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Abstract—In this work we study the use of noiseless attenuation
and noiseless amplification, in terms of multi-mode Continuous-
Variable (CV) Quantum Key Distribution (QKD) over satellite-to-
ground channels. We propose an improved multi-mode CV-QKD
protocol where noiseless attenuation and noiseless amplification
operations are applied at the transmitter and the receiver,
respectively. Our results show that consistent with single-mode
CV-QKD, the noiseless amplification operation, when applied
at the receiver, can increase the transmission distance and the
channel noise tolerance of multi-mode CV-QKD. Different from
single-mode CV-QKD, in multi-mode CV-QKD the key rate
improvement offered by noiseless amplification can be further
enhanced by adding noiseless attenuation at the transmitter.

I. INTRODUCTION

Increasing the key rate and the channel-loss tolerance of
Continuous-Variable (CV) Quantum Key Distribution (QKD)
is a topic of much ongoing research. One method to reduce the
impact of channel losses is to perform noiseless attenuation at
the transmitter. In this context, recent work on entanglement-
based CV-QKD protocols with noiseless attenuation is of
particular interest [1]–[3]. In these works noiseless attenuation
is realized by a zero photon catalysis operation, with the results
showing that the attenuation can increase both the QKD key
rate and the transmission distance1.

An alternative method to combat channel losses is to
perform noiseless amplification at the receiver. Indeed,
entanglement-based CVQKD protocols with noiseless amplifi-
cation have been widely studied in recent years, demonstrating
how the amplification can also increase the QKD key rate as
well as the transmission distance [4]–[11]).

However, all of the aforementioned studies on CV-QKD are
under the assumption that each beam of the Einstein-Podolsky-
Rosen (EPR) state only contains a single frequency mode. In
reality, any quantum state contains multiple frequency modes
- an issue of increased concern when broadband pulses of
light (ultra-fast pulses in the time domain) are utilized. Multi-
mode entangled states potentially allow for a higher quantum
channel capacity [12], [13]. It is therefore natural to investigate
what impact noiseless attenuation and noiseless amplification

1In [1]–[3] noiseless attenuation is shown to increase the QKD key rate
(transmission distance) only when some parameter of the initial entangled
state (e.g., the squeezing) is not optimized for maximum key rate (transmission
distance).

can have on a CV-QKD system utilizing multi-mode entangled
resources.

In our previous study we have investigated the performance
of a multi-mode CV-QKD protocol using parametric down-
converted (PDC) states with non-Gaussian operations over
fixed-attenuation channels, determining which operation is
preferred at the transmitter [14]. We have shown that in
the multi-mode setting, non-Gaussian operations can improve
the maximized key rate but cannot increase the maximal
transmission distance. In this work we extend our previous
study by introducing multi-mode noiseless attenuation and
amplification. We will focus on satellite-to-ground channels
for multi-mode CV-QKD. Recent advances in the satellite-
based deployment of QKD [15] represent a significant step
forward in the creation of global-scale quantum networks.
However, it is important to further study QKD in this context
searching for improvement in the communications set up. For
a review of CV quantum communications via satellite see [16].

Our contributions in this work are as follows. (i) Noiseless
attenuation and noiseless amplification in the multi-mode
setting are investigated. (ii) We introduce an improved multi-
mode CV-QKD protocol combining noiseless attenuation and
noiseless amplification. (iii) We calculate the maximized key
rate of the improved protocol over satellite-to-ground channels,
showing that the loss tolerance can be significantly enhanced.

The remainder of this paper is organized as follows. In
Section II we discuss noiseless attenuation and noiseless
amplification in the multi-mode setting. In Section III we
detail our improved multi-mode CV-QKD protocol. Section IV
illustrates the satellite-to-ground channel model. In Section V
we present and discuss our simulation results.

II. MULTI-MODE NOISELESS ATTENUATION AND
NOISELESS AMPLIFICATION

Consider an arbitrary multi-mode (broadband frequency
mode) state expressed in the Fock basis,

|ψ〉 =

∞∑
n=0

an |n〉 , (1)

where

|n〉 =
Â†n√
n!
|0〉 , (2)
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and an is a normalized coefficient. The creation operator on
a broadband frequency mode is defined as

Â† =

∞∑
m=1

γma
†
m, (3)

where a†m is the creation operator on a specific single-
frequency mode (indexed by m ∈ {1, 2, ...,∞}) and γm is
the weighting coefficient. Noiseless attenuation acting on |ψ〉
can be represented by a transformation

|ψ〉 →
√
T
N̂
|ψ〉 , (4)

where T < 1 is the transmissivity of the noiseless attenuation
operation and N̂ = Â†Â.

In the multi-mode setting, noiseless attenuation can also be
expressed by a transformation

|ψ〉 →
√
T
Ñ
|ψ〉 , (5)

where

Ñ =

∞∑
m=1

a†mam, (6)

since √
T
Ñ
|n〉 =

√
T
N̂
|n〉 =

√
T
n
|n〉 . (7)

Likewise, noiseless amplification can be represented by a
transformation

|ψ〉 → GN̂ |ψ〉 , (8)

where G > 1 is the gain of the noiseless amplification
operation.

A. The application of noiseless attenuation and noiseless
amplification to multi-mode Gaussian states

A multi-mode Gaussian state may contain multiple or-
thogonal broadband frequency modes, each mode named a
supermode. The parametric down-conversion (PDC) process
is commonly used to create entangled states. In reality, this
process does not produce a single EPR state with single
frequency modes, but an ensemble of independent EPR states
with broadband frequency modes. In the PDC process, a pump
laser is first fed into a non-linear crystal. Two correlated
beams, labeled A and B, are then created. Let Â†k and B̂†k
be the creation operators of the supermodes in beams A and
B, respectively, where the subscript k ∈ {1, 2, ...,∞} is used
to index the supermodes. The output state of the PDC process
can be written as [12]

|PDC〉AB =

∞⊗
k=1

exp
[
gλk

(
Â†kB̂

†
k − ÂkB̂k

)]
|0〉

=

∞⊗
k=1

|EPRk〉AB ,
(9)

where

|EPRk〉AB =

(√
1− tanh2 rk

) ∞∑
n=0

tanhn rk |n, n〉AB ,

(10)

rk = gλk is the squeezing parameter, g is the overall gain
of the PDC process, and the λk’s are normalized coefficients,
which follow an exponentially decaying distribution for the
most likely PDC sources [12].

The quadrature operators associated with one PDC state are
defined as (~ = 2 is adopted)

X̂A
k = Âk + Â†k, P̂

A
k = i

(
Â†k − Âk

)
,

X̂B
k = B̂k + B̂†k, P̂

B
k = i

(
B̂†k − B̂k

)
.

(11)

Being an ensemble of EPR states, the PDC state can be fully
characterized by the covariance matrix (CM) of the quadrature
operators in Eq. (11). The CM of each EPR state has the form

Σk =

(
cosh (2rk) I2 sinh (2rk)Z
sinh (2rk)Z cosh (2rk) I2

)
, (12)

where I2 is the 2-by-2 identity matrix and Z = diag[1,−1].
Since noiseless attenuation and amplification are both Gaus-

sian operations [6], to find the resultant state after the opera-
tions we only need to consider the evolution of the CM of the
state. Suppose a noiseless attenuation operation is applied to
the first supermode (k = 1) in beam A of a PDC state. For
clarity, we assume this state only has some finite number, K,
of equivalent EPR states. Let Σ =

⊕K
k=1 Σk be the CM of the

PDC state, an efficient way to derive the CM after noiseless
attenuation is to employ the Q-function of the PDC state [17]

Q(r) =

√
det(σ)

π2K
exp

[
−rTσr

]
, (13)

where σ = (Σ + I4K)−1, and r =
[
XA

1 , P
A
1 , ..., X

B
K , P

B
K

]T
.

Noiseless attenuation alters Q(r) to

1

P
e(T−1)

[(XA1 )2+(PA1 )2]

2 Q([
√
TXA

1 ,
√
TPA1 , ..., X

B
K , P

B
K ]T )

=

√
det(σ̃)

π2K
exp

[
−rT σ̃r

]
,

(14)
where P is a normalization constant and

σ̃ =

[
T (σ1 − 1

2I2) + 1
2I2

√
Tσ2√

Tσ3 σ4

]
, (15)

and where σ1, σ2, σ3, σ4 are sub-matrices of σ. The CM of
the state after noiseless attenuation can then be calculated by

Σ̃ = σ̃−1 − I4K . (16)

Noiseless amplification alters the CM of a PDC state in a
way similar to noiseless attenuation. To find the CM of the
state after noiseless amplification one only needs to replace√
T in Eq. (15) with G. Additionally, for Σ̃ to be a valid CM

the gain of the amplification operation must satisfy [18]

G <

√
V + 1

V − 1
, (17)

where V is the variance of the quadratures of the supermode
to be amplified.
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Fig. 1. The system diagram of our multi-mode CV-QKD protocol. A noiseless
attenuation operation is applied to the first supermode of the PDC state at the
transmitter (Alice), while a noiseless amplification operation is applied to the
same supermode of the PDC state at the receiver (Bob). In the diagram, thick
arrows represent the flow of the ensemble of supermodes (the entire beam)
while thin arrows represent the flow of a single supermode. (m-HET: multi-
mode heterodyne detection, QM: quantum memory.)

III. THE PROTOCOL FOR MULTI-MODE CV-QKD WITH
NOISELESS ATTENUATION FOLLOWED BY AMPLIFICATION

We build our multi-mode protocol upon an entanglement-
based CV-QKD protocol with heterodyne measurements and
reverse reconciliation [19]. As illustrated in Fig. 1, Alice first
prepares her PDC state (A−B(0)). Again we assume this state
only has K equivalent EPR states. Alice will apply a noiseless
attenuation operation to the first supermode (k = 1) of beam
B(0) while other supermodes are left unchanged. The beam
after attenuation, which is labeled as B(1), is sent to Bob via
a satellite-to-ground channel controlled by Eve.

The channel is characterized by the transmissivity η and the
input excess noise ε. We assume η is frequency independent
and ε is i.i.d for each supermode. Under our assumptions the
supermode structure of B(1) is retained after the channel.
The multi-mode channel is equivalent to multiple independent
sub-channels. We assume Eve has full knowledge of Alice
and Bob’s protocol and has access to Bob’s apparatus. Eve
will use the following strategy to steal the maximal available
information. For each sub-channel, Eve will first perform
an entangling cloner attack [20] to obtain a purification of
Alice and Bob’s state. She will then store her ensemble of
purifications, E, in her quantum memory. Eve will perform a
joint measurement on E after reverse reconciliation.

The beam after the channel is labeled as B(2). Bob will
perform noiseless amplification to the first supermode of B(2).
The beam after amplification, labeled as B(3), is then injected
into a multi-mode heterodyne detector.

We assume a quantum memory device is available at Alice’s
side, so that she can prepare the PDC state with noiseless
attenuation in advance. Under the assumption of infinite key
size, the secret key rate for our multi-mode CV-QKD protocol
is given by [21]

Rtot =

K∑
k=1

Rk, (18)

where

Rk = ξI(Ak :B
(3)
k )− χ(Ek :B

(3)
k ) (19)

Fig. 2. System model for the satellite-to-ground channel. On the right-hand
side of the figure, the red circle represents the beam-profile at the transmitter.
The satellite-to-ground channel is assumed to be controlled by Eve, where
beam-wandering, beam-broadening and beam-deformation alter the position
and the shape of the beam-profile. The rotated red ellipse represents the beam-
profile at the receiver.

is the secret key rate for each sub-channel, ξ is the reverse
reconciliation efficiency, I(Ak : B

(3)
k ) is the classical mutual

information between Alice and Bob, and χ(Ek : B
(3)
k ) is

the Holevo bound for Eve’s information. These latter two
quantities can be calculated using standard methods (see
Appendix).

IV. THE SATELLITE-TO-GROUND CHANNELS

We consider the model of a down-link between a satellite
and a terrestrial station. The system model for the satellite-to-
ground channel is depicted in Fig. 2. Our quantum information
carrier is an ultra-fast pulsed optical beam. First prepared at a
satellite with altitude H and zenith angle ζ, the beam is sent
to Bob through an atmospheric channel. For optical signals in
the atmospheric channel, the dominant loss mechanisms are
beam-wandering, beam-broadening, and beam-deformation,
all randomly caused by turbulence in the Earth’s atmosphere
[22]. Beam-broadening is also a consequence of diffraction.
These effects are well-described by a model based on an
elliptic-beam approximation [23], which yields a reasonable
agreement with experiments of short horizontal links under
weak-to-moderate turbulence. In this model, the beam intensity
profile at the transmitter is characterized by five real random
variables {x, y, θ1, θ2, φ}, where (x, y) is the beam-centroid
position, θi = ln

W 2
i

W 2
0

, W0 is the beam-waist at the transmitter,
W1 and W2 are elliptical semi-axis lengths, and φ is the
rotation angle of the beam. The channel transmissivity reads

η = η0 exp

−
[ √

x2 + y2/r0

R( 2
Weff (φ−φ0) )

]λ(2/Weff (φ−φ0))
 , (20)
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where r0 is the aperture radius of the detector, φ0 = tan−1 y
x ,

Weff is the effective spot-radius, and η0 is the maximal trans-
missivity achieved when there is no beam-centroid deviation.
These latter two parameters can be expressed by

W 2
eff(φ) = 4r2

0

{
W
( 4r2

0

W1W2
e(r20/W

2
1 )[1+2 cos2(φ)]

×e(r20/W
2
2 )[1+2 sin2(φ)]

)}−1

,
(21)

and

η0 = 1− I0
(
r2
0

[
1
W 2

1
− 1

W 2
2

])
e−r

2
0(1/W 2

1 +1/W 2
2 )

−2
[
1− e−(r20/2)[1/W1−1/W2]2

]
× exp

−
[

(W1+W2)2

|W2
1 −W2

2 |
R
(

1
W1
− 1
W2

)
]λ( 1

W1
− 1
W2

) .

(22)

The scaling function R(W ) and the shaping function λ(W )
are given by,

R(W ) =

[
ln

(
2

1− exp
[
− 1

2r
2
0W

2
]

1− exp [−r2
0W

2] I0(r2
0W

2)

)]− 1
λ(W )

,

(23)
and

λ(W ) = 2r2
0W

2 exp [−r2
0W

2]I1(r2
0W

2)

1− exp [−r2
0W

2] I0(r2
0W

2)

×

[
ln

(
2

1− exp
[
− 1

2r
2
0W

2
]

1− exp [−r2
0W

2] I0(r2
0W

2)

)]−1

,

(24)
respectively. In the above equations, W(·) is the Lambert W
function, and Ii(·) is the modified Bessel function of i-th order.

Building upon [23], in [24] the elliptic-beam model is
extended to satellite-to-ground links. It is assumed that x
and y are i.i.d. and they both follow a zero-mean Gaussian
distribution. Parameters θ1 and θ2 are taken to follow a joint-
Gaussian distribution. The rotation angle φ is uniformly dis-
tributed under the assumption that the turbulence is isotropic.
The mean and variance of {x, y, θ1, θ2} are〈

∆x2
〉

=
〈
∆y2

〉
= 0.33W 2

0 σ
2
IΩ−7/6,

〈θ1〉 = 〈θ2〉

= ln

 (
1 + 2.96σ2

IΩ5/6
)2

Ω2

√(
1 + 2.96σ2

IΩ5/6
)2

+ 1.2σ2
IΩ5/6

,
〈
∆θ1

2
〉

=
〈
∆θ2

2
〉

= ln

[
1 +

1.2σ2
IΩ5/6(

1 + 2.96σ2
IΩ5/6

)2
]
,

〈∆θ1∆θ2〉 = ln

[
1− 0.8σ2

IΩ5/6(
1 + 2.96σ2

IΩ5/6
)2
]
,

(25)

where Ω =
kW 2

0

2L , k is the optical wavenumber, L is the
propagation distance, and σ2

I is the scintillation index [25].
The scintillation index can be written as

σ2
I = exp

 0.49σ2
R(

1 + 1.11σ
12/5
R

)7/6
+

0.51σ2
R(

1 + 0.69σ
12/5
R

)5/6

−1,

(26)
where σ2

R is the Rytov variance [22],

σ2
R = 2.25k

7
6 sec

11
6 ζ

∫ H

h0

C2
n (h) (h− h0)

5
6 dh (27)

with h0 the altitude of the ground station and C2
n(h) the

refraction index structure constant. This constant is described
by the Hufnagel-Valley model [26]

C2
n(h) = 0.00594(v/27)2(h× 10−5)10e−

h
1000

+ 2.7× 10−16e−
h

1500 +Ae−
h

100 , (28)

where v is the r.m.s. wind speed in m/s and A is the nominal
value of C2

n(0) at sea level in m−2/3.

V. SIMULATION

A. Simulation Settings

For each sub-channel, unless otherwise specified, we set
the channel input excess noise ε = 0.05 (in vacuum noise
unit) and the reconciliation efficiency ξ = 0.95. We assume
the number of equivalent EPR states of the PDC state created
by Alice is K = 5. These EPR states are characterized by
the squeezing parameters [r1, r2, ..., r5] = g [λ1, λ2, ..., λ5]
defined in Eq. (10). For the normalized coefficients of the PDC
state λ1, λ2, ..., λ5, we consider three scenarios. In the first
scenario the λk’s are all zero except λ1. This state is a good
approximation to a single-mode state. In the second scenario
the λk’s follow an exponentially decaying distribution. We
refer to this as a generic supermode system. In the last scenario
the λk’s are all identical.

For the satellite-to-ground channel, we adopt the parameters
from [24]. These are h0 = 0, v = 6m/s, and C2

n(0) =
9.6 × 10−14m−2/3. The beam waist at the transmitter and
the receiver aperture are set to W0 = 6cm and r0 = 1m,
respectively. Under these settings the mechanism that domi-
nates the channel loss is beam-broadening. In accordance with
the experiments in [27], the center wavelength of the multi-
mode beam is set as λ = 795nm with a 30dB bandwidth
of approximately 20nm (6nm of FWHM). The pulse rate
of the beam is 76MHz. We assume that all the frequency
components of the beam undergo the same attenuation as the
central frequency component.

For the practical implementation of our CV-QKD protocol
we need to consider the success probabilities for noiseless
attenuation and noiseless amplification. The success probabil-
ity for noiseless attenuation can be viewed as unity since we
assume Alice can prepare the attenuated PDC state in advance
and then store the state in quantum memory.
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In practice noiseless amplification is impossible, but there
are various procedures that can approximate noiseless ampli-
fication (e.g., [28]–[32]). One of these procedures assumes
noiseless amplification is only performed on the subspace of
the first N + 1 Fock states [28]. The success probability for
this procedure is lower bounded by G−2N . In the simulation
to follow, we will set the success probability for noiseless
amplification by Pk = G−2dn̄e, where n̄ is the average photon
number of the supermode to be amplified at the receiver. The
total key rate defined in Eq. (18) is then re-written as2

Rtot =

K∑
k=1

Pk

[
ξI(Ak :B

(3)
k )− χ(Ek :B

(3)
k )
]
. (29)

B. Simulation Results

We first investigate the strategy where Alice performs
noiseless attenuation to one supermode, while Bob performs
noiseless amplification to the same supermode. We refer to
this strategy as the symmetrical strategy. For each channel
attenuation level, we maximize the total key rate defined
in Eq. (29) on the PDC gain of the original state, g, the
transmissivity of the noiseless attenuator, T , and the gain of
the noiseless amplifier, G. For satellite-to-ground channels we
use the averaged secret key rate, R̄tot, as our performance
metric. Since the PDF for channel transmissivity is in general
intractable, we calculate R̄tot by R̄tot = 1

Nsample

∑
nRtot(ηn),

where ηn is the channel transmissivity sample generated by a
Monte Carlo algorithm and Nsample is the number of samples.
We assume the channel transmissivity is measured within each
coherence time window and {g,G, T} are optimized based on
this measurement. The results are illustrated in Fig. 3 and
Fig. 4, where the mean channel attenuation is calculated by

η̄[dB] = −10 log10

[
1

Nsample

∑
n

(ηn)

]
. (30)

In Fig. 3 we compare the maximized R̄tot for the multi-
mode CV-QKD protocol with or without amplification and
attenuation applied to the first supermode. For the most likely
PDC sources (the middle figure in Fig. 3), applying noiseless
amplification to the first supermode can significantly increase
the maximized R̄tot when the mean channel attenuation is
large (>28dB for the channel parameters we considered). Such
improvement can be further enhanced by adding a noiseless
attenuator at the transmitter. We note that the improvement
offered by noiseless attenuation cannot be observed in single-
mode cases. In practice, noiseless attenuation is not needed for
single-mode states since it amounts to reducing the squeezing
of the original state, which can be easily realized by directly
adjusting the PDC gain. In Fig. 4 we compare the maximized

2For the PDC states we considered the average photon number of the
supermode to be amplified at the receiver satisfies n̄ < 1. For example, when
η = 10−3 (30dB) we have n̄ ∼ 2×10−3. We will ignore the non-Gaussianity
induced by the procedure that approximates noiseless amplification. At low
average photon numbers (n̄� 1) it is easy to show that this procedure leads
to a negligible impact on key rates.

Fig. 3. Maximized key rate over satellite-to-ground channels, where noiseless
attenuation and amplification are both applied to the first supermode. The
black dashed curve represents the key rate with no attenuator or amplifier, the
blue solid curve represents the key rate with only an amplifier, and the red
solid curve represents the key rate with an attenuator and an amplifier. The
inset illustrates the supermode structure of the initial PDC state.

R̄tot for the situation where noiseless amplification and atten-
uation are both applied to a supermode other than the first
supermode. Results show that applying the operations to the
first supermode offers the largest R̄tot over the entire range of
mean channel attenuation we have considered.

We then study the strategy where Alice performs noise-
less attenuation to the first supermode, while Bob performs
noiseless amplification to a different supermode. The results
are almost identical to the results of the symmetrical strategy
(< 5% inferior).

We also investigate the maximal acceptable zenith angle
ζmax and the maximal tolerable channel input excess noise
εmax that allow for a positive R̄tot. Focusing on the symmetrical

Approved for Public Release; Distribution is Unlimited; #20-1024; Dated 06/02/2020. 5



Fig. 4. Maximized secret key rate against mean channel attenuation, where
noiseless amplification and attenuation are applied to the first supermode
(black), the second supermode (blue), or the third supermode (red). The top-
right inset illustrates the supermode structure of the PDC state.

strategy with generic PDC sources, in the top figure of Fig. 5
we compare ζmax for protocols with or without amplification
and attenuation against the altitude of the satellite H and
the channel input excess noise ε. Results show that our im-
proved protocol (with amplification and attenuation) offers an
increased ζmax over the entire range of the altitude of an LEO
satellite (< 2000km). Such an improvement is more significant
when ε is large. In the bottom figure of Fig. 5 we compare εmax
against the satellite altitude and the satellite zenith angle. It can
be seen that our improved protocol can significantly enhance
εmax when the channel condition is bad (i.e., large satellite
altitude and zenith angle). The enhancement is insignificant
when the mean channel attenuation is small due to the limit
on the maximal gain for noiseless amplification (Eq. (17)).

We note that the results provided here for satellite-to-
ground channels can be directly related to fixed-attenuation
channels such as optical fibers. This is achieved through
the relation from which the mean channel attenuation is
determined (Eq. (30)). For example, in cases where the PDF
of the satellite-to-ground channel approaches a delta function,
the results of R̄tot for mean attenuation approach those of
fixed attenuation. The PDF of the satellite-to-ground channel
is heavily depended not only on the turbulence parameters
but also on the dimension of the receiver aperture. In many
instances, e.g. when the received beam dimension is much
larger than the receiver aperture, the mean attenuation results
will be very close to the fixed attenuation results.

VI. CONCLUSION

In this work, we investigate the use of noiseless attenuation
and noiseless amplification, in the context of entanglement-
based multi-mode CV-QKD over satellite-to-ground channels.
We find that noiseless amplification can significantly increase
the noise tolerance and the transmission distance, allowing
for satellites with higher altitudes and hence extended cov-
erage. Interestingly, while noiseless attenuation is replaceable
with a less-squeezed EPR state in the single-mode setting,
in the multi-mode setting, for generic multi-mode entangled

Fig. 5. Top panel: Maximal acceptable zenith angle against the altitude of the
satellite and the channel input excess noise. Bottom panel: Maximal tolerable
channel input excess noise against the altitude of the satellite and the zenith
angle. (Red surface: the improved protocol with attenuation and amplification.
Blue surface: the original protocol without attenuation or amplification. Green
surface: the improvement offered by the improved protocol.)

sources noiseless attenuation is irreplaceable. Our results will
be particularly important in future space-based missions, in
which quantum memory forms part of the satellite payload
and broadband pulses of lights are utilized.
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APPENDIX

For each sub-channel (indexed by k), Alice and Bob’s
mutual information can be calculated by

I(Ak :B
(3)
k ) = log2

VAk
V
Ak|B(3)

k

, (31)

where VAk is the variance of Alice’s supermode, and V
Ak|B(3)

k

is the variance of the quadratures of Alice’s supermode condi-
tioned on Bob’s heterodyne measurement. The Holevo bound
for Eve’s information is

χ(Ek :B
(3)
k ) = g (α1,k) + (α2,k)− g (α3,k) , (32)

where g(x) = x+1
2 log2

x+1
2 −

x−1
2 log2

x−1
2 , α1,k and α2,k are

the symplectic eigenvalues of the CM of state ρAB(3) , and α3,k

is the symplectic eigenvalue of the CM of Alice’s supermode
conditioned on Bob’s measurement.

The quantities in Eqs. (31) and (32) are fully determined by
the CM of Alice and Bob’s state at different stages. Noticing
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the evolution of the CM follows the same procedure for each
sub-channel, we use the first EPR state (k = 1) as an example
to derive the CMs. Let

Σ
A1B

(1)
1

=

(
aI2 cZ
cZ bI2

)
, (33)

be the CM of the EPR state after the noiseless attenuation at
the transmitter (the exact form of Σ

A1B
(1)
1

can be calculated
using Eq. (15), which we omit here for conciseness). This
state is stored in Alice’s quantum memory before being sent
to Bob. The channel alters the above CM to

Σ
A1B

(2)
1

=

[
aI2

√
ηcZ√

ηcZ [η(b+ ε) + (1− η)] I2

]
, (34)

Bob will perform the noiseless amplification on his received
state. Let

Σ
A1B

(3)
1

=

(
xI2 zZ
zZ yI2

)
, (35)

be the CM of Alice and Bob’s state ρAB(3) after the noiseless
amplification (the exact form of Σ

A1B
(3)
1

can also be calculated
using Eq. (15)). The symplectic eigenvalues of the above CM,
α1,1 and α2,1, can be calculated by

α1,1 =
1

2

[√
(x+ y)2 − 4z2 + (y − x)

]
,

α2,1 =
1

2

[√
(x+ y)2 − 4z2 − (y − x)

]
.

(36)

The CM of Alice’s supermode conditioned on Bob’s het-
erodyne measurement is

Σ
A1|B(3)

1
=

(
x− z2

y + 1

)
I2, (37)

which has the symplectic eigenvalue α3,1 = x − z2

y+1 . The
mutual information can now be expressed as

I(Ak :B
(3)
k ) = log2

(x+ 1)(y + 1)

(x+ 1)(y + 1)− z2
. (38)

The Holevo bound for Eve’s information can be calculated by
putting α1,1, α2,1, and α3,1 into Eq. (32).

REFERENCES

[1] Y. Guo, W. Ye, H. Zhong, and Q. Liao, “CV-QKD with non-Gaussian
quantum catalysis,” Physical Review A, vol. 99, no. 3, p. 032327, 2019.

[2] W. Ye, H. Zhong, Q. Liao, D. Huang, L. Hu, and Y. Guo, “Improvement
of self-referenced CV-QKD with quantum photon catalysis,” Optics
express, vol. 27, no. 12, pp. 17 186–17 198, 2019.

[3] Y. Guo, J. Ding, Y. Mao, W. Ye, Q. Liao, and D. Huang, “Quantum
catalysis-based discrete modulation CV-QKD with eight states,” Physics
Letters A, p. 126340, 2020.

[4] N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing
device-independent QKD based on a heralded qubit amplifier,” Physical
Review Letters, vol. 105, no. 7, p. 070501, 2010.

[5] R. Blandino, A. Leverrier, M. Barbieri, J. Etesse, P. Grangier, and
R. Tualle-Brouri, “Improving the maximum transmission distance of
CV-QKD using a noiseless amplifier,” Physical Review A, vol. 86, no. 1,
p. 012327, 2012.

[6] J. Fiurášek and N. J. Cerf, “Gaussian postselection and virtual noiseless
amplification in CV-QKD,” Physical Review A, vol. 86, no. 6, p. 060302,
2012.

[7] N. Walk, T. C. Ralph, T. Symul, and P. K. Lam, “Security of continuous-
variable quantum cryptography with Gaussian postselection,” Physical
Review A, vol. 87, no. 2, p. 020303, 2013.

[8] T. Wang, S. Yu, Y.-C. Zhang, W. Gu, and H. Guo, “Improving the
maximum transmission distance of CV-QKD with noisy coherent states
using a noiseless amplifier,” Physics Letters A, vol. 378, no. 38-39, pp.
2808–2812, 2014.

[9] Y. Zhang, Z. Li, C. Weedbrook, K. Marshall, S. Pirandola, S. Yu, and
H. Guo, “Noiseless linear amplifiers in entanglement-based CV-QKD,”
Entropy, vol. 17, no. 7, pp. 4547–4562, 2015.

[10] E. Villasenor and R. Malaney, “Improving QKD for entangled states
with low squeezing via non-Gaussian operations,” in 2019 IEEE Globe-
com Workshops (GC Wkshps), 2019, pp. 1–6.

[11] M. Ghalaii, C. Ottaviani, R. Kumar, S. Pirandola, and M. Razavi,
“Discrete-modulation CV-QKD enhanced by quantum scissors,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 3, pp. 506–
516, 2020.

[12] A. Christ, C. Lupo, and C. Silberhorn, “Exponentially enhanced quantum
communication rate by multiplexing continuous-variable teleportation,”
New Journal of Physics, vol. 14, no. 8, p. 083007, 2012.

[13] V. C. Usenko, L. Ruppert, and R. Filip, “Entanglement-based CV-QKD
with multimode states and detectors,” Physical Review A, vol. 90, no. 6,
p. 062326, 2014.

[14] M. He, R. Malaney, and J. Green, “Multi-mode CV-QKD with non-
Gaussian operations,” Quantum Engineering, 2020.

[15] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin,
Q. Shen, Y. Cao, Z.-P. Li et al., “Satellite-to-ground quantum key
distribution,” Nature, vol. 549, no. 7670, pp. 43–47, 2017.

[16] N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo,
“Satellite-based continuous-variable quantum communications: State-of-
the-art and a predictive outlook,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 881–919, 2018.

[17] C. Gagatsos, J. Fiurášek, A. Zavatta, M. Bellini, and N. Cerf, “Heralded
noiseless amplification and attenuation of non-Gaussian states of light,”
Physical Review A, vol. 89, no. 6, p. 062311, 2014.

[18] N. Walk, A. P. Lund, and T. C. Ralph, “Nondeterministic noiseless
amplification via non-symplectic phase space transformations,” New
Journal of Physics, vol. 15, no. 7, p. 073014, 2013.

[19] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and
P. K. Lam, “Quantum cryptography without switching,” Physical Review
Letters, vol. 93, no. 17, p. 170504, 2004.

[20] C. Weedbrook, S. Pirandola, and T. C. Ralph, “CV-QKD using thermal
states,” Physical Review A, vol. 86, no. 2, p. 022318, 2012.

[21] M. Navascués, F. Grosshans, and A. Acin, “Optimality of Gaussian
attacks in continuous-variable quantum cryptography,” Physical Review
Letters, vol. 97, no. 19, p. 190502, 2006.

[22] L. C. Andrews and R. L. Phillips, Laser beam propagation through
random media. SPIE press Bellingham, WA, 2005, vol. 152.

[23] D. Vasylyev, A. Semenov, and W. Vogel, “Atmospheric quantum chan-
nels with weak and strong turbulence,” Physical Review Letters, vol.
117, no. 9, p. 090501, 2016.

[24] Y. e. a. Guo, “Channel-parameter estimation for satellite-to-submarine
CV-QKD,” Physical Review A, vol. 97, no. 5, p. 052326, 2018.

[25] L. C. Andrews, R. L. Phillips, and C. Y. Young, “Scintillation model
for a satellite communication link at large zenith angles,” Optical
Engineering, vol. 39, no. 12, pp. 3272–3281, 2000.

[26] R. R. Beland, “Propagation through atmospheric optical turbulence,”
Atmospheric Propagation of Radiation, vol. 2, pp. 157–232, 1993.

[27] J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps,
“Wavelength-multiplexed quantum networks with ultrafast frequency
combs,” Nature Photonics, vol. 8, no. 2, p. 109, 2014.
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