-
ous.

To measure the efficiency of our platform we consider
the number of requests per second that the platform can
serve for the writing operations. These operations take
place when the user submits the questionnaire’s answers.

To count the number of requests per second which can
be served by the platform, we used Apache Benchmark1.
For each measurement we made 10000 POST requests.
We used multiple concurrency levels ranging from 1 to
1000 (on a log scale). The benchmarking application was
run on a 4th virtual machine inside our infrastructure.
This was done to measure the performance regardless
of the limitations imposed by the bandwidth. It is quite
likely that the values will change dramatically when
considering the bandwidth limitations or adding com-
ponents such as load balancers (external to the Docker
Swarm one) or firewalls. The results of our measurements
are presented in Figure 3.

We can observe that by using a Redis server as a buffer
between MySQL and Apache, we can serve twice as many
requests. Moreover, when we ran three web servers
and three Redis data stores, the number of requests per
second that we can serve grows even higher.

To determine what is the biggest performance impact
when it comes to scaling, we made the same mea-
surements using different number of Apache and Redis
containers. The results are presented in Figure 4. One
can observe that the biggest impact is brought by in-
creasing the number of Apache containers. This is because
Apache processes the user requests. Furthermore, when
we increase the number of Redis containers, but keep just
one Apache, the load balancer forwards two thirds of the
requests from the server running the Apache container to

1https://httpd.apache.org/docs/2.4/programs/ab.html (Accessed
on 10-Jul-2020)
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If the buffers were not needed, the number of elements in

them would remain small

the other two servers. This has a significant cost. Using
a location aware load balancer may improve the overall
performance.

To confirm that the buffer layer works as expected, we
recorded the change in the number of the elements in the
buffer while we ran Apache benchmark with 10,000 write
requests and a concurrency level of 1000. The number of
elements in the buffer was recorded using scripts added
to the Redis containers.

As can be observed in Figure 5, soon after the re-
quest started the number of elements in the buffer
increased. After reaching the peak, even though more
requests came in, the script managed to move data to
the database. This is due to the way that Apache bench-
mark limits the requests. Once the maximum number of
concurrent requests is created it waits for requests to end
before it creates new ones.

The fact that the change to the buffer size follows the
same pattern in all three servers confirms that the load
balancer works as expected. We do note that the default
Docker Swarm load balancer forwards requests in a round
robin fashion. This would be problematic if the requests
varied significantly in size or processing time. However,
we expect requests to be similar and the Redis server
performs the same operation for all.

VI. CONCLUSION

In this paper we presented the architecture for a
scalable COVID-19 screening platform (CovShield), for
Romania. We have shown that based on the proposed
architecture, we can serve more than 3,500 POST re-
quests per second. This is done using only three virtual
machines with limited resources.

We expect to deploy the platform on an infrastructure
with additional computational resources. As such, we
anticipate a significant increase in capacity. Furthermore,
due to the use of the Docker containers, the platform can
be easily extend.

With 3,500 POST requests per second we can poten-
tially collect data from more than 200,000 individuals
every minute. This data can be analyzed to eventually
provide new insights on the evolution of COVID-19 in
Romania, as well as provide insights on the symptoms
which can be present in the general population.
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